首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Makino S  Smith MA  Gold PW 《Brain research》2002,943(2):216-223
Sustained responsiveness of the hypothalamic-pituitary-adrenal (HPA) axis during chronic or repeated stress is associated with continuous activation of ascending noradrenergic neurons from the brainstem to the hypothalamic paraventricular nucleus (PVN). The fact that glucocorticoid receptor (GR) exists in the brainstem noradrenergic neurons including locus coeruleus (LC) suggests that glucocorticoids play a modulatory role in maintaining the activity of these neurons during chronic stress. To determine whether alterations in the sensitivity of noradrenergic neuronal activity to endogenous CORT occur during chronic or repeated stress, tyrosine hydroxylase (TH) and GR mRNA expressions in the LC were examined in acute (2 h) and repeated (2 h daily, 14 days) immobilization stress, using sham-operated rats and adrenalectomized rats with a moderate dose of CORT replacement (ADX+CORT group). In acute stress, TH mRNA in the LC increased in the ADX+CORT rats, but not in sham operated rats. In repeated stress, however, elevated endogenous CORT failed to inhibit TH mRNA responses in sham rats; LC TH mRNA in sham rats responded to the same extent as in ADX+CORT rats. A reduction of GR mRNA in the LC was observed in the acutely stressed and repeatedly stressed sham group, but not in the ADX+CORT groups. The decrease in LC GR mRNA levels in sham rats tended to be greater after repeated than after acute stress. LC GR mRNA levels decreased in response to systemic CORT treatment (200 mg pellet sc, for 14 days) and increased in response to adrenalectomy; neither CORT treatment nor adrenalectomy influenced TH mRNA levels in the LC. These results suggest that glucocorticoid responses to acute immobilization prevent LC TH mRNA levels from rising significantly, while glucocorticoids appear to decrease their capacity to restrain LC TH mRNA during repeated immobilization. Although the results clearly show glucocorticoid-dependent alterations in LC GR mRNA expression, the association between increased TH mRNA and decreased GR mRNA in the LC remains to be elucidated.  相似文献   

2.
3.
We previously demonstrated in the dentate gyrus (DG) of anesthetized and freely behaving rats that both acute as well as chronic administration of corticosterone produces a suppression in long-term potentiation (LTP). In subsequent studies we showed, again in the DG, that activation of the two types of adrenal steroid receptors (mineralocorticoid (MR) and glucocorticoid (GR)) produce biphasic effects on synaptic plasticity; activation of MR produces an enhancement while activation of GR produces a suppression in LTP. In a separate study, we further demonstrated in rats administered the specific GR agonist RU 28362 that high-frequency stimulation, which normally produces LTP, instead produced long-term depression (LTD) in these animals. In the present study we investigated the effects of MR and GR activation by adrenal steroids on synaptic plasticity of the hippocampal CA1 field, but we studied this ex vivo, in a slice preparation. The results indicate that, as in our studies in the DG, adrenal steroids produce biphasic effects: in ADX rats, aldosterone (a specific MR agonist) enhanced while RU 28362 suppressed synaptic plasticity. Unlike the in vivo preparation, however, rarely was LTD observed in the animals receiving RU 28362. Also, ADX itself did not produce noticeable effects on synaptic plasticity. The present results are in agreement with previous studies showing that elevations in corticosterone or an acute episode of experimentally induced stress in vivo causes a suppression in LTP in the hippocampal CA1 field, in vitro.  相似文献   

