首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytotoxic necrotizing factor type 1 (CNF1) from Escherichia coli activates the small GTP-binding proteins of the Rho family (Rho, Rac, and Cdc42) by catalyzing their deamidation at a specific glutamine residue. Since RhoA, Rac, and Cdc42 play a pivotal role in cell migration during the early phase of wound repair, we investigated whether CNF1 was able to interfere with wound healing in intestinal epithelial monolayers (T84 cells). After mechanical injury, we found that CNF1 blocks epithelial wound repair within 48 h. This effect was characterized by cell elongation and filopodium formation on the leading edge, in association with permanent phosphorylation of the focal adhesion kinase (FAK) via Rho activation. Moreover, inhibition of Rho kinase with Y-27632 decreased CNF1-mediated permanent FAK phosphorylation, leading to complete restitution of wound repair within 24 h. In addition, we found that CNF1 induced upregulation of mitogen-activated protein kinases (MAPK) activation. Moreover, activation of Rac and MAPK by CNF1 increased matrix metalloproteinase 9 expression in wounded T84 monolayers. Taken together, these results provide evidence that CNF1 strongly impairs intestinal epithelial wound healing.  相似文献   

2.
BACKGROUND: Frabin is an actin filament (F-actin)-binding protein that shows GDP/GTP exchange activity for Cdc42 small G protein (Cdc42). Frabin furthermore induces indirect activation of Rac small G protein (Rac) in intact cells. We have recently shown that in nonepithelial cells, frabin induces the formation of both filopodia- and lamellipodia-like processes through the activation of Cdc42 and Rac, respectively. In epithelial cells such as MDCK cells, Cdc42 and Rac regulate cell-cell adherens junctions (AJs) via the accumulation of F-actin and E-cadherin, although neither Cdc42 nor Rac induces the formation of filopodia or lamellipodia. In this study, we have examined the effects of frabin on the reorganization of the actin cytoskeleton in MDCK cells. RESULTS: Frabin induces the formation of microspikes at the basal area of the lateral membranes through the activation of Cdc42 and Rac in MDCK cells, although a dominant active mutant of Cdc42 or Rac alone, or both, did not induce the formation of microspikes. Furthermore, frabin weakly increased the accumulation of F-actin and E-cadherin at cell-cell AJs and the formation of stress fibres through the activation of Cdc42 and Rac, under conditions where the dominant active mutant of Cdc42 or Rac markedly showed these effects. The Cdc42- and Rac-induced formation of stress fibres was dependent on the activation of Rho small G protein. CONCLUSION: These results indicate that the frabin-dependent spatial activation of Cdc42 and Rac is important for the formation of microspikes.  相似文献   

3.
Although netrins are an important family of neuronal guidance proteins, intracellular mechanisms that mediate netrin function are not well understood. Here we show that netrin-1 induces tyrosine phosphorylation of proteins including focal adhesion kinase (FAK) and the Src family kinase Fyn. Blockers of Src family kinases inhibited FAK phosphorylation and axon outgrowth and attraction by netrin. Dominant-negative FAK and Fyn mutants inhibited the attractive turning response to netrin. Axon outgrowth and attraction induced by netrin-1 were significantly reduced in neurons lacking the FAK gene. Our results show the biochemical and functional links between netrin, a prototypical neuronal guidance cue, and FAK, a central player in intracellular signaling that is crucial for cell migration.  相似文献   

4.
Dock3, a new member of the guanine nucleotide exchange factor family, causes cellular morphological changes by activating the small GTPase Rac1. Overexpression of Dock3 in neural cells promotes neurite outgrowth through the formation of a protein complex with Fyn and WAVE downstream of brain-derived neurotrophic factor (BDNF) signaling. Here, we report a novel Dock3-mediated BDNF pathway for neurite outgrowth. We show that Dock3 forms a complex with Elmo and activated RhoG downstream of BDNF-TrkB signaling and induces neurite outgrowth via Rac1 activation in PC12 cells. We also show the importance of Dock3 phosphorylation in Rac1 activation and show two key events that are necessary for efficient Dock3 phosphorylation: membrane recruitment of Dock3 and interaction of Dock3 with Elmo. These results suggest that Dock3 plays important roles downstream of BDNF signaling in the central nervous system where it stimulates actin polymerization by multiple pathways.  相似文献   

