首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial DNA polymorphism was analysed in a sample of 108 Croatians from the Adriatic Island isolate of Hvar. Besides typically European varieties of human maternal lineages, haplogroup F was found in a considerable frequency (8.3%). This haplogroup is most frequent in southeast Asia but has not been reported before in Europe. The genealogical analysis of haplogroup F cases from Hvar suggested founder effect. Subsequent field work was undertaken to sample and analyse 336 persons from three neighbouring islands (Brac, Korcula and Krk) and 379 more persons from all Croatian mainland counties and to determine if haplogroup F is present in the general population. Only one more case was found in one of the mainland cities, with no known ancestors from Hvar Island. The first published phylogenetic analysis of haplogroup F worldwide is presented, applying the median network method, suggesting several scenarios how this maternal lineage may have been added to the Croatian mtDNA pool.  相似文献   

2.
Mitochondrial DNA and Y-Chromosome Variation in the Caucasus   总被引:7,自引:3,他引:7  
We have analyzed mtDNA HVI sequences and Y chromosome haplogroups based on 11 binary markers in 371 individuals, from 11 populations in the Caucasus and the neighbouring countries of Turkey and Iran. Y chromosome haplogroup diversity in the Caucasus was almost as high as in Central Asia and the Near East, and significantly higher than in Europe. More than 27% of the variance in Y‐haplogroups can be attributed to differences between populations, whereas mtDNA showed much lower heterogeneity between populations (less then 5%), suggesting a strong influence of patrilocal social structure. Several groups from the highland region of the Caucasus exhibited low diversity and high differentiation for either or both genetic systems, reflecting enhanced genetic drift in these small, isolated populations. Overall, the Caucasus groups showed greater similarity with West Asian than with European groups for both genetic systems, although this similarity was much more pronounced for the Y chromosome than for mtDNA, suggesting that male‐mediated migrations from West Asia have influenced the genetic structure of Caucasus populations.  相似文献   

3.
Y chromosome variation in 457 Croatian samples was studied using 16 SNPs/indel and eight STR loci. High frequency of haplogroup I in Croatian populations and the phylogeographic pattern in its background STR diversity over Europe make Adriatic coast one likely source of the recolonization of Europe following the Last Glacial Maximum. The higher frequency of I in the southern island populations is contrasted with higher frequency of group R1a chromosomes in the northern island of Krk and in the mainland. R1a frequency, while low in Greeks and Albanians, is highest in Polish, Ukrainian and Russian populations and could be a sign of the Slavic impact in the Balkan region. Haplogroups J, G and E that can be related to the spread of farming characterize the minor part (12.5%) of the Croatian paternal lineages. In one of the southern island (Hvar) populations, we found a relatively high frequency (14%) of lineages belonging to P*(xM173) cluster, which is unusual for European populations. Interestingly, the same population also harbored mitochondrial haplogroup F that is virtually absent in European populations--indicating a connection with Central Asian populations, possibly the Avars.  相似文献   

4.
The Karretjie people of the South African Great Karoo are itinerants who subsist by sheep shearing. Although officially classified 'Coloured', they are aware of their Khoe and San roots. To investigate the maternal and paternal ancestries of the Karretjie people we analyzed their mitochondrial and Y-chromosome DNA variation. Their genetic ancestry was compared with a neighboring group of 'Coloured' individuals. We found that the mitochondrial DNA (mtDNA) haplogroup L0d was present in all the Karretjie people examined, suggesting a maternal contribution, exclusively from the Khoe and San, whereas the paternal ancestry in males was more heterogeneous. The Coloured sample, on the other hand, were found to have a lower frequency of L0d (64.5%), but did harbor other African (27.6%) and non-African (7.9%) mtDNA haplogroups. Similar to the Karretjie people, the Y-chromosome lineages identified in the Coloured group had heterogeneous origins. This study also enabled an assessment of mtDNA variation within L0d sub-haplogroups. All seven of the L0d sub-clades were identified in the combined sample and were used to construct an L0d network.  相似文献   

