首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The inhibition and mechanism-based inactivation potencies of irinotecan (7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin; CPT-11) and its active metabolite (7-ethyl-10-hydroxycamptothecin; SN-38) for human cytochrome P450 (P450) enzymes were investigated to evaluate the potential for drug interactions involving CPT-11 using microsomes from insect cells expressing specific human P450 isoforms. The mechanism and potential for interaction were examined by Lineweaver-Burk analysis, and NADPH-, time- and concentration-dependent effects were observed. CPT-11 and SN-38 competitively inhibited CYP3A4 (testosterone 6 beta-hydroxylation) activity with K(i) values of 129 and 121 microM, respectively. CYP2A6 (coumarin 7-hydroxylation) and CYP2C9 (diclofenac 4'-hydroxylation) activities exhibited a mixed type of inhibition comprising competitive and noncompetitive components in response to SN-38, the K(i) values being 181 and 156 microM, respectively. On the other hand, CYP1A2 (phenacetin O-deethylation), CYP2B6 (7-ethoxycoumarin O-deethylation), CYP2C8 (paclitaxel 6 alpha-hydroxylation), CYP2C19 (S-mephenytoin 4'-hydroxylation), CYP2D6 (bufuralol 1'-hydroxylation), and CYP2E1 (chlorzoxazone 6-hydroxylation) were hardly affected by either compound. Furthermore, CPT-11 and SN-38 were suggested to be mechanism-based inactivators of CYP3A4. The k(inact) and K(I) values of CPT-11 and SN-38 were 0.06 min(-1) and 24 microM and 0.10 min(-1) and 26 microM, respectively. However, no inactivation of CYP2A6 and CYP2C9 by SN-38 was observed. These results mean that CPT-11 and SN-38 interact with human P450 isoforms, such as CYP2A6, CYP2C9, and CYP3A4, in vitro and imply that the significant drug interactions involving CPT-11 may be caused by a mechanism-based inactivation of CYP3A4 by SN-38 as an active metabolite of CPT-11 rather than competitive inhibition.  相似文献   

2.
OBJECTIVE: In order to evaluate the inhibitory effects of isoniazid on cytochrome P450 (CYP) mediated drug metabolism, the in vitro inhibitory potency and specificity as well as the reduced nicotinamide adenine dinucleotide phosphate (NADPH)-, time- and concentration dependency of isoniazid as an inhibitor of the activity of the major human CYP isoforms were studied. METHODS: Using pooled human liver microsomes, the in vitro inhibitory effects of isoniazid on CYP1A2 (phenacetin O-deethylation), CYP2A6 (coumarin 7-hydroxylation), CYP2C9 (tolbutamide hydroxylation), CYP2CI9 (S-mephenytoin 4'-hydroxylation), CYP2D6 (dextromethorphan O-demethylation), CYP2E1 (chlorzoxazone 6-hydroxylation) and CYP3A4 (midazolam 1'-hydroxylation) activities were examined. RESULTS: After a 15-min preincubation without NADPH, isoniazid reversibly inhibited microsomal CYP2C19- and CYP3A4-mediated reactions with apparent Ki values of 36 microM and 73 microM, respectively. However, isoniazid had only weak inhibitory effects on the five other CYP-mediated reactions (Ki > 110 microM). After a 15-min preincubation with NADPH, isoniazid showed an increased inhibitory potency toward CYP1A2, CYP2A6, CYP2C19 and CYP3A4 activities (Ki = 56, 60, 10 and 36 microM, respectively). In addition, the inactivation of CYP1A2, CYP2A6, CYP2C19 and CYP3A4 by isoniazid was NADPH-, time- and concentration dependent, and was characterised by Kinact values of 0.11, 0.13, 0.09 and 0.08 min(-1), and K1 values of 285, 173, 112 and 228 microM, respectively. CONCLUSIONS: As the peak plasma concentrations of isoniazid are around 30-50 microM, isoniazid at clinically relevant concentrations reversibly inhibits CYP2C19 and CYP3A4 activities, and mechanistically inactivates CYP1A2, CYP2A6, CYP2C19 and CYP3A4 in human liver microsomes. Co-administration of isoniazid and drugs that are primarily metabolised by these CYP isoforms, particularly by CYP2C19 and CYP3A4, may result in significant drug interactions.  相似文献   