5.
Rho GTPases, Cdc42 and Rac1, play pivotal roles in cell migration by efficiently integrating cell-substrate adhesion and actin polymerization. Although it has been suggested that integrins stimulate these Rho GTPases via some of integrin binding proteins such as focal adhesion kinase (FAK) and paxillin, the precise molecular mechanism is largely unknown. In this study, we showed that the over-expression of RP1 corresponding to the first CH domain (CH1) of affixin, an integrin-linked kinase (ILK)-binding protein, induced a significant actin reorganization in MDCK cells by activating Cdc42/Rac1. Affixin full length and RP1 co-immunoprecipitated with alphaPIX, a Cdc42/Rac1-specific guanine nucleotide exchanging factor (GEF), and they co-localized at the tips of lamellipodia in motile cells. The involvement of alphaPIX in the RP1-induced Cdc42 activation was demonstrated by the significant dominant negative effect of a point mutant of alphaPIX, alphaPIX (L383R, L384S), lacking GEF activity. Our data strongly support that ILK and affixin provide a novel signalling pathway that links integrin signalling to Cdc42/Rac1 activation.  相似文献   

6.
To study the role of Cdc42 in the establishment of epithelial polarity during mammalian development, we generated murine Cdc42-null embryonic stem cells and analyzed peri-implantation development using embryoid bodies (EBs). Mutant EBs developed endoderm and underlying basement membrane, but exhibited defects of cell polarity, cell-cell junctions, survival, and cavitation. These defects corresponded to a decreased phosphorylation and membrane localization of aPKC, a reduced phosphorylation of GSK3beta, and a diminished activity of Rac1. However, neither Rac1 nor the kinase function of GSK3beta seem to contribute to cell polarization and cell-cell contacts. In contrast, EBs expressing dominant-negative (dn) PKCzeta mimicked well the phenotype of Cdc42-null EBs, suggesting a major role of aPKC in mediating cell polarization downstream of Cdc42. Finally, aggregation experiments with endodermal cell lines suggested that Cdc42 might affect formation of adherens and tight junctions by PKCzeta-dependent regulation of the protein levels of p120 catenin and E-cadherin.  相似文献   

7.
Enteropathogenic Escherichia coli (EPEC) induces formation of actin pedestals in infected host cells. Agents that inhibit the activity of Rho, Rac, and Cdc42, including Clostridium difficile toxin B (ToxB), compactin, and dominant negative Rho, Rac, and Cdc42, did not inhibit formation of actin pedestals. In contrast, treatment of HeLa cells with ToxB inhibited EPEC invasion. Thus, Rho, Rac, and Cdc42 are not required for assembly of actin pedestals; however, they may be involved in EPEC uptake by HeLa cells.  相似文献   

8.
9.
BACKGROUND: Intermediate filament (IF) is one of the three major cytoskeletal filaments. Vimentin is the most widely expressed IF protein component. The Rho family of small GTPases, such as Cdc42, Rac and Rho, are thought to control the organization of actin filaments as well as other cytoskeletal filaments. RESULTS: We determined if the vimentin filaments can be regulated by p21-activated kinase (PAK), one of targets downstream of Cdc42 or Rac. In vitro analyses revealed that vimentin served as an excellent substrate for PAK. This phosphorylated vimentin lost the potential to form 10 nm filaments. We identified Ser25, Ser38, Ser50, Ser65 and Ser72 in the amino-terminal head domain as the major phosphorylation sites on vimentin for PAK. The ectopic expression of constitutively active PAK in COS-7 cells induced vimentin phosphorylation. Fibre bundles or granulates of vimentin were frequent in these transfected cells. However, the kinase-inactive mutant induced neither vimentin phosphorylation nor filament reorganization. CONCLUSION: Our observations suggest that PAK may regulate the reorganization of vimentin filaments through direct vimentin phosphorylation.  相似文献   