5.
A total of 553 Y‐chromosomes were analyzed from mainland Portugal and the North Atlantic Archipelagos of Açores and Madeira, in order to characterize the genetic composition of their male gene pool. A large majority (78–83% of each population) of the male lineages could be classified as belonging to three basic Y chromosomal haplogroups, R1b, J, and E3b. While R1b, accounting for more than half of the lineages in any of the Portuguese sub‐populations, is a characteristic marker of many different West European populations, haplogroups J and E3b consist of lineages that are typical of the circum‐Mediterranean region or even East Africa. The highly diverse haplogroup E3b in Portuguese likely combines sub‐clades of distinct origins. The present composition of the Y chromosomes in Portugal in this haplogroup likely reflects a pre‐Arab component shared with North African populations or testifies, at least in part, to the influence of Sephardic Jews. In contrast to the marginally low sub‐Saharan African Y chromosome component in Portuguese, such lineages have been detected at a moderately high frequency in our previous survey of mtDNA from the same samples, indicating the presence of sex‐related gene flow, most likely mediated by the Atlantic slave trade.  相似文献   

6.
We determined the Y‐chromosomal composition of the population of the Azores Islands (Portugal), by analyzing 20 binary polymorphisms located in the non‐recombining portion of the Y‐chromosome (NRY), in 185 unrelated individuals from the three groups of islands forming the Archipelago (Eastern, Central and Western). Similar to that described for other Portuguese samples, the most frequent haplogroups were R1(xR1b3f) (55.1%), E(xE3a) (13%) and J (8.6%). Principal components analysis revealed a Western European profile for the Azorean population. No significant differences between Azores and mainland Portugal were observed. However, the haplogroup distribution across the three groups of islands was not similar (P<0.003). The Western group presented differences in the frequencies of haplogroups R1, E(xE3a) and I1b2 (27.3%, 22.7% and 13.6%, respectively) when compared to the other two groups. An assessment of the NRY variability, and its comparison with mitochondrial DNA (mtDNA) variability, was further evidence of the differential composition of males during the settlement of the three groups of islands, contrary to what has been previously deduced for the female settlers using mtDNA data.  相似文献   

7.
Autosomal Microsatellite and mtDNA Genetic Analysis in Sicily (Italy)   总被引:2,自引:1,他引:1  
DNA samples from 465 blood donors living in 7 towns of Sicily, the largest island of Italy, have been collected according to well defined criteria, and their genetic heterogeneity tested on the basis of 9 autosomal microsatellite and mitochondrial DNA polymorphisms for a total of 85 microsatellite allele and 10 mtDNA haplogroup frequencies. A preliminary account of the results shows that: a) the samples are genetically heterogeneous; b) the first principal coordinates of the samples are correlated more with their longitude than with their latitude, and this result is even more remarkable when one outlier sample (Butera) is not considered; c) distances among samples calculated from allele and haplogroup frequencies and from the isonymy matrix are weakly correlated (r = 0.43, P = 0.06) but such correlation disappears (r = 0.16) if the mtDNA haplogroups alone are taken into account; d) mtDNA haplogroups and microsatellite distances suggest settlements of people occurred at different times: divergence times inferred from microsatellite data seem to describe a genetic composition of the town of Sciacca mainly derived from settlements after the Roman conquest of Sicily (First Punic war, 246 BC), while all other divergence times take root from the second to the first millennium BC, and therefore seem to backdate to the pre‐Hellenistic period. A more reliable association of these diachronic genetic strata to different historical populations (e.g. Sicani, Elymi, Siculi), if possible, must be postponed to the analysis of more samples and hopefully more informative uniparental DNA markers such as the recently available DHPLC‐SNP polymorphisms of the Y chromosome.  相似文献   

8.
One hundred nineteen individuals classified as White, living in different localities of the Brazilian state of Rio Grande do Sul, were studied in relation to the HVS-I region of the mitochondrial DNA (mtDNA). The male fraction of the sample (N = 74) was also tested for seven Y-chromosome polymorphisms. In a specific population (Veranópolis), a city characterized by a large influence of the Italian immigration of the 19th century, the results from the maternal and paternal sides indicated almost complete European ancestry. However, another sample identified as White, from different localities of Rio Grande do Sul, presented significant fractions of Native American (36%) and African (16%) mtDNA haplogroups. These results indicate that Brazilian populations are remarkably heterogeneous; while some present an overwhelming majority of transplanted European genomes, with a complete correspondence between physical appearance and ancestry, others reflect a history of extensive admixture with dissociation between physical appearance and ancestry.  相似文献   