3.
In this study, we performed a screening of the specificities of rat cytochrome P450 (CYP) isoforms for metabolic reactions known as the specific probes of human CYP isoforms, using 13 rat CYP isoforms expressed in baculovirus-infected insect cells or B-lymphoblastoid cells. Among the metabolic reactions studied, diclofenac 4-hydroxylation (DFH), dextromethorphan O-demethylation (DMOD) and midazolam 4-hydroxylation were specifically catalyzed by CYP2C6, CYP2D2 and CYP3A1/3A2, respectively. These results suggest that diclofenac 4-hydroxylation, dextromethorphan O-demethylation and midazolam 4-hydroxylation are useful as catalytic markers of CYP2C6, CYP2D2 and CYP3A1/3A2, respectively. On the other hand, phenacetin O-deethylation and 7-ethoxyresorufin O-deethylation were catalyzed both by CYP1A2 and by CYP2C6. Benzyloxyresorufin O-dealkylation and pentoxyresorufin O-dealkylation were also catalyzed by CYP1A2 in addition to CYP2B1. Bufuralol 1'-hydroxylation was extensively catalyzed by CYP2D2 but also by CYP2C6 and CYP2C11. p-Nitrophenol 2-hydroxylation and chlorzoxazone 6-hydroxylation were extensively catalyzed by CYP2E1 but also by CYP1A2 and CYP3A1. Therefore, it is necessary to conduct further study to clarify whether these activities in rat liver microsomes are useful as probes of rat CYP isoforms. In contrast, coumarin 7-hydroxylation and S- and R-mephenytoin 4'-hydroxylation did not show selectivity toward any isoforms of rat CYP studied. Therefore, activities of coumarin 7-hydroxylation and S- and R-mephenytoin 4'-hydroxylation are not able to be used as catalytic probes of CYP isoforms in rat liver microsomes. These results may provide useful information regarding catalytic probes of rat CYPs for studies using rat liver microsomal samples.  相似文献   

4.
1-Aminobenzotriazole (ABT) is extensively used as a non-specific cytochrome P450 (CYP) inhibitor. In this study, the inhibitory effect of ABT on CYP-dependent drug oxidations was investigated in human liver microsomes (HLM) and compared with that of SKF-525A, another non-specific inhibitor. The following probe activities for human CYP isoforms were determined using pooled HLM: phenacetin O-deethylation (CYP1A2); diclofenac 4'-hydroxylation (CYP2C9); S-mephenytoin 4'-hydroxylation, (CYP2C19); bufuralol 1'-hydroxylation (CYP2D6); chlorzoxazone 6-hydroxylation (CYP2E1); midazolam 1'-hydroxylation, nifedipine oxidation, and testosterone 6beta-hydroxylation (CYP3A). ABT had the strongest inhibitory effect on the CYP3A-dependent drug oxidations and the weakest effect on the diclofenac 4'-hydroxylation. SKF-525A potently inhibited the bufuralol 1'-hydroxylation, but weakly inhibited chlorzoxazone 6-hydroxylation. The inhibitory effects of ABT and SKF-525A were increased by preincubation in some probe reactions, and this preincubation effect was greater in ABT than in SKF-525A. The remarkable IC50 shift (> 10 times) by preincubation with ABT was observed on the phenacetin O-deethylation, chlorzoxazone 6-hydroxylation, and midazolam 1'-hydroxylation. In conclusion, ABT and SKF-525A had a wide range of IC50 values in inhibiting the drug oxidations by HLM with and without preincubation.  相似文献   

