首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的 :介绍ABC转运蛋白与肿瘤多药耐药的研究进展 ,阐述ABC转运蛋白高表达是多药耐药的重要机制之一。方法 :检索国内外大量文献资料进行汇总、综述。结果 :ABC转运蛋白是具有ATP结合区的单向底物外排泵。P -糖蛋白高表达是肿瘤细胞产生多药耐药的经典路径 ,多药耐药相关蛋白高表达能导致非P -糖蛋白介导的多药耐药。结论 :开发多药耐药蛋白抑制剂有广阔的应用价值 ,但注重其药理作用的同时还应对其潜在的毒副作用保持高度警惕  相似文献   

2.
Recent antitumor drug research has seen the development of a large variety of tyrosine kinase inhibitors (TKIs) with increasing specificity and selectivity. These are highly promising agents for specific inhibition of malignant cell growth and metastasis. However, their therapeutic potential also depends on access to their intracellular targets, which may be significantly affected by certain ABC membrane transporters. It has been recently shown that several human multidrug transporter ABC proteins interact with specific TKIs, and the ABCG2 transporter has an especially high affinity for some of these kinase inhibitors. These results indicate that multidrug resistance protein modulation by TKIs may be an important factor in the treatment of cancer patients; moreover, the extrusion of TKIs by multidrug transporters may result in tumor cell TKI resistance. Interaction with multidrug resistance ABC transporters may also significantly modify the pharmacokinetics and toxicity of TKIs in patients.  相似文献   

3.
Malignant gliomas are frequently chemoresistant and this resistance seems to depend on at least two mechanisms. First, the poor penetration of many anticancer drugs across the blood-brain barrier (BBB), the blood-cerebrospinal fluid barrier (BCSFB) and blood-tumor barrier (BTB), due to their interaction with several ATP-binding cassette (ABC) drug efflux transporters that are overexpressed by the endothelial or epithelial cells of these barriers. Second, resistance may involve the tumor cells themselves. Although ABC drug efflux transporters in tumor cells confer multidrug resistance (MDR) on several other solid tumors, their role in gliomas is unclear. This review focuses on astrocytes and summarizes the current state of knowledge about the expression, distribution and function of ABC transporters in normal and tumor astroglial cells. The recognition of anticancer drugs by ABC transporters in astroglial cells and their participation in the multidrug resistance phenotype of human gliomas is discussed.  相似文献   

4.
Nine proteins of the ABC superfamily (P-glycoprotein, 7 MRPs and BCRP) are involved in multidrug transport. Being localised at the surface of endothelial or epithelial cells, they expel drugs back to the external medium (if located at the apical side [P-glycoprotein, BCRP, MRP2, MRP4 in the kidney]) or to the blood (if located at the basolateral side [MRP1, MRP3, MRP4, MRP5]), modulating thereby their absorption, distribution, and elimination. In the CNS, most transporters are oriented to expel drugs to the blood. Transporters also cooperate with Phase I/Phase II metabolism enzymes by eliminating drug metabolites. Their major features are (i) their capacity to recognize drugs belonging to unrelated pharmacological classes, and (ii) their redundancy, a single molecule being possibly substrate for different transporters. This ensures an efficient protection of the body against invasion by xenobiotics. Competition for transport is now characterized as a mechanism of interaction between co-administered drugs, one molecule limiting the transport of the other, potentially affecting bioavailability, distribution, and/or elimination. Again, this mechanism reinforces drug interactions mediated by cytochrome P450 inhibition, as many substrates of P-glycoprotein and CYP3A4 are common. Induction of the expression of genes coding for MDR transporters is another mechanism of drug interaction, which could affect all drug substrates of the up-regulated transporter. Overexpression of MDR transporters confers resistance to anticancer agents and other therapies. All together, these data justify why studying drug active transport should be part of the evaluation of new drugs, as recently recommended by the FDA.  相似文献   

5.
Introduction: Ovarian cancer has the highest mortality rate of all cancers in women. There is currently no effective method for early diagnosis, limiting the precision of clinical expectations. Predictions of therapeutic efficacy are currently not available either. Specifically, the development of chemoresistance against conventional chemotherapy poses a fundamental complication. Some membrane transporters have been reported to influence chemoresistance, which is often associated with a poor prognosis.

Areas covered: The aim of this article is to review the existing information about membrane transporters and their role in both ovarian cancer chemoresistance and its outcomes. We then highlight limitations of current methodologies and suggest alternatives providing avenues for future research.