9.
This study examines the mitochondrial DNA (mtDNA) diversity of the Croatian-speaking minority of Molise and evaluates its potential genetic relatedness to the neighbouring Italian groups and the Croatian parental population. Intermatch, genetic distance, and admixture analyses highlighted the genetic similarity between the Croatians of Molise and the neighbouring Italian populations and demonstrated that the Croatian-Italian ethnic minority presents features lying between Croatians and Italians. This finding was confirmed by a phylogeographic approach, which revealed both the prevalence of Croatian and the penetrance of Italian maternal lineages in the Croatian community of Molise. These results suggest that there was no reproductive isolation between the two geographically proximate, yet culturally distinct populations living in Italy. The gene flow between the Croatian-Italians and the surrounding Italian populations indicate, therefore, that ethnic consciousness has not created reproductive barriers and that the Croatian-speaking minority of Molise does not represent a reproductively isolated entity.  相似文献   

10.
The DAZ gene, a contributing factor in infertility, lies on the human Y chromosome's AZFc region, whose deletion is a common cause of spermatogenic failure. Y chromosome binary polymorphisms on the non-recombining Y (NRY) region, believed to be a single occurrence on an evolutionary scale, were typed in a sample of fertile and infertile men with known DAZ backgrounds. The Y single-nucleotide polymorphisms (Y-SNPs) with low mutation rates are currently well characterized and permit the construction of a unique phylogeny of haplogroups. DAZ haplotypes were defined using single-nucleotide variant (SNV)/sequence tagged-site (STS) markers to distinguish between the four copies of the gene. The variation of 10 Y chromosome short tandem repeat (STRs) was used to determine the coalescence age of DAZ haplotypes in a comparable time frame similar to that of SNP haplogroups. An association between DAZ haplotypes and Y chromosome haplogroups was found, and our data show that the DAZ gene is not under selective constraints and its evolution depends only on the mutation rate. The same variants were common to fertile and infertile men, although partial DAZ deletions occurred only in infertile men, suggesting that those should only be used as a tool for infertility diagnosis when analysed in combination with haplogroup determinations.  相似文献   

11.
The advent of complete mitochondrial DNA (mtDNA) sequence data has ushered in a new phase of human evolutionary studies. Even quite limited volumes of complete mtDNA sequence data can now be used to identify the critical polymorphisms that define sub-clades within an mtDNA haplogroup, providing a springboard for large-scale high-resolution screening of human mtDNAs. This strategy has in the past been applied to mtDNA haplogroup V, which represents <5% of European mtDNAs. Here we adopted a similar approach to haplogroup H, by far the most common European haplogroup, which at lower resolution displayed a rather uninformative frequency distribution within Europe. Using polymorphism information derived from the growing complete mtDNA sequence database, we sequenced 1580 base pairs of targeted coding-region segments of the mtDNA genome in 649 individuals harboring mtDNA haplogroup H from populations throughout Europe, the Caucasus, and the Near East. The enhanced genealogical resolution clearly shows that sub-clades of haplogroup H have highly distinctive geographical distributions. The patterns of frequency and diversity suggest that haplogroup H entered Europe from the Near East approximately 20,000-25,000 years ago, around the time of the Last Glacial Maximum (LGM), and some sub-clades re-expanded from an Iberian refugium when the glaciers retreated approximately 15,000 years ago. This shows that a large fraction of the maternal ancestry of modern Europeans traces back to the expansion of hunter-gatherer populations at the end of the last Ice Age.  相似文献   

12.
Polymorphisms in mitochondrial DNA (mtDNA) are used to group individuals into haplogroups reflecting human global migration and are associated with multiple diseases, including cancer. Here, we evaluate the association between mtDNA haplogroup and risk of myelodysplastic syndromes (MDS). Cases were identified by the Minnesota Cancer Surveillance System. Controls were identified through the Minnesota State driver's license/identification card list. Because haplogroup frequencies vary by race and ethnicity, we restricted analyses to non‐Hispanic whites. We genotyped 15 mtSNPs that capture common European mitochondrial haplogroup variation. We used SAS v.9.3 (SAS Institute, Cary, NC) to calculate odds ratios (OR) and 95% confidence intervals (CI) overall and stratified by MDS subtype and IPSS‐R risk category. We were able to classify 215 cases with confirmed MDS and 522 controls into one of the 11 common European haplogroups. Due to small sample sizes in some subgroups, we combined mt haplogroups into larger bins based on the haplogroup evolutionary tree, including HV (H + V), JT (J + T), IWX (I + W + X), UK (U + K), and Z for comparisons of cases and controls. Using haplogroup HV as the reference group, we found a statistically significant association between haplogroup JT and MDS (OR = 0.58, 95% CI 0.36, 0.92, P = 0.02). No statistically significant heterogeneity was observed in subgroup analyses. In this population‐based study of MDS, we observed an association between mtDNA haplogroup JT and risk of MDS. While previously published studies provide biological plausibility for the observed association, further studies of the relationship between mtDNA variation and MDS are warranted in larger sample sizes. © 2016 Wiley Periodicals, Inc.  相似文献   