5.
Gemfibrozil is a potent inhibitor of human cytochrome P450 2C9.   总被引:13,自引:0,他引:13  
The in vitro inhibitory effects of gemfibrozil on cytochrome P450 (CYP) 1A2 (phenacetin O-deethylation), CYP2A6 (coumarin 7-hydroxylation), CYP2C9 (tolbutamide hydroxylation), CYP2C19 (S-mephenytoin 4'-hydroxylation), CYP2D6 (dextromethorphan O-deethylation), CYP2E1 (chlorzoxazone 6-hydroxylation), and CYP3A4 (midazolam 1'-hydroxylation) activities were examined using pooled human liver microsomes. The in vivo drug interactions of gemfibrozil were predicted in vitro using the [I]/([I] + K(i)) values. Gemfibrozil strongly and competitively inhibited CYP2C9 activity, with a K(i) (IC(50)) value of 5.8 (9.6) microM. In addition, gemfibrozil exhibited somewhat smaller inhibitory effects on CYP2C19 and CYP1A2 activities, with K(i) (IC(50)) values of 24 (47) microM and 82 (136) microM, respectively. With concentrations up to 250 microM, gemfibrozil showed no appreciable effect on CYP2A6, CYP2D6, CYP2E1, and CYP3A4 activities. Based on [I]/([I] + K(i)) values calculated using peak total (or unbound) plasma concentration of gemfibrozil, 96% (56%), 86% (24%), and 64% (8%) inhibition of the clearance of CYP2C9, CYP2C19, and CYP1A2 substrates could be expected, respectively. In conclusion, gemfibrozil inhibits the activity of CYP2C9 at clinically relevant concentrations, and this is the likely mechanism by which gemfibrozil interacts with CYP2C9 substrate drugs, such as warfarin and glyburide. Gemfibrozil may also impair clearance of CYP2C19 and CYP1A2 substrates, but inhibition of other CYP isoforms is unlikely.  相似文献   

6.
1-Aminobenzotriazole (ABT) is widely used as a non-specific inhibitor of animal cytochrome P450 (CYP). In the present study, the inhibitory effect of ABT was investigated on drug oxidations catalyzed by human CYP isoforms. This inhibitory effect was compared with that of SKF-525A, another non-specific inhibitor, and ketoconazole, a potent inhibitor of CYP3A. Bacurovirus-expressed recombinant human CYP isoforms were used as an enzyme source. The specific activities for human CYP isoforms are: phenacetin O-deethylation, for CYP1A2; diclofenac 4'-hydroxylation, for CYP2C9; S-mephenytoin 4'-hydroxylation, for CYP2C19; bufuralol 1'-hydroxylation, for CYP2D6; chlorzoxazone 6-hydroxylation, for CYP2E1; testosterone 6beta-hydroxylation, nifedipine oxidation, and midazolam 1'-hydroxylation, for CYP3A4. ABT inhibited both CYP1A2-dependent activity (Ki=330 microM) and CYP2E1-dependent activity (Ki=8.7 microM). In contrast, SKF-525A weakly inhibited CYP1A2-dependent activities (46% inhibition at 1200 microM) and CYP2E1-dependent activities (65% inhibition at 1000 microM). ABT exhibited the highest Ki value for CYP2C9-dependent diclofenac 4'-hydroxylation among those determined by this assay (Ki=3500 microM). Moreover, SKF-525A showed strong inhibition of CYP2D6-dependent bufuralol 1'-hydroxylation (Ki=0.043 microM). Ketoconazole inhibited all tested drug oxidations, however, its inhibitory effect on CYP1A2-dependent activities was very weak (50% inhibition at 120 microM). ABT, SKF-525A, and ketoconazole showed different selectivity and had a wide range of Ki values for the drug oxidations catalyzed by human CYP enzymes. Therefore, we conclude that inhibitory studies designed to predict the contribution of CYP enzymes to the metabolism of certain compounds should be performed using multiple CYP inhibitors, such as ABT, SKF-525A, and ketoconazole.  相似文献   

