首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hayashida K  Fujita J  Miyake Y  Kawada H  Ando K  Ogawa S  Fukuda K 《Chest》2005,127(5):1793-1798
STUDY OBJECTIVE: In these days, it was reported that bone marrow (BM) cells might take part in the remodeling of some systemic vascular diseases; however, it remains unknown whether the BM cells were involved in the vascular remodeling of pulmonary arteries and the progression of pulmonary hypertension (PH). The purpose of this study was to investigate whether BM-derived cells contribute to pulmonary vascular remodeling in hypoxia-induced PH. MATERIALS AND METHODS: To investigate the role of BM-derived cells, we transplanted the whole BM of enhanced green fluorescent protein (GFP)-transgenic mice to the lethally irradiated syngeneic mice (n = 30). After 8 weeks, chimera mice were exposed to consistent hypoxia using a hypoxic chamber (10% O(2)) for up to 4 or 8 weeks (10 mice per group). After hemodynamics and the ratio of right ventricular (RV) weight to left ventricle (LV) weight, RV/(LV + septum [S]), were measured, histologic and immunofluorescent staining were performed. RESULTS: BM-transplanted mice showed a high chimerism (mean [+/- SEM], 91 +/- 2.3%). RV systolic pressure and the RV/(LV + S) ratio increased significantly with time in PH mice, indicating RV hypertrophy. Marked vascular remodeling including medial hypertrophy and adventitial proliferation was observed in the pulmonary arteries of PH mice. Strikingly, a number of GFP(+) cells were observed at the pulmonary arterial wall, including the adventitia, in hypoxia-induced PH mice, while very few cells were observed in the control mice. Metaspectrometer measurements using confocal laser scanning microscopy confirmed that this green fluorescence was produced by GFP, suggesting that these GFP(+) cells were mobilized from the BM. Most of them expressed alpha-smooth muscle actin, a smooth muscle cell, or myofibroblast phenotype, and contributed to the pulmonary vascular remodeling. A semiquantitative polymerase chain reaction of the GFP gene revealed that the BM-derived GFP-positive cells in the PH group were observed more than eightfold as often compared with the control mice. CONCLUSION: The BM-derived cells mobilize to the hypertensive pulmonary arteries and contribute to the pulmonary vascular remodeling in hypoxia-induced PH mice.  相似文献   

2.
殷广  罗颖 《心功能杂志》2013,(6):716-718,725
以往在低氧性肺血管重构机制的研究中,外膜的作用往往被忽略。新近的研究表明,血管外膜特别是其中的成纤维细胞在调节血管功能中发挥着重要的作用。外膜中的成纤维细胞是低氧刺激的首要“损伤感受细胞”,低氧可以激活血管外膜成纤维细胞,活化的成纤维细胞既可以合成分泌细胞生长因子、炎症因子,进而促进中膜血管平滑肌细胞增殖,又可以转分化为平滑肌样细胞(肌纤维母细胞)、分泌胶原蛋白,导致血管重构。因此,低氧导致的成纤维细胞活化及表型转换在肺血管重构中起重要作用,贯穿着低氧性肺血管重构的整个病理过程。  相似文献   

3.
Ma C  Li Y  Ma J  Liu Y  Li Q  Niu S  Shen Z  Zhang L  Pan Z  Zhu D 《Hypertension》2011,58(4):679-688
We have found that 15-hydroxyeicosatetraenoic acid (15-HETE) induced by hypoxia was an important mediator in the regulation of hypoxic pulmonary hypertension, including the pulmonary vasoconstriction and remodeling. However, the underlying mechanisms of the remodeling induced by 15-HETE are poorly understood. In this study, we performed immunohistochemistry, pulmonary artery endothelial cells migration and tube formation, pulmonary artery smooth muscle cells bromodeoxyuridine incorporation, and cell cycle analysis to determine the role of 15-HETE in hypoxia-induced pulmonary vascular remodeling. We found that hypoxia induced pulmonary vascular medial hypertrophy and intimal endothelial cells migration and angiogenesis, which were mediated by 15-HETE. Moreover, 15-HETE regulated the cell cycle progression and made more smooth muscle cells from the G(0)/G(1) phase to the G(2)/M+S phase and enhanced the microtubule formation in cell nucleus. In addition, we found that the Rho-kinase pathway was involved in 15-HETE-induced endothelial cells tube formation and migration and smooth muscle cell proliferation. Together, these results show that 15-HETE mediates hypoxia-induced pulmonary vascular remodeling and stimulates angiogenesis via the Rho-kinase pathway.  相似文献   