13.
Biallelic polymorphisms on the Y chromosome have been extensively used to study the history, evolution, and migration patterns of world populations. In this study we screened 8.5 kb of Y chromosomal DNA for single nucleotide polymorphisms (SNPs) in a panel of 95 male individuals belonging to different haplogroups. Five novel Y-SNPs (PK1–5) were identified, four in the Pakistani sample and one in an African sample. The ancestral state of each SNP was determined in two chimpanzee samples and a variety of Pakistani ethnic groups. In addition to these novel Y-SNPs 77 additional markers on the Y chromosome were analyzed to place the SNPs on the phylogenetic tree of Y chromosomal lineages and to further investigate extant human Y chromosomal variation within Pakistan. BATWING analysis gave an estimate of between 2,500 and 7,300 YBP for population expansion in Pakistan which coincides with the period of the Indus Valley civilizations.Aisha Mohyuddin and Qasim Ayub contributed equally to this publication.  相似文献   

14.
《Genetics in medicine》2021,23(8):1514-1521
PurposeReports have questioned the dogma of exclusive maternal transmission of human mitochondrial DNA (mtDNA), including the recent report of an admixture of two mtDNA haplogroups in individuals from three multigeneration families. This was interpreted as being consistent with biparental transmission of mtDNA in an autosomal dominant–like mode. The authenticity and frequency of these findings are debated.MethodsWe retrospectively analyzed individuals with two mtDNA haplogroups from 2017 to 2019 and selected four families for further study.ResultsWe identified this phenomenon in 104/27,388 (approximately 1/263) unrelated individuals. Further study revealed (1) a male with two mitochondrial haplogroups transmits only one haplogroup to some of his offspring, consistent with nuclear transmission; (2) the heteroplasmy level of paternally transmitted variants is highest in blood, lower in buccal, and absent in muscle or urine of the same individual, indicating it is inversely correlated with mtDNA content; and (3) paternally transmitted apparent large-scale mtDNA deletions/duplications are not associated with a disease phenotype.ConclusionThese findings strongly suggest that the observed mitochondrial haplogroup of paternal origin resulted from coamplification of rare, concatenated nuclear mtDNA segments with genuine mtDNA during testing. Evaluation of additional specimen types can help clarify the clinical significance of the observed results.  相似文献   

15.
Y Chromosome and Mitochondrial DNA Variation in Lithuanians   总被引:2,自引:1,他引:2  
The genetic composition of the Lithuanian population was investigated by analysing mitochondrial DNA hypervariable region 1, RFLP polymorphisms and Y chromosomal biallelic and STR markers in six ethnolinguistic groups of Lithuanians, to address questions about the origin and genetic structure of the present day population. There were no significant genetic differences among ethnolinguistic groups, and an analysis of molecular variance confirmed the homogeneity of the Lithuanian population. MtDNA diversity revealed that Lithuanians are close to both Slavic (Indo‐European) and Finno‐Ugric speaking populations of Northern and Eastern Europe. Y‐chromosome SNP haplogroup analysis showed Lithuanians to be closest to Latvians and Estonians. Significant differences between Lithuanian and Estonian Y chromosome STR haplotypes suggested that these populations have had different demographic histories. We suggest that the observed pattern of Y chromosome diversity in Lithuanians may be explained by a population bottleneck associated with Indo‐European contact. Different Y chromosome STR distributions in Lithuanians and Estonians might be explained by different origins or, alternatively, be the result of some period of isolation and genetic drift after the population split.  相似文献   

16.
The Samaritan community is a small, isolated, and highly endogamous group numbering some 650 members who have maintained extensive genealogical records for the past 13–15 generations. We performed mutation detection experiments on mitochondrial DNAs and Y chromosomes from confirmed maternal and paternal lineages to estimate mutation rates in these two haploid compartments of the genome. One hundred and twenty four DNA samples from different pedigrees (representing 200 generation links) were analyzed for the mtDNA hypervariable I and II regions, and 74 male samples (comprising 139 links) were typed for 12 Y‐STRs mapping to the non‐recombining portion of the Y chromosome (NRY). Excluding two somatic heteroplasmic substitutions and several length variants in the homopolymeric C run in the HVII region, no mutations were found in the Samaritans' maternal lineages. Based on mutations found in Samaritan paternal lineages, an estimate of a mutation rate of 0.42% (95% confidence interval of 0.22%–0.71%) across 12 Y‐STRs was obtained. This estimate is slightly higher than those obtained in previous pedigree studies in other populations. The haplotypes identified in Samaritan paternal lineages that belong to the same haplogroup were used to estimate the number of generations elapsed since their most recent common ancestor (MRCA). The estimate of 80 generations corresponds with accepted traditions of the origin of this sect.  相似文献   

