首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of carbamazepine (CBZ) on 22Na+ influx, 45Ca2+ influx, catecholamine secretion and cyclic GMP production were examined in cultured bovine adrenal medullary cells. 1 CBZ (40–120 mol/l) inhibited 22Na+ influx evoked by carbachol in a concentration-dependent manner. CBZ inhibited carbachol-evoked 45Ca2+ influx and catecholamine secretion at concentrations similar to those which suppressed 22Na+ influx. 2 CBZ (4–120 mol/l) inhibited veratridine-induced 22Na+ influx, 45Ca2+ influx and catecholamine secretion. 3 CBZ (12 or 40–120 mol/l) suppressed 56 mmol/1 K+-evoked 45Ca2+ influx and catecholamine secretion, respectively. 4 Combination of CBZ with nitrendipine or -agatoxin-IVA produced further inhibition of 56 mmol/l K+ - evoked 45Ca2+ influx and catecholamine secretion, compared to the effect of CBZ alone, whereas CBZ plus -conotoxin-GVIA did not produce any further inhibition. 5 CBZ (40 mol/1) attenuated the production of cyclic GMP caused by muscarine. These results suggest that CBZ at therapeutic concentrations (16–48 mol/l: 4–12 g/ml) inhibits catecholamine secretion by interfering with nicotinic acetylcholine receptor-associated ion channels, voltage-dependent Na+ channels and N-type voltage-dependent Ca2+ channels, and may have an antimuscarinic effect in adrenal medullary cells.  相似文献   

2.
Summary Stimulation of 1-adrenoceptors evokes a different pattern of inotropic responses in atrial and ventricular heart muscle preparations from rats. The inotropic effects are accompanied by different changes in membrane potential. In an attempt to clarify the question whether or to which extent these events are causally related, the effects of phenylephrine on force of contraction, transmembrane potential, Ca2+ current (ICa) and K+ currents were comparatively studied in either tissue.In atrial preparations, phenylephrine 10 mol/l caused an increase in force of contraction, a marked prolongation of the action potential duration and a depolarization of the membrane at rest. In the ventricle, however, the addition of phenylephrine 10 mol/l produced first a decline in force of contraction associated with a hyperpolarization of the membrane and a reduction in the action potential duration. These changes were followed by an increase in force,of contraction and a slight prolongation of the action potential, whereas the resting membrane potential remained increased. The hyperpolarization was eliminated in the presence of ouabain 100 mol/l.In enzymatically isolated atrial and ventricular myocytes, the whole-cell voltage clamp technique was used to study membrane currents on exposure to phenylephrine. Phenylephrine 30 mol/l did not affect the magnitude of ICa in either cell type. Transient and steady state K+ outward currents, however, were significantly diminished to a similar extent in atrial and in ventricular myocytes.It is concluded that the positive inotropic effect of 1-adrenoceptor stimulation in the rat atrium is related to an increase in action potential duration and a decrease in resting membrane potential due to a decrease in K+ currents. In the ventricle, phenylephrine additionally activates the Na+/K+ pump thereby hyperpolarizing the membrane. The rapid onset of pump stimulation seems to overwhelm, in the beginning, the phenylephrine-induced decrease in K+ conductance and therefore to evoke a transient negative inotropic effect.It is assumed that phenylephrine can alter the intracellular Ca2+ concentration due to changes in the action potential duration. The way how Ca 2+ enters the cell remains speculative, since direct changes of Ica were not detected. The more complicated changes in membrane potential in the ventricle suggest that also other mechanisms for the positive inotropic response to phenylephrine must be considered. Send offprint requests to H. Nawrath at the above address  相似文献   