Expert opinion: Membrane transporters play an important role in development of chemoresistance and affect prognosis of ovarian cancer patients; however, due to variations in methodology and in patient populations, their specific roles have yet to be clarified. For further evaluation of the clinical utility of membrane transporters, it is essential to validate results and improve methods for marker assessment across laboratories. A promising area for future research is to identify the genetic variability in potential markers in peripheral blood. These markers would then stratify patients into defined groups for optimal intervention.  相似文献   


6.
The role of ABC transporters in drug resistance, metabolism and toxicity   总被引:1,自引:0,他引:1  
ATP Binding Cassette (ABC) transporters form a special family of membrane proteins, characterized by homologous ATP-binding, and large, multispanning transmembrane domains. Several members of this family are primary active transporters, which significantly modulate the absorption, metabolism, cellular effectivity and toxicity of pharmacological agents. This review provides a general overview of the human ABC transporters, their expression, localization and basic mechanism of action. Then we shortly deal with the human ABC transporters as targets of therapeutic interventions in medicine, including cancer drug resistance, lipid and other metabolic disorders, and even gene therapy applications. We place a special emphasis on the three major groups of ABC transporters involved in cancer multidrug resistance (MDR). These are the classical P-glycoprotein (MDR1, ABCB1), the multidrug resistance associated proteins (MRPs, in the ABCC subfamily), and the ABCG2 protein, an ABC half-transporter. All these proteins catalyze an ATP-dependent active transport of chemically unrelated compounds, including anticancer drugs. MDR1 (P-glycoprotein) and ABCG2 preferentially extrude large hydrophobic, positively charged molecules, while the members of the MRP family can extrude both hydrophobic uncharged molecules and water-soluble anionic compounds. Based on the physiological expression and role of these transporters, we provide examples for their role in Absorption-Distribution-Metabolism-Excretion (ADME) and toxicology, and describe several basic assays which can be applied for screening drug interactions with ABC transporters in the course of drug research and development.  相似文献   

7.
The neurotransmitter transporters (NTTs) belonging to the solute carrier 6 (SLC6) gene family (also referred to as the neurotransmitter-sodium-symporter family or Na(+)/Cl(-)-dependent transporters) comprise a group of nine sodium- and chloride-dependent plasma membrane transporters for the monoamine neurotransmitters serotonin (5-hydroxytryptamine), dopamine, and norepinephrine, and the amino acid neurotransmitters GABA and glycine. The SLC6 NTTs are widely expressed in the mammalian brain and play an essential role in regulating neurotransmitter signaling and homeostasis by mediating uptake of released neurotransmitters from the extracellular space into neurons and glial cells. The transporters are targets for a wide range of therapeutic drugs used in treatment of psychiatric diseases, including major depression, anxiety disorders, attention deficit hyperactivity disorder and epilepsy. Furthermore, psychostimulants such as cocaine and amphetamines have the SLC6 NTTs as primary targets. Beginning with the determination of a high-resolution structure of a prokaryotic homolog of the mammalian SLC6 transporters in 2005, the understanding of the molecular structure, function, and pharmacology of these proteins has advanced rapidly. Furthermore, intensive efforts have been directed toward understanding the molecular and cellular mechanisms involved in regulation of the activity of this important class of transporters, leading to new methodological developments and important insights. This review provides an update of these advances and their implications for the current understanding of the SLC6 NTTs.  相似文献   

8.
ATP-Binding Cassette (ABC) transporters are important mediators of multidrug resistance (MDR) in patients with cancer. Although their role in MDR has been extensively studied in vitro, their value in predicting response to chemotherapy has yet to be fully determined. Establishing a molecular diagnostic assay dedicated to the quantitation of ABC transporter genes is therefore critical to investigate their involvement in clinical MDR. In this article, we provide an overview of the methodologies that have been applied to analyze the mRNA expression levels of ABC transporters, by describing the technology, its pros and cons, and the experimental protocols that have been followed. We also discuss recent studies performed in our laboratory that assess the ability of the currently available high-throughput gene expression profiling platforms to discriminate between highly homologous genes. This work led to the conclusion that high-throughput TaqMan-based qRT-PCR platforms provide standardized clinical assays for the molecular detection of ABC transporters and other families of highly homologous MDR-linked genes encoding, for example, the uptake transporters (solute carriers-SLCs) and the phase I and II metabolism enzymes.  相似文献   

9.
ABC transporters have been found in several parasitic protozoa including Leishmania. At least two Leishmania ABC transporters are involved in drug resistance. One is PgpA, which is involved in resistance to arsenic and antimony-containing compounds. Antimonials are the drug of choice against Leishmania infections. Transfection and biochemical studies suggest that PgpA recognizes metals conjugated to thiols. The second ABC transporter is closely related to mammalian P-glycoproteins and confers resistance to anticancer drugs by a mechanism that remains to be elucidated. Additional ABC transporters are likely to be present in Leishmania and these are discussed in relation to the phenomenon of antimony resistance.  相似文献   

