首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
To examine the relationship between the plasma glucose concentration (PG) and the pathways of hepatic glucose production (HGP), five groups of conscious rats were studied after a 6-h fast: (a) control rats (PG = 8.0 +/- 0.2 mM); (b) control rats (PG = 7.9 +/- 0.2 mM) with somatostatin and insulin replaced at the basal level; (c) control rats (PG = 18.1 +/- 0.2 mM) with somatostatin, insulin replaced at the basal level, and glucose infused to acutely raise plasma glucose by 10 mM; (d) control rats (PG = 18.0 +/- 0.2 mM) with somatostatin and glucose infusions to acutely reproduce the metabolic conditions of diabetic rats, i.e., hyperglycemia and moderate hypoinsulinemia; (e) diabetic rats (PG = 18.4 +/- 2.3 mM). All rats received an infusion of [3-3H]glucose and [U-14C]lactate. The ratio between hepatic [14C]UDP-glucose sp act (SA) and 2X [14C]-phosphoenolpyruvate (PEP) SA (the former reflecting glucose-6-phosphate SA) measured the portion of total glucose output derived from PEP-gluconeogenesis. In control rats, HGP was decreased by 58% in hyperglycemic compared to euglycemic conditions (4.5 +/- 0.3 vs. 10.6 +/- 0.2 mg/kg.min; P < 0.01). When evaluated under identical glycemic conditions, HGP was significantly increased in diabetic rats (18.9 +/- 1.4 vs. 6.2 +/- 0.4 mg/kg.min; P < 0.01). In control rats, hyperglycemia increased glucose cycling (by 2.5-fold) and the contribution of gluconeogenesis to HGP (91% vs. 45%), while decreasing that of glycogenolysis (9% vs. 55%). Under identical plasma glucose and insulin concentrations, glucose cycling in diabetic rats was decreased (by 21%) and the percent contribution of gluconeogenesis to HGP (73%) was similar to that of controls (84%). These data indicate that: (a) hyperglycemia causes a marked inhibition of HGP mainly through the suppression of glycogenolysis and the increase in glucokinase flux, with no apparent changes in the fluxes through gluconeogenesis and glucose-6-phosphatase; under similar hyperglycemic hypoinsulinemic conditions: (b) HGP is markedly increased in diabetic rats; however, (c) the contribution of glycogenolysis and gluconeogenesis to HGP is similar to control animals.  相似文献   

2.
We have proposed that chronic hyperglycemia alters the ability of glucose to modulate insulin secretion, and have now examined the effects of different levels of hyperglycemia on B cell function in normal rats using chronic glucose infusions. Rats weighing 220-300 g were infused with 0.45% NaCl or 20, 30, 35, or 50% glucose at 2 ml/h for 48 h, which raised the plasma glucose by 18 mg/dl in the 30% rats, 37 mg/dl in the 35% rats, and 224 mg/dl in the 50% group. Insulin secretion was then examined using the in vitro isolated perfused pancreas. Glucose-induced insulin secretion remained intact in the normoglycemic 20% glucose rats and it was potentiated in the mildly hyperglycemic 30% glucose rats. However, with even greater hyperglycemia in the 35% glucose group the insulin response to a high glucose perfusate was severely blunted, and it was totally lost in the most hyperglycemic 50% glucose rats. In a second protocol that examined glucose potentiation of arginine-stimulated insulin release, a similar impairment in the ability of glucose to modulate the insulin response to arginine was found with increasing levels of chronic hyperglycemia. On the other hand, the ability of a high glucose concentration to inhibit arginine-stimulated glucagon release was preserved in all glucose-infused rats, but the glucagon levels attained in response to the arginine at 2.8 mM glucose were much less in the 50% glucose rats than in all the other groups. These data clearly show that after 48 h of marked hyperglycemia, glucose influence upon insulin secretion in the rat is severely impaired. This model provides a relatively easy and reproducible method to study the effects of long-term hyperglycemia on B cell function.  相似文献   