3.
Summary Fast (–7°C/min) cooling of guinea-pig isolated trachea produced a rapidly developing, transient contraction followed by relaxation. Cooling-induced contraction was dependent on temperature (30, 20 or 10°C) and responses in trachea obtained from actively sensitized guinea pigs were significantly greater (20 and 10°-C) than those observed in normal trachea. Cooling to 20°C was selected for subsequent experiments. Pre-treatment with sufficient concentrations of atropine, clemastine, cromoglycate, indomethacin, or nordihydroguaiaretic acid did not depress contraction to cooling in either normal or sensitized trachea. This indicates a direct effect of cooling. The contraction. produced by cooling was resistant to verapamil (1 mol/l) or dantrolene (0.3 mmol/l). Calmodulin antagonists (trifluoperazine, W-7 and calmidazolium; all of them at 10–100 mol/l) inhibited contraction in sensitized and normal trachea. Activators of protein kinase C (phorbol 12,13-diacetate, 1 mol/l) enhanced while inhibitors (H-7, 20 mol/l; staurosporine, 10 mol/l) depressed cooling-induced contraction in both normal and sensitized tissues. Incubation (20 min) in a Ca2+ -free solution inhibited cooling-induced contraction in normal but not in sensitized trachea. Exposure to a low Na+ (25 mmol/l) or a K+-free medium abolished contraction to cooling in normal and sensitized trachea. Ouabain (0.1–10 mol/l) and vanadate (0.01–5 mmol/l) inhibited cooling-induced-contraction to a greater extent in normal than in sensitized trachea. Polymyxin B (0.5 mmol/l) selectively depressed responses to cooling in sensitized trachea. In a separate series of experiments, it was shown that sensitized trachea was hyperresponsive to ouabain and vanadate. Previous cooling to 20°C abolished responses to ouabain but only attenuated those to vanadate. These results are compatible with an enhancement of Na+,K+-ATPase and Ca2+-ATPase activities in sensitized trachea and further support the notion that intracellularly stored Ca2+ plays a decisive role in the activation of sensitized tracheal muscle. Send offprint requests to J. L. Ortiz at the above address  相似文献   

4.
Summary The vascular effects of phorbol 12,13-dibutyrate (PDBu) were studied in the dog saphenous vein. PDBu (1 M) caused contraction (0.58 ± 0.22 g/mg wet wt.) and Ca uptake (74.2 ± 41.2 mol/kg wet wt.) which were unaffected by 10 M phentolamine (N = 6). The PDBu-induced contraction was greatly (60–80%) inhibited in Ca2+-free solution. 15 Ca efflux measurements performed in Ca2+-free solution showed that PDBu did not cause Ca release from intracellular storage sites. The contractile response to PDBu (1 nM-1 M) was significantly correlated with the magnitude of Ca uptake; contraction and the rise in tissue Ca2+ also had a similar time course. Correlation between the two measures persisted when the responses to PDBu were augmented by co-administration with 20 mM KCl. However, no synergism occurred between the two agonists. Both the contraction and Ca uptake responses to PDBu were reduced by nifedipine and verapamil, each at 1 M. In the Triton X-100 skinned saphenous vein, where the voltage-dependent Ca channel is not functional, 10 M PDBu did not cause contractions in the presence of 0.1 M Ca2+. Thus, contraction of the intact saphenous vein by PDBu characteristically exhibits great Ca dependence and PDBu seems to activate the voltage-dependent Ca channel, presumably through stimulation of protein kinase C; the ensuing Ca entry is primarily responsible for contraction. However, the mechanism responsible for the PDBu-induced contractions that are resistant to Ca2+-free PSS or Ca entry blockers remains to be defined. It appears that the dog saphenous vein differs from dog femoral artery, rabbit aorta and pig carotid artery where PDBu contractions do not display dependence on external Ca2+. Send offprint requests to P. J. S. Chin at the above address  相似文献   

5.
Summary To see whether the Na/H antiporter plays a role in digitalis cardiotoxicity, we investigated the influence of modulators of Na/H exchange on the toxic effects of ouabain in isolated, paced (0.4 Hz) rat left atria. Ouabain (1 mmol/l) caused a transient positive inotropic effect followed by toxic events, including a complete loss of developed force and a gradual increase in resting force. In the presence of hexamethyleneamiloride (3 and 10 mo1/l), an inhibitor of Na/H exchange, ouabain (1 mmol/l) caused a sustained positive inotropic effect without toxicity. By contrast, phenylephrine (100 mol/ 1) an -adrenoceptor agonist reported to stimulate the antiporter, hastened the development of ouabain's toxicity. Neither ouabain, at a subtoxic concentration (650 ol/l), nor phenylephrine (100 mol/l) affected diastolic force, but in their combined presence, a substantial contracture developed and twitch contractions disappeared. Phenylephrine (30 or 100 mol/l) or adrenaline (30 mol/l), in the presence of a -adrenoceptor antagonist, increased the intracellular pH by up to 0.15 pH unit, as measured using ion-selective microelectrodes in quiescent preparations. This effect on pH1 was prevented by hexamethyleneamiloride (10 mol/l). Consistent with phenylephrine's ability to stimulate Na+ influx via the Na/H antiporter, phenylephrine (100 mol/l) increased intracellular Na+ activity by about 3 mmol/l in ouabain (650 mol/l)-treated atria. These findings indicate that modulators of Na/H exchange affect the cardiotoxicity of digitalis glycosides and imply that the stimulation of myocardial -adrenoceptors may aggravate digitalis toxicity.This work was conducted in part under the auspices of the Association for US/French Biomedical Cooperation Send offprint requests to S. M. Vogel at the above address  相似文献   