4.
刘盛国  傅应云 《国际呼吸杂志》2011,31(23):1837-1840
肺动脉高压( pulmonary hypertension,PH)时,参与肺血管重塑的内皮细胞、平滑肌细胞等存在不同程度的Notch家族基因表达上调.Notch信号转导通路在肺血管形成,血管平滑肌细胞及内皮细胞等增殖、分化、凋亡方面起重要调控作用.Notch信号转导通路参与PH形成和发展.这为PH的治疗提供了前景广阔的...  相似文献   

5.
Chronic hypoxic exposure induces changes in the structure of pulmonary arteries, as well as in the biochemical and functional phenotypes of each of the vascular cell types, from the hilum of the lung to the most peripheral vessels in the alveolar wall. The magnitude and the specific profile of the changes depend on the species, sex, and the developmental stage at which the exposure to hypoxia occurred. Further, hypoxia-induced changes are site specific, such that the remodeling process in the large vessels differs from that in the smallest vessels. The cellular and molecular mechanisms vary and depend on the cellular composition of vessels at particular sites along the longitudinal axis of the pulmonary vasculature, as well as on local environmental factors. Each of the resident vascular cell types (ie, endothelial, smooth muscle, adventitial fibroblast) undergo site- and time-dependent alterations in proliferation, matrix protein production, expression of growth factors, cytokines, and receptors, and each resident cell type plays a specific role in the overall remodeling response. In addition, hypoxic exposure induces an inflammatory response within the vessel wall, and the recruited circulating progenitor cells contribute significantly to the structural remodeling and persistent vasoconstriction of the pulmonary circulation. The possibility exists that the lung or lung vessels also contain resident progenitor cells that participate in the remodeling process. Thus the hypoxia-induced remodeling of the pulmonary circulation is a highly complex process where numerous interactive events must be taken into account as we search for newer, more effective therapeutic interventions. This review provides perspectives on each of the aforementioned areas.  相似文献   

6.
Prostacyclin receptor-dependent modulation of pulmonary vascular remodeling.   总被引:13,自引:0,他引:13  
Prostacyclin (PGI(2)) reduces pulmonary vascular resistance and attenuates vascular smooth muscle cell proliferation through signal transduction following ligand binding to its receptor. Because patients with severe pulmonary hypertension have a reduced PGI(2) receptor (PGI-R) expression in the remodeled pulmonary arterial smooth muscle, we hypothesized that pulmonary vascular remodeling may be modified PGI-R dependently. To test this hypothesis, PGI-R knockout (KO) and wild-type (WT) mice were subjected to a simulated altitude of 17,000 ft or Denver altitude for 3 wk, and right ventricular pressure and lung histology were assessed. The PGI-R KO mice developed more severe pulmonary hypertension and vascular remodeling after chronic hypoxic exposure when compared to the WT mice. Our results indicate that PGI(2) and its receptor play an important role in the regulation of hypoxia-induced pulmonary vascular remodeling, and that the absence of a functional receptor worsens pulmonary hypertension.  相似文献   

7.
Pulmonary hypertension (PH) is a common complication of chronic hypoxic lung diseases, which increase morbidity and mortality. Hypoxic PH has previously been attributed to structural changes in the pulmonary vasculature including narrowing of the vascular lumen and loss of vessels, which produce a fixed increase in resistance. Using quantitative stereology, we now show that chronic hypoxia caused PH and remodeling of the blood vessel walls in rats but that this remodeling did not lead to structural narrowing of the vascular lumen. Sustained inhibition of the RhoA/Rho-kinase pathway throughout the period of hypoxic exposure attenuated PH and prevented remodeling in intra-acinar vessels without enlarging the structurally determined lumen diameter. In chronically hypoxic lungs, acute Rho kinase inhibition markedly decreased PVR but did not alter the alveolar to arterial oxygen gap. In addition to increased vascular resistance, chronic hypoxia induced Rho kinase-dependent capillary angiogenesis. Thus, hypoxic PH was not caused by fixed structural changes in the vasculature but by sustained vasoconstriction, which was largely Rho kinase dependent. Importantly, this vasoconstriction had no role in ventilation-perfusion matching and optimization of gas exchange. Rho kinase also mediated hypoxia-induced capillary angiogenesis, a previously unrecognized but potentially important adaptive response.  相似文献   