3.
4.
ABSTRACT: INTRODUCTION: The aim of the present study was to investigate the relationship between the blood IL-6 level, the blood glucose level, and glucose control in septic patients. METHODS: This retrospective observational study in a general ICU of a university hospital included a total of 153 patients with sepsis, severe sepsis, or septic shock who were admitted to the ICU between 2005 and 2010, stayed in the ICU for 7 days or longer, and did not receive steroid therapy prior to or after ICU admission. The severity of stress hyperglycemia, status of glucose control, and correlation between those two factors in these patients were investigated using the blood IL-6 level as an index of hypercytokinemia. RESULTS: A significant positive correlation between blood IL-6 level and blood glucose level on ICU admission was observed in the overall study population (n = 153; r = 0.24, P = 0.01), and was stronger in the nondiabetic subgroup (n = 112; r = 0.42, P < 0.01). The rate of successful glucose control (blood glucose level < 150 mg/dl maintained for 6 days or longer) decreased with increase in blood IL-6 level on ICU admission (P < 0.01). The blood IL-6 level after ICU admission remained significantly higher and the 60-day survival rate was significantly lower in the failed glucose control group than in the successful glucose control group (P < 0.01 and P < 0.01, respectively). CONCLUSIONS: High blood IL-6 level was correlated with hyperglycemia and with difficulties in glucose control in septic patients. These results suggest the possibility that hypercytokinemia might be involved in the development of hyperglycemia in sepsis, and thereby might affect the success of glucose control.  相似文献   

5.
Glucose toxicity of the pancreatic beta cell is considered to play a secondary role in the pathogenesis of type II diabetes mellitus. To gain insights into possible mechanisms of action of glucose toxicity, we designed studies to assess whether the loss of insulin secretion associated with serial passages of HIT-T15 cells might be caused by chronic exposure to high glucose levels since these cells are routinely cultured in media containing supramaximal stimulatory concentrations of glucose. We found that late passages of HIT cells serially cultured in media containing 11.1 mM glucose lost insulin responsivity and had greatly diminished levels of insulin content and insulin mRNA. In marked contrast, late passages of HIT cells cultured serially in media containing 0.8 mM glucose retained insulin mRNA, insulin content, and insulin responsivity to glucose in static incubations and during perifusion with glucose. No insulin gene mutation or alteration of levels of GLUT-2 were found in late passages of HIT cells cultured with media containing 11.1 mM glucose. These data uniquely indicate that loss of beta cell function in HIT cells passed serially under high glucose conditions is caused by loss of insulin mRNA, insulin content, and insulin secretion and is preventable by culturing HIT cells under low glucose conditions. This strongly suggests potential genetic mechanisms of action for glucose toxicity of beta cells.  相似文献   

6.
7.
Interleukin 1 (IL-1) is a family of polypeptides initially found to be produced by activated monocytes and macrophages that mediate a wide variety of cellular responses to injury and infection. Epidermal epithelial cells (keratinocytes) produce "epidermal cell-derived thymocyte activating factor" or ETAF, which has been recently shown to be identical to IL-1. Human epidermis is normally exposed to significant amounts of solar ultraviolet radiation. Certain ultraviolet wavelengths (UVB, 290-320 nm) are thought to be responsible for most of the immediate and long-term pathological consequences of excessive exposure to sunlight. In this study, we asked whether exposure to UVB irradiation induced IL-1 gene expression in cultured human keratinocytes. Cultured human keratinocytes contain detectable amounts of IL-1 alpha and beta mRNA and protein in the absence of apparent stimulation; these levels could be significantly enhanced 6 h after exposure to 10 ng/ml of 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Exposure to UVB irradiation with an emission spectrum comparable to that of sunlight (as opposed to that of an unfiltered artificial UV light source) significantly increased the steady state levels IL-1 alpha and beta mRNA in identical populations of human keratinocytes. This was reflected in the production of increased IL-1 activity by these cultures in vitro. In the same cell population, exposures to UVB irradiation did not alter the level of actin mRNA; therefore, the effect of UV irradiation on IL-1 represents a specific enhancement of IL-1 gene expression. Local increases of IL-1 may mediate the inflammation and vasodilation characteristic of acute UVB-injured skin, and systemic release of this epidermal IL-1 may account for fever, leukocytosis, and the acute phase response seen after excessive sun exposure.  相似文献   