6.
Summary The resting membrane potential of smooth muscle cells of the rabbit portal vein was –51.2 mV. LP-805 (8-tert-butyl-6,7-dihydropyrrolo[3,2-e] 5-methylpyrazolo [1,5-a] pyrimidine-3-carbonitrile) hyperpolarized the membrane to –62.3 mV (10 M) and inhibited the burst spike discharges as measured using the microelectrode method. In dispersed smooth muscle cells, LP-805 (10 M) generated an outward-current with a maximum amplitude of 68 pA at a holding potential of –40 mV in experiments using the voltage-clamp procedure. The reversal potential of the outward current evoked by LP-805 was –82 mV and this value was close to the equilibrium potential for K+ (–80 mV) in the present ionic conditions, suggesting that LP-805 activated the K+ channel. Generation of both the hyperpolarization and the outward c urrent by LP-805 was inhibited by glibenclamide ( 1 M). Using the cell-attached and cell-free patch-clamp (in the presence of GDP) procedures, the maxi-K+ channel current (150 pS) could be recorded in the absence of LP-805; application of LP-805 additionally opened a small conductance K+ channel current (15 pS) without change in the activity of the maxi-K+ channel. The maxi-K+ channel was sensitive to charybdotoxin (0.1 M) and to intracellular Ca2+ ([Ca2+]i) concentration. The 15 pS channel was insensitive to [Ca2+]i and charybdotoxin, but sensitive to intracellular ATP concentration. Glibenclamide (> 1 M) inhibited the 15 pS K+ channel activated by LP-805. These actions of LP-805 on the maxi-K+ and 15 pS K+ channels are the same as those previously observed for nicorandil and pinacidil. Thus, LP-805 is a K+ channel opener with a chemical structure different from those of the known openers. Correspondence to M. Kamouchi at the above address  相似文献   

7.
Summary The effects of K+ channel openers, cromakalim and an acetoxyl derivative of KRN 2391 (Ki 4032), were studied on force of contraction, increases in intracellular calcium concentration ([Ca2+]i) measured by fura-2 and inositol 1,4,5-trisphosphate (IP3) production induced by the thromboxane A2 analogue, U46619, in canine coronary arteries. Upon single dose applications of U46619 at 300 nmol/l, phasic and tonic increases in [Ca2+]i and force were seen, which were almost abolished by cromakalim (10 mol/l) and Ki4032 (100 mol/l).In the absence of extracellular Ca2+, U46619 induced a transient increase in [Ca2+]i with a contraction. Cromakalim (0.01–10 mol/l) and Ki4032 (0.1–100 mol/l) concentration-dependently inhibited the increases in [Ca2+]i and contraction. The inhibitory effects of cromakalim and Ki4032 were blocked by the K+ channel blocker tetrabutylammonium (TBA) and counteracted by 20 mmol/l KCl-induced depolarization. Cromakalim and Ki4032 did not affect caffeine-induced Ca2+ release. Cromakalim reduced U46619-induced IP3 production significantly and TBA blocked this inhibitory effect. These results suggest that the hyperpolarization of the plasma membrane by K+ channel openers inhibits the production of IP3 and Ca 2+ release from intracellular stores related to stimulation of the thromboxane A2 receptor.Correspondence to T. Yanagisawa at the above address  相似文献   

