首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complement can be activated via three pathways: classical, alternative, and lectin. Cryptococcus gattii and Cryptococcus neoformans are closely related fungal pathogens possessing a polysaccharide capsule composed mainly of glucuronoxylomannan (GXM), which serves as a site for complement activation and deposition of complement components. We determined C3 deposition on Cryptococcus spp. by flow cytometry and confocal microscopy after incubation with serum from C57BL/6J mice as well as mice deficient in complement components C4, C3, factor B, and mannose binding lectin (MBL). C. gattii and C. neoformans activate complement in EGTA-treated serum indicating that they can activate the alternative pathway. However, complement activation was seen with factor B(-/-) serum suggesting activation could also take place in the absence of a functional alternative pathway. Furthermore, we uncovered a role for C4 in the alternative pathway activation by Cryptococcus spp. We also identified an unexpected and complex role for MBL in complement activation by Cryptococcus spp. No complement activation occurred in the absence of MBL-A and -C proteins although activation took place when the lectin binding activity of MBL was disrupted by calcium chelation. In addition, alternative pathway activation by C. neoformans required both MBL-A and -C, while either MBL-A or -C was sufficient for alternative pathway activation by C. gattii. Thus, complement activation by Cryptococcus spp. can take place through multiple pathways and complement activation via the alternative pathway requires the presence of C4 and MBL proteins.  相似文献   

2.
Activation of the lectin pathway in murine lupus nephritis   总被引:1,自引:0,他引:1  
In systemic lupus erythematosus (SLE), hypocomplementaemia and complement deposition have been described both in man and in experimental models. A major involvement of the classical pathway of complement activation has been demonstrated in this disease, however relatively little is known about the involvement of the lectin pathway. Therefore in the present study we have analyzed the activity of all three pathways of complement activation in murine models of SLE. In the mouse, MBL is expressed in two forms, namely MBL-A and MBL-C. In the present study young and old MRL-lpr and control MRL+/+ mice were compared for the levels of complement activity with specific attention for the lectin pathway. It was found that upon aging of both MRL-lpr and MRL+/+ mice, a marked decrease in the activity of the classical pathway (CP) occurs. Levels of alternative pathway (AP) and lectin pathway (LP) activity remain unchanged. Key-molecules of these pathways, C1q, C3, MBL-A and MBL-C were analyzed and were all found to be decreased in aged mice of both strains. The levels of MBL-A and MBL-C showed a high degree of correlation and decreased equally. In aged MRL-lpr mice in which autoimmunity is most pronounced, we observed high autoantibody titers and strong deposition of glomerular immune complexes in association with deposition of C1q, C3, MBL-A and MBL-C. In conclusion, these data suggest that in addition to the classical pathway and the alternative pathway also the lectin pathway of complement activation is involved in murine lupus nephritis.  相似文献   

3.
The complement system and the natural antibody repertoire provide a critical first-line defense against infection. The binding of natural antibodies to microbial surfaces opsonizes invading microorganisms and activates complement via the classical pathway. Both defense systems cooperate within the innate immune response. We studied the role of the complement system in the host defense against experimental polymicrobial peritonitis using mice lacking either C1q or factor B and C2. The C1q-deficient mice lacked the classical pathway of complement activation. The factor B- and C2-deficient mice were known to lack the classical and alternative pathways, and we demonstrate here that these mice also lacked the lectin pathway of complement activation. Using inoculum doses adjusted to cause 42% mortality in the wild-type strain, none of the mice deficient in the three activation routes of complement (factor B and C2 deficient) survived (mortality of 100%). Mortality in mice deficient only in the classical pathway of complement activation (C1q deficient) was 83%. Application of further dilutions of the polymicrobial inoculum showed a dose-dependent decrease of mortality in wild-type controls, whereas no changes in mortality were observed in the two gene-targeted strains. These results demonstrate that the classical activation pathway is required for an effective antimicrobial immune defense in polymicrobial peritonitis and that, in the infection model used, the remaining antibody-independent complement activation routes (alternative and lectin pathways) provide a supporting line of defense to gain residual protection in classical pathway deficiency.  相似文献   