8.
The aim of the present study was to clarify whether prolonged in vitro exposure of human pancreatic islets to high glucose concentrations impairs the function of these cells. For this purpose, islets isolated from adult cadaveric organ donors were cultured for seven days in RPMI 1640 medium supplemented with 10% fetal calf serum and containing either 5.6, 11, or 28 mM glucose. There was no glucose-induced decrease in islet DNA content or signs of morphological damage. However, islets cultured at 11 or 28 mM glucose showed a 45 or 60% decrease in insulin content, as compared to islets cultured at 5.6 mM glucose. Moreover, when such islets were submitted to a 60-min stimulation with a low (1.7 mM) followed by a high (16.7 mM) concentration of glucose, the islets cultured at 5.6 mM glucose showed a higher insulin response to glucose than those of the two other groups. Islets cultured at the two higher glucose concentrations showed increased rates of insulin release in the presence of low glucose, and a failure to enhance further the release in response to an elevated glucose level. Islets cultured at 28 mM glucose showed an absolute decrease in insulin release after stimulation with 16.7 mM glucose, as compared to islets cultured at 5.6 mM glucose. The rates of glucose oxidation, proinsulin biosynthesis, and total protein biosynthesis were similar in islets cultured at 5.6 or 11 mM glucose, but they were decreased in islets cultured at 28 mM glucose. These combined results suggest that lasting exposure to high glucose concentrations impairs the function of human pancreatic islets.  相似文献   

9.
Trimetazidine is a drug with cardioprotective properties used in coronary artery disease. Its effect has been attributed to the inhibition of the long chain fatty acids intramitochondrial transport via carnitine-palmitoyl-transferase-1. Clinical evidence supports the possibility that trimetazidine is able to improve the fasting glycemia in diabetic patients. For this reason, the objective of the present study was to determine the effect of trimetazidine on serum glucose of Sprague-Dawley rats with fasting hyperglycemia. All animals received water and food "ad libitum." Blood glucose was measured weekly to confirm fasting hyperglycemia in rats. The rats were treated for 1 month with trimetazidine (1 mg/kg), and blood samples were collected (in the fasting period) on the last day of treatment (the 30th day); and then on the 15th day posttreatment, measurements of plasma glucose were taken. Fasting plasma levels after 30 days of trimetazidine administration decreased significantly from 141.2 +/- 3.3 mg/dL (pre-drug) to 120.9 +/- 5.8 mg/dL (P<0.01). 15 days after the end of treatment, fasting plasma glucose levels (137.0 +/- 7.0 mg/dL) were close to the pretreatment levels but significantly different (P<0.05) from levels on day 30 of treatment. These data suggest that trimetazidine improved blood glucose utilization in rats with fasting hyperglycemia.  相似文献   

10.
Type 1 diabetes is a metabolic disorder caused by loss of insulin-producing pancreatic beta-cells. Expression of insulin in non-beta-cells to create beta-cell surrogates has been tried to treat type 1 diabetes. Enteroendocrine K cells have characteristics similar to pancreatic beta-cells, such as a glucose-sensing system and insulin-processing proteases. In this study, we genetically engineered an enteroendocrine cell line (STC-1) to express insulin under the control of the glucose-dependent insulinotropic polypeptide promoter. We screened clones and chose one, Gi-INS-7, based on its high production of insulin. Gi-INS-7 cells expressed glucose transporter 2 (GLUT2) and glucokinase (GK) and secreted insulin in response to elevated glucose levels in vitro. To determine whether Gi-INS-7 cells can control blood glucose levels in diabetic mice, we transplanted these cells under the kidney capsule of streptozotocin (STZ)-induced diabetic mice and found that blood glucose levels became normal within 2 weeks of transplantation. In addition, glucose tolerance tests in mice that became normoglycemic after transplantation with Gi-INS-7 cells showed that exogenous glucose was cleared appropriately. These results suggest that engineered K cells may be promising surrogate beta-cells for possible therapeutic use for the treatment of type 1 diabetes.  相似文献   