8.
氧化应激可通过促进肺动脉血管平滑肌细胞增殖、加重血管内皮功能损伤和促进血管外基质增生等多条途径参与肺动脉血管重构,加速肺动脉高压的发生发展进程。近来研究发现,针对氧化应激进行的抗氧化治疗可有效地抑制肺动脉血管重构及肺动脉高压的发生,进一步证明了氧化应激在肺动脉血管重构乃至肺动脉高压中的重要作用。阐明病理条件下氧化还原信号途径,寻找抗氧化治疗的特异性药物,是肺动脉高压抗氧化治疗的基础和研究方向。  相似文献   

9.
S S Salvi 《Chest》1999,115(6):1708-1719
Pulmonary hypertension (PH) is a chronic and disabling condition that affects the pulmonary vasculature. Once PH is diagnosed, the prognosis is generally poor with a rapid downhill course. PH management is largely empirical because the underlying pathophysiologic mechanisms that are responsible for the excessive vasoconstrictor and vascular smooth muscle proliferative responses are poorly understood. Based on new information concerning the role of adrenergic receptors in regulating various cellular functions, a new perspective on the genesis of PH has emerged, along with a unifying hypothesis for the role of alpha1-adrenergic receptors present in the pulmonary vasculature as the major contributor to the pathophysiologic changes associated with PH. Adrenergic receptors that are present on vascular smooth muscle cells regulate vascular tone and growth. The alpha1-adrenergic receptors that are present on the small- and medium-sized pulmonary arteries have a unique and greatly enhanced affinity and activity to alpha1-adrenergic agonists. Under physiologic conditions, this helps in regulating vascular tone and maintains an adequate ventilation/perfusion matching. However, the excessive stimulation of alpha1-adrenergic receptors produces not only smooth muscle contraction but also proliferation and growth. The conditions that produce an increase in alpha1-adrenoreceptor gene synthesis, density, and activity (such as hypoxia or changes in vessel wall pressure) or increase the levels of its agonists (such as norepinephrine, appetite suppressants, or cocaine) greatly enhance pulmonary vascular smooth muscle contractile and proliferative responses and lead to the development of PH. An understanding of the role played by these receptors in the pathophysiology of PH would not only help to avoid the use of alpha1-agonists for appetite suppression and other disease states, but also would help in developing new drugs to block these receptors. A further understanding of the alpha1-adrenoreceptor subtypes present in the pulmonary vasculature, the factors that regulate their expression, and their intracellular signaling pathways would help researchers to devise newer therapeutic strategies and, hopefully, to find a cure for this crippling condition.  相似文献   

10.
目的:通过建立慢性低氧性肺动脉高压大鼠模型,研究慢性低氧对大鼠肺血管细胞外信号调节蛋白激酶(ERK1/2)、p38MAPK蛋白表达的影响。方法建立慢性常压低氧肺动脉高压大鼠模型,将雄性SD大鼠随机分为正常对照组、低氧1d、3d、7d、14d和21d组,应用免疫组织化学技术检测肺动脉高压形成过程中大鼠肺血管 ERK1/2、p38MAPK 蛋白表达水平。结果①RVSP 和 RV/(LV+S)比值较正常对照组明显增加(P<0.05),低氧后3 d、7 d、14 d和21 d后大鼠肺血管明显增厚;②ERK1/2、p38MAPK蛋白广泛分布于肺血管内皮细胞、平滑肌细胞和成纤维细胞中,且随着低氧时间的延长,ERK1/2、p38MAPK蛋白表达量增加。结论 ERK1/2、p38MAPK 蛋白表达量的上调可能参与了慢性低氧诱导的大鼠肺动脉高压肺血管重塑的发生、发展过程。  相似文献   

11.
The serotonin pathway in pulmonary hypertension   总被引:5,自引:0,他引:5  
The nature of the primary defect responsible for triggering and maintaining pulmonary artery smooth muscle (PA-SMC) proliferation in pulmonary artery hypertension (PH) is poorly understood but may be either an inherent characteristic of PA-SMCs or a secondary response to an external abnormality, such as up-regulation of growth factors. In previous studies, we found that cultured PA-SMCs from patients with idiopathic PH (iPH) had an abnormally strong proliferative response to serotonin or serum (which contains high levels of serotonin). This abnormal response is due to overexpression of the serotonin transporter (5-HTT) which mediates the mitogenic action of serotonin. That 5-HTT plays a key role in pulmonary vascular remodeling is supported by experimental studies showing that transgenic animals overexpressing 5-HTT in smooth muscle (at a level close to that seen in PH) spontaneously develop pulmonary vascular remodeling and PH. Conversely, mice with targeted S-HTT gene disruption are protected against hypoxic PH, and selective 5-HTT inhibitors reverse or prevent experimental PH. In patients with chronic lung disease, a close association has been found between a 5-HTT gene polymorphism and the severity of pulmonary hypertension. Agents capable of selectively inhibiting 5-HTT-mediated PA-SMC proliferation deserve to be investigated as potential treatments for pulmonary hypertension.  相似文献   