4.
A critical first line of defense against infection is constituted by the binding of natural antibodies to microbial surfaces, activating the complement system via the classical complement activation pathway. In this function, the classical activation pathway is supported and amplified by two antibody-independent complement activation routes, i.e., the lectin pathway and the alternative pathway. We studied the contribution of the different complement activation pathways in the host defense against experimental polymicrobial peritonitis induced by cecal ligation and puncture by using mice deficient in either C1q or factors B and C2. The C1q-deficient mice lack the classical complement activation pathway. While infection-induced mortality of wild-type mice was 27%, mortality of C1q-deficient mice was increased to 60%. Mice with a deficiency of both factors B and C2 lack complement activation via the classical, the alternative, and the lectin pathways and exhibit a mortality of 92%, indicating a significant contribution of the lectin and alternative pathways of complement activation to survival. For 14 days after infection, mannan-binding lectin (MBL)-dependent activation of C4 was compromised. Serum MBL-A and MBL-C levels were significantly reduced for 1 week, possibly due to consumption. mRNA expression profiles did not lend support for either of the two MBL genes to respond as typical acute-phase genes. Our results demonstrate a long-lasting depletion of MBL-A and MBL-C from serum during microbial infection and underline the importance of both the lectin and the alternative pathways for antimicrobial immune defense.  相似文献   

5.
《Molecular immunology》2012,49(15-16):2009-2018
Complement can be activated via three pathways: classical, alternative, and lectin. Cryptococcus gattii and Cryptococcus neoformans are closely related fungal pathogens possessing a polysaccharide capsule composed mainly of glucuronoxylomannan (GXM), which serves as a site for complement activation and deposition of complement components. We determined C3 deposition on Cryptococcus spp. by flow cytometry and confocal microscopy after incubation with serum from C57BL/6J mice as well as mice deficient in complement components C4, C3, factor B, and mannose binding lectin (MBL). C. gattii and C. neoformans activate complement in EGTA-treated serum indicating that they can activate the alternative pathway. However, complement activation was seen with factor B−/− serum suggesting activation could also take place in the absence of a functional alternative pathway. Furthermore, we uncovered a role for C4 in the alternative pathway activation by Cryptococcus spp. We also identified an unexpected and complex role for MBL in complement activation by Cryptococcus spp. No complement activation occurred in the absence of MBL-A and -C proteins although activation took place when the lectin binding activity of MBL was disrupted by calcium chelation. In addition, alternative pathway activation by C. neoformans required both MBL-A and -C, while either MBL-A or -C was sufficient for alternative pathway activation by C. gattii. Thus, complement activation by Cryptococcus spp. can take place through multiple pathways and complement activation via the alternative pathway requires the presence of C4 and MBL proteins.  相似文献   

6.
Prion protein (PrP) is an endogenous protein involved in the pathogenesis of bovine spongiform encephalopathy and Creutzfeldt-Jakob disease. Murine PrP has been reported to bind C1q and activate the classical pathway of complement in a copper-dependent manner. Here we show that various conformational isoforms (native, amyloid fibrils, and beta-oligomers) of recombinant human PrP (90-231 and 121-231) bind C1q and activate complement. PrP binds both the globular head and collagenous stalk domains of C1q. Native, beta-oligomeric and amyloid fibrils of PrP all activate the classical and alternative pathways of complement to different extent. However, they do not trigger the lectin pathway. Of the tested PrP conformational isoforms we find that beta-oligomers bind C1q and activate complement most strongly. Membrane attack complex formation initiated by PrP is subdued in comparison to deposition of early complement components. This is most likely attributed to the interaction between human PrP and complement inhibitors factor H and C4b-binding protein. Accordingly, PrP-triggered complement activation in the terminal pathway was increased in serum lacking C4b-binding protein. Taken together the present study indicates that complement activation may be an important factor in human prion diseases, suggesting that complement induced activities may prove relevant therapeutic targets.  相似文献   