8.
Summary The components of Dictamnus dasycarpus Turcz were tested for their vasorelaxing effect on the rat aorta, and fraxinellone and dictamine were shown to be effective vasorelaxants. In high K+ (60 mmol/l) medium, Ca2+ (0.03 to 3 mmol/l)-induced vasoconstriction was inhibited concentration-dependently by both agents. The IC50 for fraxinellone and dictamine were calculated to be about 25 mol/l and 15 mol/l (for Ca2+) concentration of (1 mmol/l), respectively. Cromakalim (0.2–10) mol/l relaxed aortic rings precontracted with 15 but not 60 mmol/l of K+. Fraxinellone and verapamil were more potent and effective in producing relaxation in 60 mmol/l than in 15 mmol/l K+-induced contraction. However, dictamine was more potent in producing relaxation in 5 mmol/l K+-induced contraction. Nifedipine (1 mol/l), dictamine (100 mol/l) and fraxinellone (100 mol/l) relaxed the aortic contraction caused by KCl or Bay K 8644. The tonic contraction elicited by nor adrenaline (NA, 3 mol/l) was also relaxed by dictamine (500 mol/l), but not by fraxinellone (500 mol/l) in the nifedipine (1 mol/l)-treated aorta. This relaxing effect of dictamine persisted in endothelium-denuded aorta. Glibenclamide (10 mol/l) shifted the concentration-relaxation curve of cromakalim, but not that of dictamine, to the right in rat aortic rings precontracted with NA. Dictamine (500 mol/l) did not affect tonic contraction of NA which are reduced by H-7 (1 mol/l) in Ca2+ depleted medium. In conclusion, fraxinellone is a selective blocker of voltage-dependent Ca2+ channel, while dictamine relaxed the rat aorta by suppressing the Ca2+ influx through both voltage-dependent and receptor-operated Ca2+ channels.This work was supported by a research grant from the Nationat Science Council of the Republic of China (NSC80-0420-B002-18) Send offprint requests to C. M. Teng, Pharmacological Institute, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, Sect. 1, Taipei, 10018, Taiwan  相似文献   

9.
Summary Canrenone inhibits 30–40% of ouabain-sensitive Na+ efflux in human red cells. Half-maximal inhibition was obtained with a canrenone concentration=86±37 mol/l (mean±SD of 13 experiments). The partial inhibition of the Na+,K+ pump appears to be mediated at the digitalis receptor site with an apparent dissociation constant (K C)=200±130 mol/l (mean±SD). Further evidence suggesting that canrenone is a partial agonist at the digitalis receptor site was obtained by the observation that it decreases the apparent affinity of the Na+,K+ pump for external K+. However, in contrast to ouabain, canrenone decreases the apparent pump affinity for internal Na+.Our results show that, at physiological cell Na+ levels canrenone is able to enhance the inhibition of the Na+,K+ pump by low doses of ouabain. Conversely, in cells treated with high concentrations of cardiac glycosides (in which cell Na+ content increases), canrenone is able to restimulate the blocked pumps.  相似文献   

10.
Summary The patch-clamp technique was used to examine the tolbutamide-sensitivity of the adenosine 5-triphosphate (ATP)-dependent K+ channel in mouse pancreatic B-cells. When studied at 37°C in cell-attached membrane patches, this channel had a single-channel conductance of 88 pS and was half-maximally inhibited by 2.2 mol/l tolbutamide in the presence of 3 mmol/l d-glucose and 10 mol/l nifedipine. The tolbutamide-induced decrease in the amplitude of the single-channel currents indicated that the membrane potential was sufficiently depolarized for initiation of insulin release by 30 but not by 10 mol/l of tolbutamide. Using 300 mol/l diazoxide to open the ATP-dependent K+ channels already closed by 3 mmol/l d-glucose alone, it was demonstrated that initiation of insulin release requires closure of more than 98% of all ATP-dependent K+ channels. In excised inside-out membrane patches, the K+ channel-blocking potency of tolbutamide was maximally enhanced by 0.3 mmol/1 adenosine 5t'-diphosphate (ADP) at the cytoplasmic side. This ADP effect required the presence of Mg2+. Inhibition of K+ channel activity by ATP, ADP (Mg2+-free) or their non-hydrolyzable analogues adenylyl-imidodiphosphate (AMP-PNP) and , methylene adenosine 5-diphosphate (AMP-CP) was not accompanied by enhancement of tolbutamide-sensitivity. The results suggest that cytosolic MgADP controls tolbutamide-sensitivity by interaction with a receptor site not identical with the site mediating channel closure and that this control plays a role in the intact B-cell.Some of the results described here are part of the medical theses of F. Rosenberger and K. SchefferSend offprint requests to U. Panten at the above address  相似文献   