7.
Azelastine, an antiallergy and antiasthmatic drug, has been reported to be metabolized mainly to desmethylazelastine and 6-hydroxyazelastine in mammals. In the present study, the inhibitory effects of azelastine and its two metabolites on human cytochrome P-450 (CYP) isoform-dependent reactions were investigated to predict the drug interactions of azelastine using microsomes from human B-lymphoblast cells expressing CYP. The specific activities for human CYP isoforms included: 7-ethoxyresorufin O-deethylation (CYP1A1), phenacetin O-deethylation (CYP1A2), coumarin 7-hydroxylation (CYP2A6), 7-benzyloxyresorufin O-dealkylation (CYP2B6), S-warfarin 7-hydroxylation (CYP2C9), S-mephenytoin 4'-hydroxylation (CYP2C19), bufuralol 1'-hydroxylation (CYP2D6), chlorzoxazone 6-hydroxylation (CYP2E1), and testosterone 6beta-hydroxylation (CYP3A4). In almost all the activities, desmethylazelastine exhibited stronger inhibition than azelastine and 6-hydroxyazelastine. Desmethylazelastine, but not azelastine and 6-hydroxyazelastine, uncompetitively inhibited CYP2B6 activity (Ki = 32.6 +/- 4.8 microM). Azelastine, desmethylazelastine, and 6-hydroxyazelastine competitively inhibited CYP2C9 activity (Ki = 13. 9 +/- 1.8, 15.0 +/- 3.1, and 17.0 +/- 4.1 microM, respectively), CYP2C19 activity (Ki = 21.9 +/- 2.2, 7.3 +/- 1.6, and 9.3 +/- 1.6 microM, respectively), and CYP2D6 activity (Ki = 1.2 +/- 0.1, 1.5 +/- 0.2, and 3.0 +/- 0.5 microM, respectively). Azelastine and desmethylazelastine competitively inhibited CYP3A4 activity (Ki = 23. 7 +/- 4.6 and 13.2 +/- 2.3 microM). 6-Hydroxyazelastine interfered with the determination of testosterone 6beta-hydroxylation by HPLC. CYP1A2, CYP2A6, and CYP2E1 activities were not significantly inhibited by azelastine and the two metabolites. Among the human CYPs tested, the inhibitory effects of azelastine and its two metabolites were the most potent on human CYP2D6. In consideration of the Ki values and the concentration of azelastine and desmethylazelastine in human livers after chronic oral administration of azelastine, the possibility of in vivo drug interaction of azelastine and other drugs that are mainly metabolized by CYP2D6 was suggested although it might not cause critical side effects. The inhibition of CYP2C9, CYP2C19, and CYP3A4 activity by azelastine and its two metabolites might be clinically insignificant.  相似文献   

8.
9.
Buprenorphine is a thebaine derivative used in the treatment of heroin and other opiate addictions. In this study, the selective probe reactions for each of the major hepatic cytochromes P450 (P450s) were used to evaluate the effect of buprenorphine and its main metabolite norbuprenorphine on the activity of these P450s. The index reactions used were CYP1A2 (phenacetin O-deethylation), CYP2A6 (coumarin 7-hydroxylation), CYP2C9 (diclofenac 4'-hydroxylation), CYP2C19 (omeprazole 5-hydrxoylation), CYP2D6 (dextromethorphan O-demethylation), CYP2B6 (7-ethoxy-4-trifluoromethyl-coumarin 7-deethylation), CYP2E1 (chlorzoxazone 6-hydroxylation), and CYP3A4 (omeprazole sulfoxidation). Buprenorphine exhibited potent, competitive inhibition of CYP2D6 (Ki 10 +/- 2 microM and 1.8 +/- 0.2 microM) and CYP3A4 (Ki 40 +/- 1.6 microM and 19 +/- 1.2 microM) in microsomes from human liver and cDNA-expressing lymphoblasts, respectively. Compared with buprenorphine, norbuprenorphine demonstrated a lower inhibitory potency with CYP2D6 (22.4% inhibition at 20 microM norbuprenorphine) and CYP3A4 (13.6% inhibition at 20 microM) in microsomes from human cDNA-expressing lymphoblast cells. Furthermore, buprenorphine was shown to be a substrate of CYP2D6 (Km = 600 microM; Vmax = 0.40 nmol/min/mg protein) and CYP3A4 (Km = 36 microM; Vmax = 0.19 nmol/min/mg protein). The present in vitro study suggests that buprenorphine and its major metabolite norbuprenorphine are inhibitors of CYP2D6 and CYP3A4; however, at therapeutic concentrations they are not predicted to cause potentially clinically important drug interactions with other drugs metabolized by major hepatic P450s.  相似文献   