4.
Approximately 10% of pregnant women are treated with synthetic glucocorticoids in late gestation, to promote fetal lung maturation. The effectiveness of this treatment has led to the use of repeated dose regimens, with little knowledge of the impact on neuroendocrine development. Animal studies have recently shown that repeated fetal glucocorticoid exposure can lead to permanent changes in hypothalamic-pituitary-adrenal (HPA) function in offspring. In this study, we hypothesized that such treatment modifies corticotropin releasing hormone (CRH), glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) systems in the developing limbic system and hypothalamus. Pregnant guinea-pigs were treated with dexamethasone, betamethasone or vehicle on days 40,41,50,51,60 and 61 of gestation (birth = 68 days). On day 62, guinea-pigs were killed and the fetuses rapidly removed. Glucocorticoid treatment resulted in a dose-dependent reduction in plasma cortisol concentrations in both male and female fetuses. There was also a significant reduction in CRH mRNA expression in the hypothalamic paraventricular nucleus. In contrast, exposure to glucocorticoid increased MR mRNA expression in the hippocampus (CA1/2 and CA3) and dentate gyrus of female fetuses. There was a small but significant increase in GR mRNA expression in limbic structures in male fetuses following treatment with 1 mg/kg dexamethasone. However, there was no significant effect of glucocorticoid exposure on hippocampal GR mRNA expression in female fetuses, or hypothalamic GR mRNA in either males or females. In conclusion, repeated maternal glucocorticoid treatment inhibits fetal HPA function. The fact that CRH mRNA levels were reduced indicates that synthetic glucocorticoids enter the fetal brain. By contrast, fetal glucocorticoid exposure does not downregulate GR mRNA, and increases MR mRNA expression. The latter likely reflects removal of circulating endogenous ligand (cortisol). These alterations may form the basis for permanently modified HPA activity in later life.  相似文献   

5.
6.
The acute stress response in vertebrates is a highly adaptive suite of physiological and behavioural mechanisms that promote survival in the face of deleterious stimuli from the environment. Facultative changes of physiology and behaviour are mediated through changes in circulating levels of glucocorticoids (corticosterone, cortisol) and their subsequent binding to the high‐affinity mineralocorticoid receptor (MR) or the low‐affinity glucocorticoid receptor (GR). Free‐living male wild Gambel's white‐crowned sparrows (Zonotrichia leucophrys gambelii) display annual fluctuations in the stress response with marked attenuation during the transition from the pre‐parental to the parental stage. We investigated whether this rapid reduction in the stress response is mediated through changes in MR and GR mRNA expression in the brain using in situ hybridisation. MR mRNA expression was found to be significantly lower in the hippocampus as the male birds became parental. No changes were observed in GR mRNA expression in the paraventricular nucleus (PVN) or preoptic area (POA) at this time. No significant correlations were found between initial capture levels of corticosterone and GR or MR mRNA expression. No differences were found in basal levels of corticosterone between pre‐parental and parental in birds collected for in situ hybridisation. Stress response data revealed no difference at baseline but reductions in peak levels of corticosterone as birds became parental. These data suggest that changes in MR expression may be important for the regulation of the stress response or behavioural stress sensitivity with respect to promoting parental care and investment.  相似文献   

7.
8.
A persistent hyperactivity of the hypothalamic-pituitary-adrenal axis and thus elevated glucocorticoid levels are main neuroendocrine features of depressive symptomatology in humans. The broad range of effects that are set off by glucocorticoids is mediated by glucocorticoid receptors (GRs) and mineralocorticoid receptors (MRs), which themselves are subject to autoregulation. In order to investigate the impact of long-lasting psychological stress on corticosteroid receptor mRNA expression in the hippocampal formation, we employed the psychosocial stress paradigm in male tree shrews (Tupaia belangeri). By in situ hybridization studies and semiquantitative evaluation of stress-induced changes of GR and MR mRNA expression at the single-cell level, brain tissue from subordinate animals which were exposed to 27 days (1 h/day) of social confrontation was compared to that of nonstressed animals. Four weeks of stress exposure resulted in a downregulation of GR mRNA in the dentate gyrus and hippocampal subfields CA1 and CA3 of subordinate male tree shrews compared to controls. The MR mRNA content in these subfields of the anterior hippocampus was also clearly reduced. On the contrary, in a more posterior location on the longitudinal axis of the tree shrew hippocampus, the MR message was increased in subfields CA1 and CA3 and in the dentate gyrus. These results suggest a relevance of the stress-induced regulation of both corticosteroid receptor subtype mRNAs in a naturalistic challenging situation. Moreover, the differential regulation of MR mRNA along the rostrocaudal axis of the hippocampus adds another feature to the heterogenous composition of this structure.  相似文献   