17.
The human Y chromosome comprises two distinct parts: the pseudoautosomal region on the tip of the short arm that pairs with the X chromosome in male meiosis and undergoes recombination, and the remainder of the chromosome, which is male-specific and not involved in recombination. It is this haploid part of the Y chromosome, with its accumulation of mutations, that is of interest to human biologists because the variation within it potentially reflects the paternal line in human evolution (just as mtDNA analysis represents maternal lineages). The Y chromosome, however, appears to contain very few restriction fragment length polymorphisms (RFLPs), and furthermore, understanding of the polymorphic basis of some of these is presently imperfect. These latter problems include the possibility of multiple origins of the same allele, especially in repeat sequence polymorphisms, and failure to recognize the ancestral allele at a locus. All of these restrictions and difficulties mean that no comprehensive understanding of either Y chromosome evolution or its variability among the world's populations is yet possible. This report examines the current knowledge of Y-chromosome population genetics obtained using probes such as p12f, p49a, pYAP, and pYαl, including their use in measuring gene flow and also in population histories and differentiation. Most studies have reported allele frequencies at a particular locus, but a fuller understanding of Y chromosome evolution and variation will require haplotype data. One interesting observation is the low diversity for some Y-chromosome polymorphisms in African populations compared to Caucasoids, a contrast to the pattern seen for other DNA polymorphisms. The role of different mate choice systems in acting to substantially reduce Y-chromosome variation is considered. © 1996 Wiley-Liss, Inc.  相似文献   

18.
Various lines of evidence demonstrate the involvement of mitochondrial dysfunction in the pathogenesis of Huntington's disease (HD). However, the precise role of mitochondria in the neurodegenerative cascade leading to HD is still unclear. Mitochondrial DNA (mtDNA) haplogroups-specific polymorphisms were previously related to several neurodegenerative diseases. The length of CAG repeat seems to be related to the clinical features of HD, such as age of onset and progression of motor impairment. The basis for the impaired cognitive functions and for the mood changes is less clear. Aim of this study was to determine whether mtDNA polymorphism(s) play the role of "modifier gene(s)" in this disease. In this work we have genotyped predefined European mtDNA haplogroups in 51 patients with HD and 181 matched controls. The frequency of the haplogroups and haplogroup clusters did not differ between the two groups, and no correlation with gender, age of onset and disease status was observed. No significant difference was observed between different haplogroups and haplogroup clusters in the cognitive or motor progression of the disease. Our study does not support any association between mtDNA haplogroups and HD.  相似文献   

19.
Mitochondrial DNA HV1 sequences and Y chromosome haplotypes (DYS19 STR and YAP) were characterised in an Albanian sample and compared with those of several other Indo-European populations from the European continent. No significant difference was observed between Albanians and most other Europeans, despite the fact that Albanians are clearly different from all other Indo-Europeans linguistically. We observe a general lack of genetic structure among Indo-European populations for both maternal and paternal polymorphisms, as well as low levels of correlation between linguistics and genetics, even though slightly more significant for the Y chromosome than for mtDNA. Altogether, our results show that the linguistic structure of continental Indo-European populations is not reflected in the variability of the mitochondrial and Y chromosome markers. This discrepancy could be due to very recent differentiation of Indo-European populations in Europe and/or substantial amounts of gene flow among these populations.  相似文献   

20.
Although frequencies of mitochondrial DNA (mtDNA) haplogroups in the different European populations are rather homogenous, there are a few European populations or linguistic isolates that show different mtDNA haplogroup distributions; examples are the Saami and Ladin speakers from the eastern Italian Alps.
MtDNA sequence diversity was analysed from subjects from two villages in Veneto. The first, Posina, is situated in the Venetian Alps near Vicenza. The second, Barco di Pravisdomini is a village on the plains near Venice. In spite of their common Veneto dialect, the two group populations have not preserved a genetic homogeneity; particularly, they show differences in T and J haplogroups frequencies. MtDNA diversity in these two groups seems to depend more on their geographic situation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号