10.
The effects of buprenorphine, a powerful mixed agonist/antagonist analgesic, on several cytochrome P450 (CYP) isoform specific reactions in human liver microsomes were investigated to predict drug interaction of buprenorphine in vivo from in vitro data. The following eight CYP-catalytic reactions were used in this study: CYPlA1/2-mediated 7-ethoxyresorufin O-deethylation, CYP2A6-mediated coumarin 7-hydroxylation, CYP2B6-mediated 7-benzyloxyresorufin O-debenzylation, CYP2C8/9-mediated tolbutamide methylhydroxylation, CYP2C19-mediated S-mephenytoin 4-hydroxylation, CYP2D6-mediated bufuralol 1'-hydroxylation, CYP2E1-mediated chlorzoxazone 6-hydroxylation, and CYP3A4-mediated testosterone 6beta-hydroxylation. Buprenorphine strongly inhibited the CYP3A4- and CYP2D6-catalyzed reactions with Ki values of 14.7 microM and 21.4 microM, respectively. The analgesic also weakly inhibited specific reactions catalyzed by CYP1A1/2 (Ki=132 microM), CYP2B6 (Ki=133 microM), CYP2C19 (Ki=146 microM), CYP2C8/9 (IC50>300 microM), and CYP2E1 (IC50>300 microM), but not CYP2A6 mediated pathway. In consideration of the Ki values obtained in this study and the therapeutic concentration of buprenorphine in human plasma, buprenorphine would not be predicted to cause clinically significant interactions with other CYP-metabolized drugs.  相似文献   

11.
Inhibition of cytochromes P450 by antifungal imidazole derivatives.   总被引:7,自引:0,他引:7  
The interactions of a panel of antifungal agents with cytochromes P450 (P450s), as a means of predicting potential drug-drug interactions, have not yet been investigated. The objective of this study was to evaluate the specificity and selectivity of five antifungal agents using selective probe reactions for each of the eight major P450s. The index reactions used were phenacetin O-deethylation (for CYP1A2), coumarin 7-hydroxylation (CYP2A6), diclofenac 4'-hydroxylation (CYP2C9), omeprazole 5-hydroxylation (CYP2C19), dextromethorphan O-demethylation (CYP2D6), 7-ethoxy-4-trifluoromethylcoumarin deethylation (CYP2B6), chlorzoxazone 6-hydroxylation (CYP2E1), and omeprazole sulfonation (CYP3A4). Five antifungal agents that include an imidazole moiety (clotrimazole, miconazole, sulconazole, tioconazole, and ketoconazole) were examined in cDNA-expressing microsomes from human lymphoblast cells or human liver microsomes. All inhibitors studied demonstrated nonselective inhibition of P450s. Ketoconazole seemed to be the most selective for CYP3A4, although it also inhibited CYP2C9. High-affinity inhibition was seen for CYP1A2 (sulconazole and tioconazole K(i), 0.4 microM), CYP2B6 (miconazole K(i), 0.05 microM; sulconazole K(i), 0.04 microM), CYP2C19 (miconazole K(i), 0.05 microM; sulconazole K(i), 0.008 microM; tioconazole K(i), 0.04 microM), CYP2C9 (sulconazole K(i), 0.01 microM), CYP2D6 (miconazole K(i), 0.70 microM; sulconazole K(i), 0.40 microM), CYP2E1 (tioconazole K(i), 0.4 microM), and CYP3A4 (clotrimazole K(i), 0.02 microM; miconazole K(i), 0.03 microM; tioconazole K(i), 0.02 microM). Therefore, this class of compounds is likely to result in significant drug-drug interactions in vivo.  相似文献   