11.
Summary The cromakalim-induced effluxes of 42K+ and 86Rb+ were compared in rat aortic segments and in guinea-pig portal vein. In both vessels, low concentrations of cromakalim (0.1 M) increased the permeability to 86Rb+ 3–4 times less than that to 42K+; at 10 M the difference was about a factor of 1.3–2. In rat aorta, the threshold concentration of cromakalim for 42K+ efflux was 0.03 M; with 86Rb+ as the tracer ion it was 0.1 M. At similar concentrations, cromakalim relaxed the tension of aortic segments precontracted with 23 mM KCl (IC50 = 0.06 ± 0.01 M). However, no concomitant increase in 42K+ or 86Rb+ efflux could be detected from this stimulated preparation at these concentrations. In guinea-pig portal vein, 42K+ efflux measurements were performed in the presence and absence of the dihydropyridine Ca2+ entry blocker PN 200-110 (isradipine) yielding comparable results. In the presence of PN 200-110, where spontaneous activity and the K+ efflux associated with it were abolished, the threshold concentration of cromakalim for 42K+ efflux was 0.02 M as compared to 0.06 M for 86Rb+ efflux. In the absence of PN 200-110, spontaneous activity of the portal vein was inhibited by 70% and 90% at these concentrations. In double isotope experiments, the K+ channel inhibitor tetraethylammonium did not discriminate between the effluxes of 42K+ and 86Rb+ stimulated by cromakalim.It is concluded that in the two vascular tissues examined, cromakalim increased the permeability to 42K+ more than to 86Rb+, the difference being more marked at low cromakalim concentrations. The use of 42K+ as the tracer ion narrows the apparent gap between the concentrations of cromakalim which elicit vasorelaxant effects and those which induce an observable increase in K+ permeability; however a significant difference persists.Part of the data was presented at the Winter Meeting of the British Pharmacological Society London 1988 [Br J Pharmacol 93 (1988) p 19] Send offprint requests to U. Quasi at the above address  相似文献   

12.
We examined the different vasodilatory effects of the K+ channel openers levcromakalim and 5-amino-N2-[2-(2-chlorophenyl)ethyl]-N-cyano-3-pyridinecarboxamidine (KRN4884), and the Ca2+ channel blocker nifedipine in the rat aorta. KRN4884 (10–10-10–5 M) and nifedipine (10–10–10–5 M) produced concentration-dependent relaxation in the rat aorta precontracted by 25 mM KCl. The K+ channel blocker glibenclamide (1 M) inhibited the relaxation induced by KRN4884 but did not influence nifedipine-induced relaxation. KRN 4884 had almost no effect on contraction induced by 80 mM KCl, whereas nifedipine completely relaxed the muscle precontracted by 80 mM KCl, whereas nifedipine completely relaxed the muscle precontracted by 80 mM KCl. These results indicate that KRN4884 is a K+ channel opener. We investigated the relaxant effects of KRN4884 (10–10-10–5 M), levcromakalim (10–9-10–5 M) and nifedipine (10–9-10–5 M) on A23187 (1 M)-induced contraction. KRN4884 and levcromakalim had a potent relaxant effect but nifedipine only a weak effect on the smooth muscle contracted by A23187. Glibenclamide (1 M) inhibited the relaxation induced by KRN4884 and levcromakalim, but did not influence the nifedipine-induced relaxation. KRN 4884 (1 M) produced a larger relaxation of A23187-induced contraction but had little effect on the increase in intracellular [Ca2+] induced by A23187. These results suggest that KRN4884 is a specific K+ channel opener and its vasodilating mechanisms involve not only deactivation of Ca2+ channels but also a decrease in the Ca2+ sensitivity of contractile elements.  相似文献   

13.
Summary Potassium transport was measured in -cell-rich islets from ob/ob-mice using the K+-analogue 86Rb+. Both tetracaine (0.1 mM) and glibenclamide (0.1 M) reduced the oubain-resistant 86Rb+ influx but did not significantly affect the oubain-sensitive portion (Na+/K+ pump). Tetracaine (0.5–1 mM) or glibenclamide (0.2 mM) decreased the 86Rb+ equilibrium content and glibenclamide (1 M) transiently reduced the 86Rb+ efflux rate but 0.1 mM tetracaine had only a slight effect on this flux rate. The results suggest that a change in ouabain-resistant (passive) K+ fluxes, but not the Na+/K+ pump, is involved in stimulation of insulin secretion by glibenclamide and tetracaine. Both drugs may exert similar effects on the -cell plasma membrane.  相似文献   