12.
缺氧诱导丝裂原因子(hypoxia—induced mitogenic factor,HIMF)是近年来从慢性缺氧致肺动脉高压小鼠模型的肺组织中发现的一种分泌型蛋白,于肺组织中被缺氧诱导表达,因其能促进小鼠肺微血管平滑肌细胞的增殖而得名,是肺组织特异性生长因子,又名发现于炎症区域1(found in inflammatory zone1,FIZZ1)或抵抗素样分子α(resistin-like molecule—α,RELM—α)。HIMF/FIZZ1/RELM—α具有促有丝分裂、血管收缩、血管再生和诱导细胞迁移、趋化性、抗细胞凋亡、炎症因子样作用等多种生物学功能。研究发现HIMF通过引起肺血流动力学改变,血流阻力增加,肺动脉压增高等不同的方式参与肺血管收缩及重塑。HIMF的各种生物学特性证明其和肺动脉高压,尤其是慢性缺氧性肺动脉高压的发病机制有密切的联系,而这对肺动脉高压的治疗是非常重要的。下面就HIMF与肺动脉高压的相互联系作一归纳、总结。  相似文献   

13.
Mutations in the bone morphogenetic protein type II receptor gene (BMPR2) are the major genetic cause of familial pulmonary arterial hypertension (FPAH). Although smooth muscle cell proliferation contributes to the vascular remodeling observed in PAH, the role of BMPs in this process and the impact of BMPR2 mutation remains unclear. Studies involving normal human pulmonary artery smooth muscle cells (PASMCs) suggest site-specific responses to BMPs. Thus, BMP-4 inhibited proliferation of PASMCs isolated from proximal pulmonary arteries, but stimulated proliferation of PASMCs from peripheral arteries, and conferred protection from apoptosis. These differences were not caused by differential activation of BMP signaling pathways because exogenous BMP-4 led to phosphorylation of Smad1, p38(MAPK), and ERK1/2 in both cell types. However, the proproliferative effect of BMP-4 on peripheral PASMCs was found to be p38MAPK/ERK-dependent. Conversely, overexpression of dominant-negative Smad1 converted the response to BMP-4 in proximal PASMCs from inhibitory to proliferative. Furthermore, we confirmed that proximal PASMCs harboring kinase domain mutations in BMPR2 are deficient in Smad signaling and are unresponsive to the growth suppressive effect of BMP-4. Moreover, we show that the pulmonary vasculature of patients with familial and idiopathic PAH are deficient in the activated form of Smad1. We conclude that defective Smad signaling and unopposed p38(MAPK)/ERK signaling, as a consequence of mutation in BMPR2, underlie the abnormal vascular cell proliferation observed in familial PAH.  相似文献   

14.
Pulmonary hypertension (PH) results from constriction and remodeling of pulmonary vessels. Serotonin contributes to both phenomena through different signaling pathways. The mitogenic effect of serotonin on pulmonary vascular smooth muscle cells is mediated by the serotonin transporter (5-hydroxytryptamine transporter [5-HTT]), whereas its constricting effect is mediated by 5-HT1B/1D and 5-HT2A receptors. Here, we investigated the respective roles of 5-HTT and 5-HT receptors on the development of chronic hypoxic PH in mice. During exposure to hypoxia (10% O2 for 2 weeks), the animals received one of the specific 5-HTT inhibitors citalopram and fluoxetine (10 mg/kg/day), the selective 5-HT1B/1D receptor antagonist GR127935 (2 and 10 mg/kg/day), or the 5-HT2A receptor antagonist ketanserin (2 mg/kg/day). Mice treated with the 5-HTT inhibitors showed less right ventricle hypertrophy (ratio of right ventricle/left ventricle + septum = 36.7 +/- 2.0% and 35.8 +/- 1.3% in citalopram- and fluoxetine-treated mice, respectively, vs. 41.5 +/- 1.5% in vehicle-treated mice) and less pulmonary vessel muscularization (p < 0.01) than those receiving the vehicle. Neither GR127935 nor ketanserin affected these parameters. These data indicate that 5-HTT plays a key role in hypoxia-induced pulmonary vascular remodeling. The effects of serotonin transporter inhibitors on PH in humans deserve investigation.  相似文献   