10.
Statins, which are known as cholesterol-lowering drugs, have several additional effects including the enhancement of bone formation and the stimulation of smooth muscle cell proliferation. In this study, we investigated the signal pathway of simvastatin operating in C2C12 myoblast cells. Myotube formation of C2C12 cells was efficiently blocked by 1 muM simvastatin, and mevalonic acid was able to cancel this effect. Geranylgeranyl pyrophosphate restored the myotube formation, whereas farnesyl pyrophosphate did not. These findings demonstrate that the Rho family, such as Rho, Rac and Cdc42, occurring downstream of geranylgeranyl pyrophosphate in the mevalonic acid pathway, was involved in the simvastatin-mediated blockage of myotube formation. An inhibitor of Rho kinase did not influence the myotube formation; whereas an inhibitor of Rac blocked this process. Taken together, we conclude that the differentiation of C2C12 cells into myotubes was blocked by simvastatin through the pathway mediated by Rac, not by Rho.  相似文献   

11.
The Rho GTPases Rac and Cdc42 play a central role in the regulation of secretory and cytoskeletal responses in antigen-stimulated mast cells. In this study, we examine the kinetics and mechanism of Rac and Cdc42 activation in the rat basophilic leukemia RBL-2H3 cells. The activation kinetics of both Rac and Cdc42 show a biphasic profile, consisting of an early transient peak at 1 min and a late sustained activation phase at 20-40 min. The inhibition of phospholipase C (PLC)gamma causes a twofold increase in Rac and Cdc42 activation that coincides with a dramatic production of atypical filopodia-like structures. Inhibition of protein kinase C using bisindolylmaleimide mimics the effect of PLCgamma inhibition on Rac activation, but not on Cdc42 activation. In contrast, depletion of intracellular calcium leads to a complete inhibition of the early activation peak of both Rac and Cdc42, without significant effects on the late sustained activation. These data suggest that PLCgamma is involved in a negative feedback loop that leads to the inhibition of Rac and Cdc42. They also suggest that the presence of intracellular calcium is a prerequisite for both Rac and Cdc42 activation.  相似文献   

12.
Functional role of focal adhesion kinase in the process of implantation   总被引:1,自引:2,他引:1  
The expression and function of focal adhesion kinase (FAK) in human decidual cells were investigated. This kinase is localized to focal adhesions in fibroblasts, and is phosphorylated on tyrosine in normal and src-transformed fibroblasts. Immunofluorescent staining revealed that the cultured decidual cells expressed high levels of FAK at the cell periphery. Double stainings for FAK and phosphotyrosine, FAK and talin, and FAK and beta1 integrin demonstrated that FAK co-localized with integrins in cellular focal adhesions. Mouse blastocysts became attached to cultured decidual cells after embryos hatched from the zona pellucida. The majority of hatched blastocysts attached to human decidual cells within 24 h of culture. Blastocysts attached to decidual cells exhibited extensive outgrowth after 48 h. Treatment of decidual cells with herbimycin A, a tyrosine kinase inhibitor, did not affect the rate of hatching or attachment of blastocysts. However, the outgrowth of embryos on the decidual cells was inhibited by the addition of herbimycin A in a dose-dependent manner, implying that blastocyst attachment and outgrowth are mediated by different mechanisms. This study suggests that tyrosine phosphorylation of FAK on decidual cells may be important in development and differentiation following attachment.   相似文献   

13.
Immunohistochemistry was used to determine the distribution of Rac1, Cdc42, RhoA and RhoB GTPases during development of the chick retina. All proteins appear as early as embryonic day 5 (E5) in cells of the vitreal margin, E7–8 in cells of the inner third of the inner nuclear layer and E9–10 in photoreceptors. From E10 until hatching, RhoA, Rac1 and Cdc42 were seen in perikarya and/or processes of amacrine, ganglion cells, and photoreceptors. Rho proteins were also observed in retinal Müller cells, with different distributions. RhoB showed a transient expression, being severely down regulated after E18. The distribution pattern of Rho proteins during the development of the chick retina suggests a concerted role in the differentiation of specific cell types, and probably during synaptogenesis.  相似文献   