12.
The inhibition and mechanism-based inactivation potencies of phenethyl isothiocyanate (PEITC) for human cytochrome P450 (CYP) activities were investigated using microsomes from baculovirus-infected insect cells expressing specific human CYP isoforms. PEITC competitively inhibited phenacetin O-deethylase activity catalyzed by CYP1A2 (K(i) = 4.5 +/- 1.0 microM) and coumarin 7-hydroxylase activity catalyzed by CYP2A6 (K(i) = 18.2 +/- 2.5 microM). Benzyloxyresorufin O-dealkylase activity catalyzed by CYP2B6 was most strongly and noncompetitively inhibited (K(i) = 1.5 +/- 0.0 microM). Paclitaxel 6alpha-hydroxylase activity catalyzed by CYP2C8 was not affected by PEITC up to 100 microM. PEITC noncompetitively inhibited S-warfarin 7-hydroxylase activity catalyzed by CYP2C9 (K(i) = 6.5 +/- 0.9 microM), S-mephenytoin 4'-hydroxylase activity catalyzed by CYP2C19 (K(i) = 12.0 +/- 3.2 microM), bufuralol 1'-hydroxylase activity catalyzed by CYP2D6 (K(i) = 28.4 +/- 7.9 microM), and chlorzoxazone 6-hydroxylase activity catalyzed by CYP2E1 (K(i) = 21.5 +/- 3.4 microM). The inhibition for testosterone 6beta-hydroxylase activity catalyzed by CYP3A4 was a mixed-type of competitive (K(i) = 34.0 +/- 6.5 microM) and noncompetitive (K(i) = 63.8 +/- 12.5 microM) inhibition. Furthermore, PEITC is a mechanism-based inactivator of human CYP2E1. The k(inact) value was 0.339 min(-1) and K(i) was 9.98 microM. Human CYP1A2, CYP2A6, CYP2B6, CYP2D6, and CYP3A4 were not inactivated. The present study directly proved that the chemopreventive effects of PEITC for nitrosamine-induced carcinogenesis are due to the inhibition of CYP by an in vitro study. The possibility that PEITC would affect the pharmacokinetics of clinically used drugs that are metabolized by these CYP isoforms was also suggested.  相似文献   

13.
CYP2A6 is the principle enzyme metabolizing nicotine to its inactive metabolite cotinine. In this study, the selective probe reactions for each major cytochrome P450 (P450) were used to evaluate the specificity and selectivity of the CYP2A6 inhibitors methoxsalen, tranylcypromine, and tryptamine in cDNA-expressing and human liver microsomes. Phenacetin O-deethylation (CYP1A2), coumarin 7-hydroxylation (CYP2A6), diclofenac 4'-hydroxylation (CYP2C9), omeprazole 5-hydroxylation (CYP2C19), dextromethorphan O-demethylation (CYP2D6), 7-ethoxy-4-trifluoromethylcoumarin deethylation (CYP2B6), p-nitrophenol hydroxylation (CYP2E1), and omeprazole sulfonation (CYP3A4) were used as index reactions. Apparent K(i) values for inhibition of P450s' (1A2, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, and 3A4) activities showed that tranylcypromine, methoxsalen, and tryptamine have high specificity and relative selectivity for CYP2A6. In cDNA-expressing microsomes, tranylcypromine inhibited CYP2A6 (K(i) = 0.08 microM) with about 60- to 5000-fold greater potency relative to other P450s. Methoxsalen inhibited CYP2A6 (K(i) = 0.8 microM) with about 3.5- 94-fold greater potency than other P450s, except for CYP1A2 (K(i) = 0.2 microM). Tryptamine inhibited CYP2A6 (K(i) = 1.7 microM) with about 6.5- 213-fold greater potency relative to other P450s, except for CYP1A2 (K(i) = 1.7 microM). Similar results were also obtained with methoxsalen and tranylcypromine in human liver microsomes. R-(+)-Tranylcypromine, (+/-)-tranylcypromine, and S-(-)-tranylcypromine competitively inhibited CYP2A6-mediated metabolism of nicotine with apparent K(i) values of 0.05, 0.08, and 2.0 microM, respectively. Tranylcypromine [particularly R-(+) isomer], tryptamine, and methoxsalen are specific and relatively selective for CYP2A6 and may be useful in vivo to decrease smoking by inhibiting nicotine metabolism with a low risk of metabolic drug interactions.  相似文献   