15.
BackgroundHypoxic pulmonary arterial hypertension (PAH) is a disabling disease with limited treatment options. Hypoxic pulmonary vascular remodeling is a major cause of hypoxic PAH. Pharmacological agents that can inhibit the remodeling process may have great therapeutic value.ObjectiveTo examine the effect of intermedin (IMD), a new calcitonin gene-related peptide family of peptide, on hypoxic pulmonary vascular remodeling.MethodsRats were exposed to normoxia or hypoxia (∼10% O2), or exposed to hypoxia and treated with IMD, administered by an implanted mini-osmotic pump (6.5 μg/rat/day), for 4 weeks. The effects of IMD infusion on the development of hypoxic PAH and right ventricle (RV) hypertrophy, on pulmonary vascular remodeling, on pulmonary artery smooth muscle cell (PASMC) proliferation and apoptosis, and on the activations of l-arginine nitric oxide (NO) pathway and endoplasmic reticulum stress apoptotic pathway were examined.ResultsRats exposed to hypoxia developed PAH and RV hypertrophy. IMD treatment alleviated PAH and prevented RV hypertrophy. IMD inhibited hypoxic pulmonary vascular remodeling as indicated by reduced wall thickness and increased lumen diameter of pulmonary arterioles, and decreased muscularization of distal pulmonary vasculature in hypoxia-exposed rats. IMD treatment inhibited PASMC proliferation and promoted PASMC apoptosis. IMD treatment increased tissue level of constitutive NO synthase activity and tissue NO content in lungs, and enhanced l-arginine uptake into pulmonary vascular tissues. IMD treatment increased cellular levels of glucose-regulated protein (GRP) 78 and GRP94, two major markers of endoplasmic reticulum (ER) stress, and increased caspase-12 expression, the ER stress-specific caspase, in lungs and cultured PASMCs.ConclusionsThese results demonstrate that IMD treatment attenuates hypoxic pulmonary vascular remodeling, and thereby hypoxic PAH mainly by inhibiting PASMC proliferation. Promotion of PASMC apoptosis may also contribute to the inhibitory effect of IMD. Activations l-arginine–NO pathway and of ER stress-specific apoptosis pathway could be the mechanisms mediating the anti-proliferative and pro-apoptotic effects of IMD.  相似文献   

16.
王丛  王军  王辰 《国际呼吸杂志》2008,28(14):879-882
肺动脉平滑肌细胞内Ca2+浓度增加是导致低氧性肺血管收缩与重构的重要分子基础.由瞬时受体电位蛋白构成的钙库操纵性钙通道(store-operated channels,SOC)是调节细胞内Ca2+浓度的重要机制,并参与了肺动脉高压时血管收缩和重构过程.充分了解SOC通道的特性,对深入认识肺动脉高压发病的病理生理学机制、指导临床治疗策略具有重要意义.  相似文献   

17.
Localized alveolar hypoxia causes constriction of the small resistance pulmonary arteries, thus diverting the desaturated, mixed-venous blood to better ventilated areas of the lung. Although modulated by endothelial vasoactive substances, the constrictor response to hypoxia is intrinsic to the smooth muscle cell. Ion channels are important elements in two of the three components of the response. Hypoxia inhibits several potassium channels (voltage-gated and TASK), leading to membrane depolarization and calcium entry through L-type channels. It also causes release of calcium from the sarcoplasmic reticulum, with consequent repletion through store-operated calcium channels. Finally, the effect of the rise in cytosolic calcium is amplified by enhanced calcium sensitivity of the actin/myosin interaction, achieved by the hypoxia-induced increase in Rho-kinase activity. The change in oxygen tension that stimulates these three "executive" components is signaled by a change in the redox status of the smooth muscle cell and probably by downstream changes in G-proteins. Ion channels also play a critical role in the vascular remodeling that results in chronic hypoxic pulmonary hypertension, seen when all the pulmonary vascular bed is hypoxic, at high altitude and in patients with chronic lung diseases. The same inhibition of potassium channels and influx of calcium results in high cytosolic levels of potassium and calcium. These, respectively, lead to inhibition of apoptosis and an increase in cellular proliferation. A better understanding of the pathophysiology of hypoxic pulmonary vasoconstriction and vascular remodeling will enable the design of better treatments for hypoxic and other forms of pulmonary hypertension.  相似文献   