10.
ATP-binding cassette (ABC) transporters confer drug resistance against a wide range of chemotherapeutic agents, including nucleoside and nucleotide based drugs. While nucleoside based drugs have been used for many years in the treatment of solid and hematological malignancies as well as viral and autoimmune diseases, the potential contribution of ABC transporters has only recently been recognized. This neglect is likely because activation of nucleoside derivatives require an initial carrier-mediated uptake step followed by phosphorylation by nucleoside kinases, and defects in uptake or kinase activation were considered the primary mechanisms of nucleoside drug resistance. However, recent studies demonstrate that members of the ABCC transporter subfamily reduce the intracellular concentration of monophosphorylated nucleoside drugs. In addition to the ABCC subfamily members, ABCG2 has been shown to transport nucleoside drugs and nucleoside-monophosphate derivatives of clinically relevant nucleoside drugs such as cytarabine, cladribine, and clofarabine to name a few. This review will discuss ABC transporters and how they interact with other processes affecting the efficacy of nucleoside based drugs.  相似文献   

11.
Pharmacogenomics of ABC transporters and its role in cancer chemotherapy.   总被引:18,自引:0,他引:18  
ATP-binding cassette (ABC) genes play a role in the resistance of malignant cells to anticancer agents. The ABC gene products, including ABCB1 (P-glycoprotein), ABCC1 (MRP1), ABCC2 (MRP2, cMOAT), and ABCG2 (BCRP, MXR, ABCP) are also known to influence oral absorption and disposition of a wide variety of drugs. As a result, the expression levels of these proteins in humans have important consequences for an individual's susceptibility to certain drug-induced side effects, interactions, and treatment efficacy. Naturally occurring variants in ABC transporter genes have been identified that might affect the function and expression of the protein. This review focuses on recent advances in the pharmacogenomics of ABC transporters, and discusses potential implications of genetic variants for the chemotherapeutic treatment of cancer.  相似文献   

12.
13.
P-glycoprotein (P-gp), a plasma membrane pump associated with multidrug resistance (MDR), is a member of the superfamily of ATP-binding cassette (ABC) transporters. The discovery that inhibitors of drug efflux can increase drug accumulation and reverse drug resistance in the laboratory has led to the clinical development of a number of P-gp inhibitors. Initial studies were performed with agents already in use in the clinic for other indications, the 'first generation' studies. Second generation inhibitors were taken into clinical trials in leukemia, breast cancer, ovarian cancer and sarcoma, malignancies for which there is evidence that P-gp is expressed, and in some cases, associated with a poorer therapeutic outcome. One major limitation of these trials, however, was the reduction in anticancer drug doses that was required with concurrent administration of inhibitor. The reduction in drug dose needed in these combination studies, may have confounded the results and contributed to disappointing outcomes. Functional assays to verify the role of P-gp inhibition in MDR, such as sestamibi imaging are proving helpful in assessing the development of improved inhibitors that are providing hope for the future. This review focuses on attempts aimed at overcoming resistancemediated by ABC transporters and evaluates the prospects for addition of new inhibitors to the anticancer armamentarium.  相似文献   

14.
Chemoresistance is a disturbing barrier in cancer therapy, which always results in limited therapeutic options and unfavorable prognosis. Nuclear factor E2-related factor 2 (NRF2) controls the expression of genes encoding cytoprotective enzymes and transporters that protect against oxidative stress and electrophilic injury to maintain intrinsic redox homeostasis. However, recent studies have demonstrated that aberrant activation of NRF2 due to genetic and/or epigenetic mutations in tumor contributes to the high expression of phase I and phase II drug-metabolizing enzymes, phase III transporters, and other cytoprotective proteins, which leads to the decreased therapeutic efficacy of anticancer drugs through biotransformation or extrusion during chemotherapy. Therefore, a better understanding of the role of NRF2 in regulation of these enzymes and transporters in tumors is necessary to find new strategies that improve chemotherapeutic efficacy. In this review, we summarized the recent findings about the chemoresistance-promoting role of NRF2, NRF2-regulated phase I and phase II drug-metabolizing enzymes, phase III drug efflux transporters, and other cytoprotective genes. Most importantly, the potential of NRF2 was proposed to counteract drug resistance in cancer treatment.  相似文献   

15.
ABC transporters play an important role in mediating the cytoplasmic concentration of endogenous and xenobiotic substances. They therefore influence the pharmacokinetic profile of a variety of drugs. By virtue of their localization to plasma membranes in the intestine, liver, blood-brain and other vital biological barriers, a majority of ABC drug transporters cause drug-drug interactions, decreased drug efficacy and multidrug resistance for chemotherapeutic agents. Thus, elucidating which drug entities are substrates for ABC drug transporters is a crucial step in the drug development and treatment process. Here, we review the current status of methodology used to categorize drug compounds as substrates or modulators for the major ABC drug transporters including ABCB1, ABCC1 and ABCG2.  相似文献   