9.
Development of the fetal hypothalamo-pituitary-adrenocortical (HPA) axis is critical for fetal maturation and responses to stress. Guinea pigs, unlike rats, give birth to mature young, and peak brain growth occurs around days 48-52 (75%) of gestation. There is extensive development of the glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) systems at the time of rapid brain growth in guinea pigs. Since approximately 10% of pregnant women are treated with synthetic glucocorticoids in late gestation, to promote fetal organ maturation, we tested the hypothesis that fetal exposure to glucocorticoids modifies developing GR and MR systems in the brain. Pregnant guinea pigs were subcutaneously injected with dexamethasone (dex; 1 mg/kg) or vehicle on days 50 and 51 of gestation (term=70 days). On day 52, guinea pigs were killed and the fetuses rapidly removed. Maternal dex treatment resulted in increased plasma cortisol concentrations in female fetuses, but decreased cortisol in male fetuses. Plasma thyroxine levels were increased in both female and male fetuses following maternal dex-treatment. Exposure to dex resulted in significant increases in MR and GR mRNA in the CA1-2 region of the hippocampus, and MR mRNA in the dentate gyrus in female fetuses. There was no effect of dex on GR or MR mRNA in the male fetuses. In conclusion, the effect of synthetic glucocorticoid on the developing brain GR and MR systems is sex-specific and is confined to very specific regions of the hippocampus. Since the hippocampus plays a central role in mediating glucocorticoid negative feedback of HPA function, alterations in the fetal development of corticosteroid receptors may form the basis of permanently modified HPA activity following fetal exposure to endogenous or synthetic glucocorticoid.  相似文献   

10.
11.
12.
Appropriate signaling in the brain by the glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) is critical in regulation of the hypothalamic-pituitary-adrenal (HPA) axis, emotional arousal and cognitive performance. To date, few data exist on MR (and GR) expression in the brain of patients suffering from major depressive disorder (MDD).With the help of quantitative PCR we assessed MR and GR mRNA expression, including the splice variants MRα and MRβ, in tissue samples from the hippocampus, amygdala, inferior frontal gyrus, cingulate gyrus and nucleus accumbens. Expression levels were compared between tissue samples from six MDD patients and six non-depressed subjects.Relative to total GR, total MR mRNA expression was higher in hippocampus and lower in the amygdala, inferior frontal gyrus and nucleus accumbens. Both MRα and MRβ could be detected in all brain regions that were analyzed, although MRβ expression was low. Significantly lower expression levels (30-50%) were detected for MR or GR in hippocampal, inferior frontal gyrus and cingulate gyrus tissue from MDD patients (p < .05), while no differences were found in the amygdala or nucleus accumbens.The data show that both MRα and MRβ mRNA are expressed throughout the human limbic brain with highest expressions in the hippocampus. A decreased expression of corticosteroid receptors in specific brain regions of MDD patients could underlie HPA hyperactivity, mood and cognitive disturbances often observed in patients suffering from stress-related psychopathologies.  相似文献   