14.
Zileuton, a 5-lipoxygenase inhibitor, was evaluated as an inhibitor of cytochrome P450 activity in human liver microsomes. In the absence of preincubation, the racemate was found to be a weak inhibitor (IC50 > 100 microM) of phenacetin O-deethylation (POD) (CYP1A2), paclitaxel 6alpha-hydroxylation (CYP2C8), diclofenac 4'-hydroxylation (CYP2C9), (S)-mephenytoin 4'-hydroxylation (CYP2C19), bufuralol 1'-hydroxylation (CYP2D6), testosterone 6beta-hydroxylation (CYP3A4), chlorzoxazone 6-hydroxylation (CYP2E1), and bupropion hydroxylation (CYP2B6). When preincubated with NADPH-fortified human liver microsomes in the absence of substrate, zileuton (racemate) was shown to inhibit POD. The effect was NADPH-, time-, and concentration-dependent, and was characterized by a kinact (maximal rate of enzyme inactivation) and apparent KI(inhibitor concentration that supports half the maximal rate of inactivation) of 0.035 min(-1) and 117 microM, respectively (kinact/KIratio of 0.0003 min-1 microM(-1)). Preincubation-dependent inhibition of POD activity was also observed with the individual (S)-(-)- and (R)-(+)-enantiomers of zileuton [(S)-(-)-zileuton; kinact, 0.037 min(-1), KI, 98.2 microM, kinact/KIratio, 0.0004 min(-1) microM(-1); (R)-(+)-zileuton; kinact, 0.012 min(-1), KI, 66.6 microM, kinact/KIratio, 0.0002 min(-1) microM(-1)]. In addition, the inhibition of CYP1A2 was not reversed in the presence of reduced glutathione, catalase, and superoxide dismutase and was refractory to dialysis. Therefore, zileuton was characterized as a mechanism-based inhibitor of human liver microsomal CYP1A2. Mechanism-based inhibition of CYP1A2 may explain why zileuton decreases the oral clearance of antipyrine, propranolol, (R)-warfarin, and theophylline, at doses that have a minimal effect on the pharmacokinetics of (S)-warfarin, phenytoin, and terfenadine.  相似文献   

15.
The effects of sulpiride, an antipsychotic drug, on cytochrome P450 (CYP) activities in human liver microsomes were investigated. Sulpiride at 50 or 500 microM concentration neither inhibited nor stimulated CYP1A2-mediated 7-ethoxyresorufin O-deethylation, CYP2C9-mediated tolbutamide hydroxylation, CYP2C19-mediated S-mephenytoin 4'-hydroxylation, CYP2D6-mediated debrisoquine 4-hydroxylation, CYP2E1-mediated chlorzoxazone 6-hydroxylation, CYP3A4-mediated nifedipine oxidation, or CYP3A4-mediated testosterone 6beta-hydroxylation. The free fractions of sulpiride in the incubation mixture estimated by ultracentrifugation were more than 90.5%. These results suggest that sulpiride would not cause clinically significant interactions with other drugs, which are metabolized by CYPs, via the inhibition of metabolism.  相似文献   

16.
Sixteen compounds isolated from Zingiber aromaticum and showing concentration-dependent inhibition with IC50 values less than 100 microM, were analyzed for their possibility of time-, concentration-, and NADPH-dependent inhibition of CYP3A4 and four were analyzed for CYP2D6. All seven kaempferol glycosides and two kaempferol derivatives (4, 5, 8-14) appear to be the mechanism-based inhibitors of CYP3A4 enzyme in which the inhibition is irreversible and driven by the catalytic process. The other compounds showed no NADPH-dependent inhibition or reversible inhibition, and thus do not appear to be mechanism-based inhibitors. K(I) values for compounds 4, 5, 8-14 were in the range of 2.21-27.01 microM, whereas the k(inact) values were 0.23-0.65 min(-1). Kaempferol-3-O-(2,3,4-tri-O-acetyl-alpha-L-rhamnopyranoside) (5) was found to be the most potent CYP3A4 inactivator with K(I) and k(inact) values of 2.21 microM and 0.45 min(-1), respectively.  相似文献   

17.
The effects of probucol, a cholesterol-lowering agent, on several cytochrome P450 (CYP) isoform-specific reactions in human liver microsomes were investigated to predict drug interactions with probucol in vivo from in vitro data. The following eight CYP catalytic reactions were used in this study: CYP1A1/2-mediated 7-ethoxyresorufin O-deethylation, CYP2A6-mediated coumarin 7-hydroxylation, CYP2B6-mediated 7-benzyloxyresorufin O-debenzylation, CYP2C8/9-mediated tolbutamide methylhydroxylation, CYP2C19-mediated S-mephenytoin 4'-hydroxylation, CYP2D6-mediated bufuralol 1'-hydroxylation, CYP2E1-mediated chlorzoxazone 6-hydroxylation, and CYP3A4-mediated testosterone 6beta-hydroxylation. Probucol had neither stimulatory nor inhibitory effects on CYP1Al/2, 2A6, 2B6, 2C8/9, 2C19, 2D6, 2E1, and 3A4 activities at concentrations up to 300 microM, indicating that probucol, at the expected therapeutic concentrations, would not be predicted to cause clinically significant interactions with other CYP-metabolized drugs.  相似文献   