11.
Oxidized lipoproteins may be important in the pathogenesis of atherosclerosis. Because diabetic subjects are particularly prone to vascular disease, and glucose autoxidation and protein glycation generate reactive oxygen species, we explored the role of glucose in lipoprotein oxidation. Glucose enhanced low density lipoprotein (LDL) oxidation at concentrations seen in the diabetic state. Conjugated dienes, thiobarbituric acid reactive substances, electrophoretic mobility, and degradation by macrophages were increased when LDL was modified in the presence of glucose. In contrast, free lysine groups and fibroblast degradation were reduced. Although loss of reactive lysine groups could be due to either oxidative modification or nonenzymatic glycation of apolipoprotein B-100, inhibition of lipid peroxidation by the metal chelator, diethylenetriamine pentaacetic acid, blocked the changes in free lysines. Thus, glycation of lysine residues is unlikely to account for the alterations in macrophage and fibroblast uptake of LDL modified in the presence of glucose. Glucose-mediated enhancement of LDL oxidation was partially blocked by superoxide dismutase and nearly completely inhibited by butylated hydroxytoluene. These findings indicate that glucose enhances LDL lipid peroxidation by an oxidative pathway involving superoxide and raise the possibility that the chronic hyperglycemia of diabetes accelerates lipoprotein oxidation, thereby promoting diabetic vascular disease.  相似文献   

12.
13.
14.
Primary cardiac abnormalities have been frequently reported in patients with diabetes probably due to metabolic consequences of the disease. Approximately 2,000 mRNA species from the heart of streptozotocin-induced diabetic and control rats were compared by the mRNA differential display method, two of eight candidate clones thus isolated (DH1 and 13) were confirmed by Northern blot analysis. The expression of clone 13 was increased in the heart by 3.5-fold (P < 0.05) and decreased in the aorta by twofold (P < 0.05) in diabetes as compared to control. Sequence analysis showed that clone 13 is a rat mitochondrial gene. DH1 was predominantly expressed in the heart with an expression level 6.8-fold higher in the diabetic rats than in control (P < 0.001). Insulin treatment significantly (P < 0.001) normalized the expression of DH1 in the hearts of diabetic rats. DH1 expression was observed in cultured rat cardiomyocytes, but not in aortic smooth muscle cells or in cardiac derived fibroblasts. The expression in cardiomyocytes was regulated by insulin and glucose concentration of culture media. The full length cDNA of DH1 had a single open-reading frame with 85 and 92% amino acid identity to human and mouse UDP-GlcNAc:Gal beta 1-3GalNAc alpha R beta 1-6 N-acetylglucosaminyltransferase (core 2 GlcNAc-T), respectively, a key enzyme determining the structure of O-linked glycosylation. Transient transfection of DH1 cDNA into Cos7 cells conferred core 2 GlcNAc-T enzyme activity. In vivo, core 2 GlcNAc-T activity was increased by 82% (P < 0.05) in diabetic hearts vs controls, while the enzymes GlcNAc-TI and GlcNAc-TV responsible for N-linked glycosylation were unchanged. These results suggest that core 2 GlcNAc-T is specifically induced in the heart by diabetes or hyperglycemia. The induction of this enzyme may be responsible for the increase in the deposition of glycoconjugates and the abnormal functions found in the hearts of diabetic rats.  相似文献   