13.
14.
Stress exposure during early‐life development can programme individual brain and physiology. The hypothalamic‐pituitary‐adrenal (HPA) axis is one of the primary targets of this programming, which is generally associated with a hyperactive HPA axis, indicative of a reduced negative‐feedback. This reduced feedback efficiency usually results from a reduced level of the glucocorticoid receptor (GR) and/or the mineralocorticoid receptor (MR) within the HPA axis. However, a few studies have shown that early‐life stress exposure results in an attenuated physiological stress response, suggesting an enhance feedback efficiency. In the present study, we aimed to determine whether early‐life stress had long‐term consequences on GR and MR levels in quail and whether the effects on the physiological response to acute stress observed in prenatally stressed individuals were underpinned by changes in GR and/or MR levels in one or more HPA axis components. We determined GR and MR mRNA expression in the hippocampus, hypothalamus and pituitary gland in quail exposed to elevated corticosterone during prenatal development, postnatal development, or both, and in control individuals exposed to none of the stressors. We showed that prenatal stress increased the GR:MR ratio in the hippocampus, GR and MR expression in the hypothalamus and GR expression in the pituitary gland. Postnatal stress resulted in a reduced MR expression in the hippocampus. Both early‐life treatments permanently affected the expression of both receptor types in HPA axis regions. The effects of prenatal stress are in accordance with a more efficient negative‐feedback within the HPA axis and thus can explain the attenuated stress response observed in these birds. Therefore, these changes in receptor density or number as a consequence of early‐life stress exposure might be the mechanism that allows an adaptive response to later‐life stressful conditions.  相似文献   

15.
During the dark phase of the diurnal cycle, and during recovery from restraint stress, Brown Norway (BN) rats secrete less corticosterone than Fischer 344 (F344) rats. These strains also display different levels of corticosteroid receptors in the hippocampus, and of plasma transcortin. Because corticosteroid receptors, plasma transcortin and corticosterone secretion are mutually regulated, we examined brain and pituitary mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) expression and some of the parameters modulated by these receptors (i.e. body and thymus weight, fluid intake, plasma transcortin) in BN and F344 rat strains, by comparing the effects of either hormone deprivation by long-term (21 days) adrenalectomy (ADX), or chronic elevation of corticosterone given in drinking fluid to ADX rats. In BN rats, body weight gain and fluid intake were insensitive to corticosterone deprivation, suggesting that MR-related mechanisms are constitutively active in this strain. Body weight (b.w.) gain, plasma transcortin and thymus weight were reduced to a greater extent by chronic corticosterone in BN rats than in F344 rats, possibly as a consequence of higher free, active fraction of plasma corticosterone due to lower plasma transcortin concentrations and/or a greater efficiency of GR-related mechanisms in BN rats. F344 rats displayed twofold higher brain and pituitary MR levels than BN rats, whereas tissue-and strain-specific regulations were observed for GR levels. The differences in MR levels observed between BN and F344 strains cannot completely explain the differences in corticosterone actions, suggesting that strain differences in response to ADX or corticosterone treatment result from variable receptor efficiencies.  相似文献   

16.
Neurobiological studies of stress often focus on the hippocampus where cortisol binds with different affinities to two types of corticosteroid receptors, i.e., mineralocorticoid receptor (MR) and glucocorticoid receptor (GR). The hippocampus is involved in learning and memory, and regulates the neuroendocrine stress response, but other brain regions also play a role, especially prefrontal cortex. Here, we examine MR and GR expression in adult squirrel monkey prefrontal cortex and hippocampus after exposure to social stress in infancy or adulthood. In situ hybridization histochemistry with (35)S-labeled squirrel monkey riboprobes and quantitative film autoradiography were used to measure the relative distributions of MR and GR mRNA. Distinct cortical cell layer-specific patterns of MR expression differed from GR expression in three prefrontal regions. The relative distributions of MR and GR also differed in hippocampal Cornu Ammonis (CA) regions. In monkeys exposed to adult social stress compared to the no-stress control, GR expression was diminished in hippocampal CA1 (P=0.021), whereas MR was diminished in cell layer III of ventrolateral prefrontal cortex (P=0.049). In contrast, exposure to early life stress diminished GR but not MR expression in cell layers I and II of dorsolateral prefrontal cortex (P's<0.048). Similar reductions likewise occurred in ventrolateral prefrontal cortex, but the effects of early life stress on GR expression in this region were marginally not significant (P=0.053). These results provide new information on regional differences and the long-term effects of stress on MR and GR distributions in corticolimbic regions that control cognitive and neuroendocrine functions.  相似文献   