16.
Proton-coupled peptide transporters, localized at brush-border membranes of intestinal and renal epithelial cells, play important roles in protein absorption and the conservation of peptide-bound amino nitrogen. These transporters also have significant pharmacological and pharmacokinetic relevance to the transport of various peptide-like drugs such as beta-lactam antibiotics. The identification and molecular characterization of H(+)/peptide cotransporters (PEPT1 and PEPT2) have facilitated the clarification of many aspects of these transporters such as the structure/function relationship and regulation. Recent findings that intestinal PEPT1 can transport l-valine ester prodrugs such as valacyclovir provided a major step forward toward the development of novel drug delivery systems. It has been demonstrated that peptide transporters, which have a similar substrate specificity to PEPT1 and PEPT2, but possess other distinct functional properties, are localized at basolateral membranes of intestinal and renal epithelial cells. This review highlights the recent advances in our knowledge of the cellular and molecular nature of PEPT1, PEPT2 and the basolateral peptide transporters.  相似文献   

17.
The placenta serves an important role both as a protective barrier as well as in normal fetal development. The ATP-binding cassette (ABC) proteins perform crucial functions in the distribution of nutrients and exchange of waste metabolites across the placenta. They also protect the developing fetus from xenobiotics to which the pregnant mother is exposed. Recent studies in P-glycoprotein (P-gp) deficient mdr1a and mdr1b (-/-) CF-1 mice have shown pronounced increases in fetal exposure to P-gp substrates due to increased transplacental penetration demonstrating the important protective role of P-gp to the developing fetus. The role of placental ABC transporter proteins in protecting the fetus against maternal exposure to drugs, toxins and other xenobiotics is discussed. Overall, the paucity of information available on the transplacental transfer of drugs emphasizes the need to further employ preclinical in vivo models for drug development in order to best predict fetal outcomes of drug administration to pregnant mothers.  相似文献   

18.
One of the main reasons for the failure in cancer chemotherapy is the existence of multidrug resistance (MDR) mechanisms. One form of MDR phenotype is contributed by a group of plasma membrane proteins that belong to a large superfamily of proteins called the ATP-binding cassette (ABC) transporters. There has been intense search for compounds, which can act at reversing MDR phenotype exhibited by ABC transporters such as P-glycoprotein (P-gp), multidrug-resistance protein (MRP) and breast cancer resistance protein (BCRP). Reversing agents can be designed to target MDR-associated ABC transporters at three levels - the protein, mRNA or DNA level. This review aims at describing, over-viewing and discussing currently known MDR reversing agents, which have been shown to act at either of the three levels against ABC transporters. Other potential agents and strategies, which can be used to reverse the MDR phenotype, are also discussed.  相似文献   

19.
Recent molecular studies, in particular investigations of subjects with monogenic disorders of lipoprotein metabolism and studies of induced-mutant mice, have increased the understanding of intestinal sterol absorption. Some of these genes encode adenosine triphosphate [ATP] binding cassette (ABC) transporters that transport dietary cholesterol from enterocytes back out to the intestinal lumen, thereby limiting the amount of cholesterol absorbed. ABC transporters also provide an effective barrier against the absorption of plant sterols, which are normally not absorbed in significant quantities by humans. This mechanism was clarified by the discovery that defects in two adjacent genes encoding ABC transporters are the molecular basis of sitosterolemia, a rare autosomal recessive disease in which plant sterols are absorbed due to failure of intestinal barrier to their absorption. Furthermore, recent experiments performed in induced-mutant mice have solidified the importance of these transporters in intestinal sterol absorption. Together with new developments in the biology of bile acids, sterol absorption is providing interesting directions for metabolism research. In addition to elucidating some of the molecular mechanisms of sterol absorption, these recent findings may lead to new therapeutic options to treat hypercholesterolemia and to help patients at risk of vascular disease reach ever-more stringent target levels.  相似文献   

20.
The presence of active carrier-mediated transport of substrates from the brain to the blood is a major feature of the barrier properties of the blood-brain barrier (BBB). These proteins lie in the luminal or abluminal membranes of the endothelial cells that form the BBB. Some are ATP-binding cassette proteins (ABC) and many amphipathic cationic drugs are carried by P-glycoprotein (ABCB1) or ABCG2, which lie at the luminal pole of the BBB. Several multidrug resistance-associated proteins (MRPs, ABCCs) are also present on the membranes of brain microvessels; these are mainly involved in the efflux of anionic compounds. All these ABC proteins help to protect the brain and form a critical target for CNS pharmaceuticals, influencing the clinical variability of responses to, and the design of, these drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号