15.
The effect of hyperglycemia per se on glucose uptake by muscle tissue was quantitated in six controls and six type II diabetics by the forearm technique, under conditions of insulin deficiency induced by somatostatin (SRIF) infusion (0.7 mg/h). Blood glucose concentration was clamped at its basal value during the first 60 min of SRIF infusion and then raised to approximately 200 mg/dl by a variable glucose infusion. Plasma insulin levels remained at or below 5 microU/ml during SRIF infusion, including the hyperglycemic period. No appreciable difference between controls and diabetics was present in the basal state as to forearm glucose metabolism. After 60 min of SRIF infusion and euglycemia, forearm glucose uptake fell consistently from 2.1 +/- 0.7 mg X liter-1 X min-1 to 1.0 +/- 0.6 (P less than 0.05) and from 1.7 +/- .2 to 0.4 +/- 0.3 (P less than 0.02) in the control and diabetic groups, respectively. The subsequent induction of hyperglycemia caused a marked increase in both the arterial-deep venous blood glucose difference (P less than 0.02-0.01) and forearm glucose uptake (P less than 0.01-0.005). However, the response in the diabetic group was significantly greater than that observed in controls. The incremental area of forearm glucose uptake was 276 +/- 31 mg X liter-1 X 90 min and 532 +/- 81 in the control and diabetic groups, respectively (P less than 0.02). In the basal state, the forearm released lactate and alanine both in controls and diabetic subjects at comparable rates. No increment was observed after hyperglycemia, despite the elevated rates of glucose uptake. It is concluded that (1) hyperglycemia per se stimulates forearm glucose disposal to a greater extent in type II diabetics than in normal subjects; and (2) the resulting increment of glucose disposal does not accelerate the forearm release of three carbon compounds. The data support the hypothesis that hyperglycemia per se may play a compensatory role for the defective glucose disposal in type II diabetes.  相似文献   

16.
糖尿病为临床常见代谢性疾病,可影响心脑血管、眼、肾等多种脏器。糖尿病相关认知减退临床表现隐匿,诊断困难。18F-FDG PET/CT具有早期识别代谢变化的能力,广泛用于诊断神经系统疾病,可评估糖尿病患者脑葡萄糖代谢异常改变。神经元和星形胶质细胞与脑葡萄糖代谢紧密相关,其数量、功能及代谢活性等异常改变可致糖尿病认知功能减退。本文对高糖环境神经元及星形胶质细胞代谢改变对脑葡萄糖代谢的影响进行综述,分析糖尿病脑葡萄糖代谢改变的原因,以期为诊断糖尿病相关神经系统疾病提供理论依据。  相似文献   

17.
The absence of dystrophin in Duchenne muscular dystrophy (DMD) leads to sarcolemmal instability and enhances the susceptibility of muscle fibers to contraction-induced injury. Various viral vectors have been used to deliver mini- and microdystrophin expression cassettes to muscles of dystrophin-deficient mdx mice, significantly increasing both the morphological and the functional properties of the muscles. However, dystrophin delivery to adult mdx mice has not yielded a complete rescue of the dystrophic phenotype. Here we investigated a novel strategy involving dual gene transfer of recombinant adeno-associated viral vectors expressing either microdystrophin (rAAV-muDys) or a muscle-specific isoform of Igf-1 (rAAV-mIgf-1). Injection of mdx muscles with rAAV-muDys reduced myofiber degeneration and turnover and increased their resistance to mechanical injury, but did not increase muscle mass or force generation. Injection of mdx muscles with rAAV-mIgf-1 led to increased muscle mass, but did not provide protection against mechanical injury or halt myofiber degeneration, leading to loss of the vector over time. In contrast, co-injection of the rAAV-muDys and rAAV-mIgf-1 vectors resulted in increased muscle mass and strength, reduced myofiber degeneration, and increased protection against contraction-induced injury. These results suggest that a dual-gene, combinatorial strategy could enhance the efficacy of gene therapy of DMD.  相似文献   

18.
Previous investigations have demonstrated that growing mesangial cells in high glucose concentration stimulates extracellular matrix synthesis and also increases the expression of TGF-beta. We tested whether the stimulation of extracellular matrix production is mediated by autocrine activation of TGF-beta, a known prosclerotic cytokine. Addition of neutralizing anti-TGF-beta antibody, but not normal rabbit IgG, significantly reduced the high glucose-stimulated incorporation of 3[H]proline. Denaturing SDS-PAGE revealed that mainly collagen types I and IV were stimulated by high (450 mg/dl) D-glucose. This high glucose-mediated increase in collagen synthesis was reduced by the anti-TGF-beta antibody. Treatment of mesangial cells grown in normal (100 mg/dl) D-glucose with 2 ng/ml recombinant TGF-beta 1 mimicked the effects of high glucose. Furthermore, the anti-TGF-beta antibody significantly reduced the increase in mRNA levels encoding alpha 2(I) and alpha 1(IV) collagens induced by high glucose. Thus, the high glucose-stimulated increase of collagen production in mesangial cells is mediated, at least in part, by autocrine TGF-beta activation. We postulate that the interception of the glomerular activity of TGF-beta may be an effective intervention in the management of diabetic nephropathy.  相似文献   