18.
Phyllanthus amarus has long been used as a herbal medicine in several countries. Phytochemicals in herbal medicine may interact with cytochromes P450 (CYP) and thus raise the potential of herb-drug interactions; therefore, the inhibitory effects of P. amarus and its major phytochemicals phyllanthin and hypophyllanthin on CYP isoforms were determined using human liver microsomes and selective substrates. Both ethanolic and aqueous extracts of P. amarus inhibited CYP1A2, CYP2D6, CYP2E1 and CYP3A4 in a dose-dependent manner. Compared to known CYP3A inhibitors, the IC(50) values of the ethanolic and aqueous extracts on testosterone 6β-hydroxylation were higher than that of ketoconazole but were lower than those of erythromycin and clarithromycin. Both extracts were weak inhibitors of CYP1A2, CYP2D6 and CYP2E1. In addition, phyllanthin and hypophyllanthin were potent mechanism-based inhibitors of CYP3A4 with K(I) values of 1.75 ± 1.20 μM and 2.24 ± 1.84 μM and k(inact) values of 0.18 ± 0.05 min(-1) and 0.15 ± 0.06 min(-1), respectively. The k(inact)/K(I) ratios of these lignans were higher than those reported for some therapeutic drugs that act as mechanism-based inhibitors of CYP3A4. These results suggest that co-administration of P. amarus with drugs that are metabolized by CYP3A4 may potentially result in herb-drug interactions.  相似文献   

19.
SCH 66712 [5-fluoro-2-[4-[(2-phenyl-1H-imidazol-5-yl)methyl]-1-piperazinyl]pyrimidine] caused a time- and NADPH-dependent loss of CYP2D6 activity. The inactivation of human liver (HL) microsomal dextromethorphan O-demethylase activity, a prototype marker for CYP2D6, was characterized by a K(I) of 4.8 microM and a maximal rate constant of inactivation (k(inact)) of 0.14 min(-1). The inactivation of the recombinant CYP2D6 in Supersomes (r-CYP2D6) was characterized by a K(I) of 0.55 microM and a k(inact) of 0.32 min(-1). Extensive dialysis of the SCH 66712-inhibited enzyme failed to restore the activity to control levels (dialyzed reaction mixture lacking SCH 66712) for both HL microsomes and r-CYP2D6. Addition of glutathione, superoxide dismutase, or mannitol to the reaction mixture failed to protect CYP2D6 against SCH 66712-NADPH-catalyzed inactivation. Addition of quinidine, a reversible inhibitor of CYP2D6, to a preincubation mixture consisting of SCH 66712, HL microsomes, or Supersomes and NADPH partially protected CYP2D6 from inactivation. SCH 66712 also inhibited HL microsomal CYP3A4, CYP2C9, and CYP2C19; however, the concentrations required to inhibit those isoforms were 5- to 10-fold higher than those required to inhibit CYP2D6. These results demonstrate that SCH 66712 is a potent and fairly selective mechanism-based inhibitor of CYP2D6.  相似文献   

20.
The effects of two kinds of oral cephalosporins, cefixime and cefdinir, on cytochrome P450 (CYP) activities in human hepatic microsomes were investigated. Both cefixime and cefdinir at 2 mM concentration neither inhibited nor stimulated CYP1A1/2-mediated 7-ethoxyresorufin O-deethylation, CYP2A6-mediated coumarin 7-hydroxylation, CYP2B6-mediated 7-benzyloxyresorufin O-debenzylation, CYP2C8/9-mediated tolbutamide methylhydroxylation, CYP2C19-mediated S-mephenytoin 4'-hydroxylation, CYP2D6-mediated bufuralol 1'-hydroxylation, CYP2E1-mediated chlorzoxazone 6-hydroxylation, CYP3A4-mediated nifedipine oxidation, or CYP3A4-mediated testosterone 6beta-hydroxylation. The free fractions of cefixime and cefdinir in the incubation mixture, which were measured by ultracentrifugation, were 86.1-93.8% and 94.1-97.8%, respectively. These results suggest that both cefixime and cefdinir would not cause clinically significant interactions with other drugs, which are metabolized by CYPs, via the inhibition of metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号