14.
BACKGROUND: Nectins are Ca2+-independent immunoglobulin-like cell-cell adhesion molecules which associate with cadherins to form adherens junctions (AJs) in epithelial cells and fibroblasts. Nectin-1 and -3 are members of the nectin family which most strongly trans-interact, causing cell-cell adhesion. The trans-interaction between nectin-1 and -3 induces the activation of both Cdc42 and Rac small G proteins in epithelial cells. We studied the roles of Cdc42 and Rac activated in this way in L fibroblasts stably expressing both nectin-1 and E-cadherin (nectin-1-EL cells). RESULTS: The trans-interaction between nectin-1 and -3 induced the activation of Cdc42 and Rac in nectin-1-EL cells. Cdc42, and presumably Rac, activated in this way, induced the activation of c-Jun N-terminal kinase (JNK), but not p38 mitogen-activated protein (MAP) kinase or extracellular signal-regulated kinase (ERK). Cdc42 or Rac was not essential for the association of nectin-1 and E-cadherin to form AJs. Reorganization of the actin cytoskeleton was not required for the association of nectin-1 and E-cadherin. CONCLUSION: These results indicate that Cdc42 and Rac activated by the trans-interaction of nectins selectively induce the activation of JNK, but are not essential for the association of nectins and cadherin to form AJs in fibroblasts.  相似文献   

15.
16.
The serine/threonine kinase Pak1 is a target of the RhoGTPases Rac and Cdc42 and an important regulator of cell morphology and migration. Recent work from several laboratories has indicated that Pak1 controls microtubule dynamics as well as the organisation of F-actin microfilaments. Pak1 is phosphorylated on T212 by the p35/Cdk5 or cyclin B1/Cdc2 kinase in postmitotic neurones and mitotic cells, respectively. To understand its function during development, we have carried out a detailed temporal and spatial analysis of Pak1 expression and phosphorylation on T212. In the embryonic forebrain, Pak1 and Pak1T212(PO4) were seen to accumulate in the corpus callosum, intermediate zone, lateral olfactory tracts, and anterior commissures. Epithelial cells of the mouse embryo lung, kidney, intestine, and skin also exhibited high levels of Pak1 and Pak1T212(PO4), suggesting a previously unsuspected role in epithelial differentiation. Pak1T212(PO4) was undetectable in all adult tissues. Together, these data indicate a specific, developmentally regulated role of the Pak1 kinase.  相似文献   

17.
BACKGROUND: Invadopodia are membrane protrusions into the extracellular matrix by aggressive tumour cells. These structures are associated with sites of matrix degradation and invasiveness of malignant tumour cells in an in vitro fibronectin degradation/invasion assay. The Rho family small G proteins, consisting of the Rho, Rac and Cdc42 subfamilies, are implicated in various cell functions, such as cell shape change, adhesion, and motility, through reorganization of the actin cytoskeleton. We studied the roles of the Rho family small G proteins in invadopodia formation. RESULTS: We first demonstrated that invadopodia of RPMI7951 human melanoma cells extended into the matrix substratum on a vertical view using a laser scanning confocal microscope system. We confirmed that invadopodia were rich in actin filaments (F-actin) and visualized clearly with F-actin staining on a vertical view as well as on a horizontal view. We then studied the roles of Rho, Rac, and Cdc42 in invasiveness of the same cell line. In the in vitro fibronectin degradation/invasion assay, a dominant active mutant of Cdc42 enhanced dot-like degradation, whereas a dominant active mutant of Rac enhanced diffuse-type degradation. Furthermore, frabin, a GDP/GTP exchange protein for Cdc42 with F-actin-binding activity, enhanced both dot-like and diffuse-type degradation. However, a dominant active mutant of Rho did not affect the fibronectin degradation. Moreover, inhibition of phosphatidylinositol-3 kinase (PI3K) disrupted the Rac and Cdc42-dependent actin structures and blocked the fibronectin degradation. CONCLUSION: These results suggest that Cdc42 and Rac play important roles in fibronectin degradation and invasiveness in a coordinate manner through the frabin-Cdc42/Rac-PI3K signalling pathway.  相似文献   