14.
The effects of honokiol and magnolol extracted from the Magnolia officinalis on muscular contractile responses and intracellular Ca2+ mobilization were investigated in the non-pregnant rat uterus. Honokiol and magnolol (1–100 mol/l) were observed to inhibit spontaneous and uterotonic agonists (carbachol, PGF2, and oxytocin)-, high K+-, and Ca2+ channel activator (Bay K 8644)-induced uterine contractions in a concentration-dependent manner. The inhibition rate of honokiol on spontaneous contractions appeared to be slower than that of magnolol-induced response. The time periods that were required for honokiol and magnolol, at 100 mol/l, to abolish 50% spontaneous contractions were approximately 6 min. Furthermore, honokiol and magnolol at 10 mol/l also blocked the Ca2+-dependent oscillatory contractions. Consistently, the increases in intracellular Ca2+ concentrations ([Ca2+]i) induced by PGF2 and high K+ were suppressed by both honokiol and magnolol at 10 mol/l. After washout of these treatments, the rise in [Ca2+]i induced by PGF2 and high K+ was still partially abolished. In conclusion, the inhibitory effects of honokiol and magnolol on uterine contraction may be mediated by blockade of external Ca2+ influx, leading to a decrease in [Ca2+]i. Honokiol and magnolol may be considered as putative Ca2+ channel blockers and be of potential value in the treatment of gynecological dysfunctions associated with uterine muscular spasm and dysmenorrhea.  相似文献   

15.
Summary MC9 mast cells, sensitized with monoclonal IgE antibody specific for 2,4-dinitrophenyl (DNP) group, were exposed to DNP-BSA and the pH and cytosolic calcium signals were recorded by using the fluorescent probes BCECF and Fura-2 respectively. DNP-BSA induced cell alkalinization was fully inhibited by azelastine with IC50 (1.6±0.5 mol/l, mean±SEM, n = 5) similar to that required to inhibit histamine release (1.4 mol/l), Conversely, high azelastine concentrations (> 100 mol/l) were required to inhibit DNP-BSA-dependent cell calcium mobilization (IC50200 mol/l, n = 3). Amiloride, but not the H1 histamine antagonist pyrilamine, was able to inhibit the DNP-BSA induced pH signal. In acidified mast cells, azelastine potently inhibited Na+:H+ exchange activity (IC50 = 7.7±3.6 × 10–6 M, mean±SEM, n = 3). Conversely, in mouse spleen lymphocytes azelastine was unable to inhibit the amiloride-sensitive pH signal induced by concanavalin A. In conclusion, the inhibition of histamine release by azelastine is not due to an interference with the cytosolic calcium signal. Conversely, azelastine potently antagonized the allergen-dependent Na+: H+ exchange activation, suggesting an action on the protein kinase C signaling pathway. Correspondence to: R. P. Garay at the above address  相似文献   

16.
SEA0400 and KB-R7943 are compounds synthesised to block transsarcolemmal Na+/Ca2+ exchange current (INa/Ca); however, they Have also been shown to inhibit L-type Ca2+ current (ICa). The potential value of these compounds depends critically on their relative selectivity for INa/Ca over ICa. In the present work, therefore, the concentration-dependent effects of SEA0400 and KB-R7943 on INa/Ca and ICa were studied and compared in canine ventricular cardiomyocytes using the whole-cell configuration of the patch clamp technique. SEA0400 and KB-R7943 decreased INa/Ca in a concentration-dependent manner, having EC50 values of 111±43 nM and 3.35±0.82 M, when suppressing inward currents, while the respective EC50 values were estimated at 108±18 nM and 4.74±0.69 M in the case of outward current block. SEA0400 and KB-R7943 also blocked ICa, having comparable EC50 values (3.6 M and 3.2 M, respectively). At higher concentrations (10 M) both drugs accelerated inactivation of ICa, retarded recovery from inactivation and shifted the voltage dependence of inactivation towards more negative voltages. The voltage dependence of activation was slightly modified by SEA0400, but not by KB-R7943. Based on the relatively good selectivity of submicromolar concentrations of SEA0400—but not KB-R7943—for INa/Ca over ICa, SEA0400 appears to be a suitable tool to study the role of INa/Ca in Ca2+ handling in canine cardiac cells. At concentrations higher than 1 M, however, ICa is progressively suppressed by the compound.  相似文献   