17.
We have previously shown that the foetal guinea-pig hypothalamic-pituitary-adrenal (HPA) axis is activated near the time of parturition and that this is associated with changes in limbic glucocorticoid receptors (GR) and mineralocorticoid receptors. In the present study, we hypothesized that the foetal hypothalamic paraventricular nucleus (PVN) and pituitary contribute significantly to foetal HPA drive but that these areas remain sensitive to negative feedback by circulating glucocorticoids in late gestation. However, we observed decreased corticotrophin-releasing hormone mRNA expression in the PVN and decreased pro-opiomelanocortin (POMC) mRNA levels in the anterior pituitary with advanced gestational age. The reduction in POMC mRNA expression was likely the result of negative feedback via circulating glucocorticoids because GR mRNA was unchanged during development in the foetal pituitary. Furthermore, we found that maternally administered glucocorticoids significantly decreased foetal pituitary POMC mRNA expression in a dose-dependent manner at gestational day (gd) 62 with male foetuses being more sensitive to these effects. These findings show that the foetal HPA axis remains highly sensitive to glucocorticoid feedback even as plasma adrenocorticotropic hormone and cortisol levels are elevated at the end of gestation.  相似文献   

18.
19.
Chronic stress has been associated with degenerative changes in the rodent and primate hippocampus, presumably mediated in part via neuronal glucocorticoid receptors (GRs). In the rat brain, GRs are widely distributed and are particularly dense in the hippocampus. The distribution of GRs in the primate brain, however, has not been fully characterized. In this study, we used in situ hybridization histochemistry and immunohistochemistry to map the distribution of GR mRNA and GR protein, respectively, in adult rhesus monkeys (Macaca mulatta). In contrast to its well established distribution in the rat brain, GR mRNA was only weakly detected in the dentate gyrus (DG) and Cornu Ammonis (CA) of the macaque hippocampus, whereas it was abundant in the pituitary (PIT), cerebellum (CBL), hypothalamic paraventricular nucleus (PVN), and, to a lesser extent, the neocortex. Immunohistochemical staining indicated a very low density of GR-like immunoreactive cells within the macaque hippocampal formation in contrast to the high density observed within the PVN, prefrontal and entorhinal cortices, and cerebellar cortex. Relative to the low level of GR, mineralocorticoid receptor (MR) mRNA and protein expression were abundant within the DG and CA of the rhesus monkey hippocampal formation. These results indicate that, in the primate, neocortical and hypothalamic areas may be more important targets for GR-mediated effects of glucocorticoids than the hippocampus. Alternatively, it is also possible that glucocorticoid effects are mediated through the MRs present in the hippocampal formation.  相似文献   

20.
Corticosteroids have been implicated in hippocampal atrophy in patients with severe psychiatric disorders, but little is known about receptor expression for corticosteroids in human or nonhuman primate brain. Both the glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) were surveyed in this study of squirrel monkey brain using in situ hybridization histochemistry. Regions of high GR mRNA levels included CA1 and CA2 of hippocampus, dentate gyrus, paraventricular hypothalamus, lateral geniculate, lateral>medial amygdala, and cerebellum. Western analysis confirmed that GR immunoreactivity in squirrel monkey brain tissue most likely reflects the alpha isoform. Regions of high MR mRNA levels included all hippocampal pyramidal cell fields, dentate gyrus granule cell layer, lateral septum, medial>lateral amygdala, and to a lesser extent, cerebellum. Low levels of MR were also expressed in caudate and putamen. Receptor expression for corticosteroids in deep brain structures and the hippocampal formation was similar to that previously reported in rodents, but GR and MR mRNA were expressed at higher levels in squirrel monkey cerebral cortex. GR expression was evident in all cortical layers, particularly the pyramidal cell-rich layers II/III and V. MR expression was restricted to the more superficial cortical layers, and was only moderately represented in layer V. Laminar patterns were apparent in all regions of cortex for GR expression in squirrel monkeys, but low MR mRNA levels were found in dorsomedial prefrontal cortex (PFC). Different subregional distributions and distinctive laminar patterns suggest specialized functions or coordinated interactions between GR and MR mediated functions in primate PFC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号