18.
The myelin-associated protein Nogo-A is a well-known inhibitor for axonal regeneration and compensatory plasticity, yet functions of endogenous Nogo-A in oligodendrocyte differentiation are not as clear. As oligodendrocyte matures, its processes branch and eventually form lamellae that ensheath target axons. The present study examined the effects of decreased levels of Nogo-A on the development of oligodendrocytes. The siRNA mediated Nogo-A silencing in these cells did not change their proliferation rates identified by BrdU incorporation assay and neither the expression of stage specific oligodendrocyte makers as identified by qRT-PCR and immunostaining. But knockdown the expression of Nogo-A significantly enhances the process branching complexity by Sholl analysis. Current results suggest a novel role for Nogo-A in maintaining a restricted branching phenotype in oligodendrocytes process outgrowth, which is a key step towards myelin membrane sheet formation and myelination.  相似文献   

19.
Bordetella dermonecrotic toxin (DNT) is known to activate the small GTPase Rho through deamidation or polyamination. In this study, we examined whether Rac and Cdc42, the two other members of the Rho family, serve as intracellular targets for the toxin. Immunoprecipitation and immunoblot assays revealed that DNT deamidated or polyaminated intracellular Rac and Cdc42. After the modifications, both Rac and Cdc42 lost their GTP-hydrolyzing, but not GTP-binding, activities. The interactions of the modified Rac and Cdc42 with their respective effectors were strictly dependent on GTP. MC3T3-E1 cells treated with DNT at high concentrations demonstrated extensive formations of lamellipodia and filopodia, which indicate the intracellular activation of Rac and Cdc42, respectively.  相似文献   

20.
BACKGROUND: ERM (ezrin, radixin, and moesin) proteins function as membrane-cytoskeletal linkers, and are known to be localized at filopodia and microvilli-like structures. We have shown that Rho-associated kinase (Rho-kinase)/ROKalpha/ROCK II phosphorylates moesin at Thr-558 at the lower stream of Rho, and the phosphorylation is crucial to the formation of microvilli-like structures (Oshiro, N., Fukata, Y. & Kaibuchi, K. (1998) Phosphorylation of moesin by Rho-associated kinase (Rho-kinase) plays a crucial role in the formation of microvilli-like structures. J. Biol. Chem. 273, 34663- 34666). However, the role of ERM proteins in the formation of filopodia is less well characterized. RESULTS: Here we examined the phosphorylation state of ERM during filopodia formation induced by Cdc42 using the antibody recognizing ERM proteins phosphorylated at COOH (C)-terminal threonine. When NIH 3T3 cells were transfected with constitutively active Cdc42 (Cdc42V12), filopodia formation was induced and phosphorylation of ERM at C-terminal threonine was observed at the tip of filopodia, while the phosphorylation levels of ERM were lower and phosphorylated ERM was distributed throughout the cytoplasm in the control cells. We also showed that Myotonic dystrophy kinase-related Cdc42-binding kinase (MRCK) which has been identified as an effector of Cdc42, phosphorylated moesin at C-terminal threonine in a cell-free system. Coexpression of the dominant negative form of MRCK inhibited both the formation of filopodia and accumulation of C-terminal threonine-phosphorylated ERM proteins at filopodia induced by Cdc42V12. CONCLUSION: The formation of filopodia induced by Cdc42 is accompanied by phosphorylation of ERM proteins, and MRCK is a candidate for the kinase that phosphorylates ERM proteins at filopodia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号