17.
Summary Calcium-dependent release of neurotransmitters is thought to be due to Ca2+ entry into nerve terminals, but the identities of the various voltage-sensitive Ca2+ channels (VSCC) involved in this process remain obscure. To elucidate the types of VSCCs involved in the release process, we studied the effects of various organic Ca2+ channel antagonists and agonists on the release of endogenous -aminobutyric acid (GABA) from mouse striatal neurones differentiated in primary culture. Diltiazem, verapamil and methoxyverapamil (D 600) inhibited K+-evoked (30 mM) GABA release at very high concentrations (> 1 M). The dihydropyridine (DHP) nifedipine, at low concentrations (0.01–1.00 M), was able to inhibit part of the K+-evoked GABA release (25.6±7.3% inhibition at 1 M). This is in agreement with the high affinity of nifedipine for DHP binding sites. The DHPs, BAY K 8644 (EC50 = 41±15 nM) and CGP 28.392, which possess agonist properties at VSCCs, increased the 15 mM K+-evoked GABA release. The release evoked by the combination of K+ (15 M) and BAY K 8644 (up to 10 M) remained smaller than the release elicited by 30 mM K+. The effect of BAY K 8644 (1 M) was inhibited by nifedipine (IC50 0.55±0.05 M). When Na+ ions were replaced by choline, basal and K+-evoked GABA release was significantly increased. Even in the absence of external Na+, nifedipine (1 M) was not able to totally block the K+ effect. Moreover amiloride, a drug known to inhibit Na+/Ca+ exchange, and tetrodotoxin (TTX), did not modify the 30 mM K+ response. Therefore, nifedipine-insensitive K+-evoked GABA release is not due to Na+-dependent Ca2+ entry. These results can be explained by the presence of DHP-sensitive and insensitive Ca2+ channels on nerve terminals, each involved in the release process.Abbreviations CGP 28.392 4-[2-(difluoromethoxy)phenyl]-1,4,5,7-tetrahydro-2-methyl-5-oxo-furo[3,4-b]pyridine-3-carboxylic acid ethylester - BAY K 8644 (±)-methyl 1,4-dihydro-2,6-dimethyl-3nitro-4-(2 trifluoromethyl) pyridine-5-carboxylate - DHP 1,4-dihydropyridine - DIV days in vitro - D 600 methoxyverapamil - GABA -aminobutyric acid - HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - HPLC high performance liquid chromatography - TTX tetrodotoxin - VSCC voltage-sensitive calcium channel Send offprint requests to J.-P. Pin at the above address  相似文献   

18.
Pimobendan, a Ca2+ sensitizer, is used clinically in the treatment of chronic heart failure. Although chronic heart failure is associated with activation of the sympathetic nervous system, it remains unknown whether pimobendan affects the function of sympathetic neurons and the adrenal medulla. Here, we report the inhibitory effects of pimobendan on catecholamine secretion and synthesis in cultured bovine adrenal medullary cells. Pimobendan decreased the catecholamine secretion (IC50=29.5 M) elicited by carbachol, an agonist at nicotinic acetylcholine receptors, but not that elicited by veratridine, an activator of voltage-dependent Na+ channels, or by high K+, an activator of voltage-dependent Ca2+ channels. Pimobendan also inhibited carbachol-induced influx of 22Na+ (IC50=25.9 M) and 45Ca2+ (IC50=26.0 M), but not veratridine-induced 22Na+ influx or high K+-induced 45Ca2+ influx. The reduction of catecholamine secretion caused by pimobendan was not overcome by increasing the concentration of carbachol. UD-CG 212, an active metabolite of pimobendan, lowered carbachol-induced catecholamine secretion with a concentration/inhibition curve similar to that of pimobendan. In experiments in situ, pimobendan suppressed both basal and carbachol-stimulated 14C-catecholamine synthesis (IC50=5.3 and 4.9 M) from [14C] tyrosine [but not from l-3, 4-dihydroxyphenyl [3-14C] alanine ([14C]DOPA)], as well as tyrosine hydroxylase activity (IC50=3.8 and 4.3 M). These findings suggest that pimobendan inhibits carbachol-induced catecholamines secretion and synthesis through suppression of nicotinic acetylcholine receptors.  相似文献   