19.
We examined the ability of an equivalent increase in circulating glucose concentrations to inhibit endogenous glucose production (EGP) and to stimulate glucose metabolism in patients with Type 2 diabetes mellitus (DM2). Somatostatin was infused in the presence of basal replacements of glucoregulatory hormones and plasma glucose was maintained either at 90 or 180 mg/dl. Overnight low-dose insulin was used to normalize the plasma glucose levels in DM2 before initiation of the study protocol. In the presence of identical and constant plasma insulin, glucagon, and growth hormone concentrations, a doubling of the plasma glucose levels inhibited EGP by 42% and stimulated peripheral glucose uptake by 69% in nondiabetic subjects. However, the same increment in the plasma glucose concentrations failed to lower EGP, and stimulated glucose uptake by only 49% in patients with DM2. The rate of glucose infusion required to maintain the same hyperglycemic plateau was 58% lower in DM2 than in nondiabetic individuals. Despite diminished rates of total glucose uptake during hyperglycemia, the ability of glucose per se (at basal insulin) to stimulate whole body glycogen synthesis (glucose uptake minus glycolysis) was comparable in DM2 and in nondiabetic subjects. To examine the mechanisms responsible for the lack of inhibition of EGP by hyperglycemia in DM2 we also assessed the rates of total glucose output (TGO), i.e., flux through glucose-6-phosphatase, and the rate of glucose cycling in a subgroup of the study subjects. In the nondiabetic group, hyperglycemia inhibited TGO by 35%, while glucose cycling did not change significantly. In DM2, neither TGO or glucose cycling was affected by hyperglycemia. The lack of increase in glucose cycling in the face of a doubling in circulating glucose concentrations suggested that hyperglycemia at basal insulin inhibits glucose-6-phosphatase activity in vivo. Conversely, the lack of increase in glucose cycling in the presence of hyperglycemia and unchanged TGO suggest that the increase in the plasma glucose concentration failed to enhance the flux through glucokinase in DM2. In summary, both lack of inhibition of EGP and diminished stimulation of glucose uptake contribute to impaired glucose effectiveness in DM2. The abilities of glucose at basal insulin to both increase the flux through glucokinase and to inhibit the flux through glucose-6-phosphatase are impaired in DM2. Conversely, glycogen synthesis is exquisitely sensitive to changes in plasma glucose in patients with DM2.  相似文献   

20.
The adherence of granylocytes to surfaces, measured in vitro in nylon fiber columns, is inhibited by in vivo administration of anti-inflammatory agents. Therefore, the effect of inflammation itself was assessed in blood from patients with acute inflammatory diseases. Mean adherence in these patients was twice normal (56.4 +/- 5.6% vs. 29.4 +/- 5.2%); their plasma contained a factor that augmented adherence of normal cells to 47.5 +/- 5.6% whereas the patient's cells showed a normal level of adherence (34.0 +/- 6.8%) when resuspended in normal plasma. Although exudate fluid from exprimental inflammation also contained the augmenting factor, cells from the exudate maintained their high level of adherence after washing and suspension in normal plasma. The augmenting factor detected in plasma from patients with inflammation was not present in serum and was inactivated by heating plasma to 56 degrees C for 30 min; restoration of augmenting activity was accomplished by addition of 20% guinea pig serum to the heat-treated plasma. Because the guinea pig serum itself did not increase adherence when added to normal plasma, it appears that the augmenting factor is heat-stable, but requires a heat-labile cofactor like complement. Sephadex G-200 fractionation of inflammatory plasma showed adherence-augmenting activity in the majority of fractions, with peak activity in the fractions corresponding to approximate molecular wts of 30,000, 160,000 and 400,000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号