18.
BackgroundPulmonary arterial hypertension (PAH) is characterized by a progressive increase in pulmonary vascular resistance and elevation of pulmonary arterial pressure, leading to right ventricular failure and eventual death. Currently, no curative therapy for PAH is available, and the overall prognosis is very poor. Recently, direct activators of soluble guanylyl cyclase (sGC) have been tested as a novel therapeutic modality in experimental models of pulmonary arterial hypertension (PAH).ObjectiveIn this study, we used in vitro and in vivo models to evaluate the therapeutic potential of 3-(5′-hydroxymethyl-2′-furyl)-1-benzylindazole (YC-1), a dual functioning chemical, as a direct activator of guanylyl cyclase and an inhibitor of hypoxia-inducible factor-1.MethodsWe analyzed the effects of YC-1 on cell proliferation and the levels of p21 and p53 in human pulmonary artery smooth muscle cells (HPASMCs) under hypoxia. We also determined the effects of YC-1 on expression of endothelin-1 (ET-1) and phosphorylation status of endothelial nitric oxide synthase (eNOS) at Ser1179 in human pulmonary artery endothelial cells (HPAECs) under hypoxia. In mice, hypoxic PAH was induced by exposure to normobaric hypoxic conditions for 28 days. To assess preventive or therapeutic effects, randomized mice were subjected to once daily i.p. injections of YC-1 for the entire hypoxic period (5 mg/kg) or for the last seven days of a 28-day hypoxic period (5 and 10 mg/kg). On day 28, we measured the right ventricular systolic pressure (RVSP) and determined the degrees of right ventricular hypertrophy (RVH) and vascular remodeling.ResultsIn HPASMCs, YC-1 inhibited hypoxia-induced proliferation and induction of p53 and p21 in a concentration-dependent manner. Also, YC-1 suppressed the hypoxia-induced expression of ET-1 mRNA and dephosphorylation of eNOS at Ser1179 in HPAECs. In the preventive in vivo model, a daily dose of 5 mg/kg YC-1 significantly prevented the elevation of RVSP, development of RVH, and pulmonary vascular remodeling, which were caused by hypoxic exposure. In the therapeutic model, YC-1 at daily doses of 5 and 10 mg/kg alleviated RVH and pulmonary vascular remodeling but did not prevent the elevation of RVSP.ConclusionsOur results indicate that YC-1 prevents the development of hypoxia-induced PAH in a preventive model and alleviates RVH and pulmonary vascular remodeling in a therapeutic model. Therefore, these data imply that YC-1 has therapeutic potential for use in a single or combination therapy for PAH.  相似文献   

19.
We investigated the role of heme oxygenase (HO)-1 in the development of hypoxia-induced pulmonary hypertension. HO catalyzes the breakdown of heme to the antioxidant bilirubin and the vasodilator carbon monoxide. Hypoxia is a potent but transient inducer of HO-1 in vascular smooth muscle cells in vitro and in the lung in vivo. By using agonists of HO-1, we sustained a high expression of HO-1 in the lungs of rats for 1 week. We report that this in vivo enhancement of HO-1 in the lung prevented the development of hypoxic pulmonary hypertension and inhibited the structural remodeling of the pulmonary vessels. The mechanism(s) underlying this effect may involve a direct vasodilating and antiproliferative action of endogenous carbon monoxide, as well as an indirect effect of carbon monoxide on the production of vasoconstrictors. These results provide evidence that enhancement of endogenous adaptive responses may be used to prevent hypoxia-induced pulmonary hypertension.  相似文献   

20.
近年来肺动脉成纤维细胞(pulmonary arterial fibroblasts,PAF)在低氧性肺动脉高压病理过程中的作用得到重视.低氧可以诱导肺动脉成纤维细胞产生一系列表型的改变,如增殖增强、分泌蛋白的异常等.低氧还可以促进PAF与其他细胞相互作用,如平滑肌细胞、炎性细胞、循环纤维细胞等,从而进一步加速血管重塑及肺动脉高压的形成.PAF在低氧诱导下所发生的变化受多种机制的调控,包括多条信号通路、线粒体来源的活性氧簇调控及其他机制等.PAF在低氧性肺动脉高压中的作用及作用机制有待更深入的研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号