19.
The sustained depolarisation induced by -toxins from scorpion venom (20 g/ml–1) was used to test the hypothesis that an endogenous, photo-sensitive, nitrocompound could act as a stable nitrergic transmitter in the sheep (lamb) urethra. Scorpion venom-treatment effectively abolished neurogenic responses to electrical field stimulation, but it did not modify the spontaneous urethral photorelaxation. On the other hand, scorpion venom induced an atypical relaxation in noradrenaline-contracted preparations, which could be reverted, but not prevented, by tetrodotoxin (TTX, 1 M). However, after TTX-pretreatment, relaxations elicited by scorpion venom were significantly delayed and slowed down, and similar responses were obtained in the presence of ouabain (10 M), low sodium medium, or after the inhibition of the NO-cGMP pathway. Although the involvement of K+ and Cl channels can be ruled out since both charybdotoxin (300 nM) and chlorotoxin (50 nM) did not elicit any urethral relaxation nor modified the scorpion venom-induced one. However, a slow Ca2+ channel seems to be involved. GVIA -conotoxin (1 M), but not MVIIC -conotoxin (1 M), significantly inhibited both EFS- and scorpion venom-induced relaxations and almost abolished the partial relaxation that was resistant to NO synthase inhibition.On the other hand, the presence of L-cis-diltiazem (0.3 mM), a selective inhibitor of cyclic nucleotide gated channels (CNGCs), also delayed and slowed down relaxation induced by scorpion venom, as well as abolish its reversal by TTX. L-cis-diltiazem pre-treatment induced a progressive decay in urethral relaxation brought about by electrical field stimulation only when repetitive, long duration stimulation protocols were used.Taken together, our results do not support the hypothesis of the endogenous, photo-sensitive, urethral nitrocompound as reflecting a stable nitrergic transmitter instead of NO. However, they suggest the involvement of both a NO-cGMP-dependent and TTX-sensitive component and a NO-independent response, mediated by GVIA -conotoxin-sensitive Ca2+ channels, in the neurogenic relaxation of the urethral muscle. In addition, the likely involvement of CNGCs as an additional component of the cGMP signalling mechanism is suggested.Abbreviations EFS Electrical field stimulation - CNGCs Cyclic nucleotide-gated channels - NA Noradrenaline - L-NOARG N-nitro-L-arginine - LS Light stimulation  相似文献   

20.
Summary The role of inhibition of Na+/Ca2+ exchange in the positive inotropic, negative chronotropic and vasorelaxant responses to amiloride and some of its analogues was investigated in isolated cardiovascular tissues from female Wistar rats. The compounds tested were amiloride, 5-(N-ethyl-N-isopropyl)amiloride (EIPA, a potent inhibitor of Na+/H+ exchange), phenamil and 2,4-dimethylbenzamil (DMB), both potent Na+ channel inhibitors with activity against Na+/Ca2+ exchange, and 5-(N-4-chlorobenzyl)-2,4-dimethylbenzamil (CBDMB), a potent inhibitor of Na+/Ca2+ exchange with reduced activity against Na+ channels compared with its parent compound DMB.Phenamil, DMB and CBDMB increased the force of contraction of right ventricular papillary muscles with similar potencies (-log EC50 values: 4.77 ± 0.06, 5.09 ± 0.09, 4.97 ± 0.17 respectively), while amiloride and EIPA gave small negative inotropic responses. All compounds gave negative chronotropic responses at similar concentrations to those which exerted inotropic effects. Inhibition of KCl contraction of endothelium-free aortic rings was observed with all compounds tested. Phenamil, DMB and CBDMB but not amiloride or EIPA showed a shift to the left of the concentration-response curves in the presence of intact endothelium.These results provide further evidence for positive inotropic and endothelium-dependent vasorelaxant effects of amiloride analogues mediated by inhibition of Na+/Ca2+ exchange. Send offprint requests to J. R. Bourke at the above address  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号