7.
Complement activation and C3 deposition on the surface of parasitic helminths may be important for recruitment of leukocytes and for damage to the target organism via cell-mediated mechanisms. Inhibition of complement activation would therefore be advantageous to parasites, minimizing damage and enhancing migration through tissues. The aim of this study was to determine ex vivo if complement activation by, and leukocyte adherence to, the nematode Nippostrongylus brasiliensis change as the parasite matures and migrates through the murine host. Pathways of activation of complement and the mechanism of adherence of leukocytes were also defined using sera from mice genetically deficient in either C1q, factor B, C1q and factor B, C3, or C4. Substantive deposition of C3 and adherence of eosinophil-rich leukocytes were seen with infective-stage (L3) but not with lung-stage (L4) larvae. Adult intestinal worms had low to intermediate levels of both C3 and leukocyte binding. For L3 and adult worms, complement deposition was principally dependent on the alternative pathway. For lung-stage larvae, the small amount of C3 detected was dependent to similar degrees on both the lectin and alternative pathways. The classical pathway was not involved for any of the life stages of the parasite. These results suggest that in primary infections, the infective stage of N. brasiliensis is vulnerable to complement-dependent attack by leukocytes. However, within the first 24 h of infection, N. brasiliensis acquires the ability to largely avoid complement-dependent immune responses.  相似文献   

8.
Complement is part of the innate immune system. Its major function is recognition and elimination of pathogens via direct killing and/or stimulation of phagocytosis. Activation of the complement system is, however, also involved in the pathogenesis of the systemic autoimmune diseases. Activation via the classical pathway has long been recognized in immune complex-mediated diseases such as cryoglobulinemic vasculitis and systemic lupus erythematosus (SLE). In SLE, the role of complement is somewhat paradoxical. It is involved in autoantibody-initiated tissue damage on the one hand, but, on the other hand, it appears to have protective features as hereditary deficiencies of classical pathway components are associated with an increased risk for SLE. There is increasing evidence that the alternative pathway of complement, even more than the classical pathway, is involved in many systemic autoimmune diseases. This is true for IgA-dominant Henoch Schönlein Purpura, in which additional activation of the lectin pathway contributes to more severe disease. In anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis the complement system was considered not to be involved since immunoglobulin deposition is generally absent in the lesions. However, recent studies, both in human and animal models, demonstrated complement activation via the alternative pathway as a major pathogenic mechanism. Insight into the role of the various pathways of complement in the systemic autoimmune diseases including the vasculitides opens up new ways of treatment by blocking effector pathways of complement. This has been demonstrated for monoclonal antibodies to C5 or C5a in experimental anti-phospholipid antibody syndrome and ANCA-associated vasculitis.  相似文献   

9.
Complement is implicated in the inflammatory response and the secondary neuronal damage that occurs after traumatic spinal cord injury (SCI). Complement can be activated by the classical, lectin, or alternative pathways, all of which share a common terminal pathway that culminates in formation of the cytolytic membrane attack complex (MAC). Here, we investigated the role of the alternative and terminal complement pathways in SCI. Mice deficient in the alternative pathway protein factor B (fB) were protected from traumatic SCI in terms of reduced tissue damage and demyelination, reduced inflammatory cell infiltrate, and improved functional recovery. In a clinically relevant paradigm, treatment of mice with an anti-fB mAb resulted in similarly improved outcomes. These improvements were associated with decreased C3 and fB deposition. On the other hand, deficiency of CD59, an inhibitor of the membrane attack complex, resulted in significantly increased injury and impaired functional recovery compared to wild-type mice. Increased injury in CD59-deficient mice was associated with increased MAC deposition, while levels of C3 and fB were unaffected. These data indicate key roles for the alternative and terminal complement pathways in the pathophysiology of SCI. Considering a previous study demonstrating an important role for the classical pathway in promoting SCI, it is likely that the alternative pathway plays a critical role in amplifying classical pathway initiated complement activation.  相似文献   

10.
Inherited deficiencies in components of the classical complement pathway are strong disease susceptibility factors for the development of systemic lupus erythematosus (SLE) and there is a hierarchy among deficiency states, the strongest association being with C1q deficiency. We investigated the relative importance of the different complement pathways regarding clearance of apoptotic cells. Phagocytosis of labelled apoptotic Jurkat cells by monocyte‐derived macrophages in the presence of sera from individuals with complement deficiencies was studied, as well as C3 deposition on apoptotic cells using flow cytometry. Sera from individuals deficient in C1q, C4, C2 or C3 all showed decreased phagocytosis. Mannose binding lectin (MBL) and the alternative pathway did not influence phagocytosis. Notably, the components of the complement classical pathway, including C1q, were equally important in clearance of apoptotic cells. This indicates that deposition of C3 fragments is of major significance; we therefore studied C3 deposition on apoptotic cells. Experiments with MBL‐deficient serum depleted of C1q or factor D confirmed the predominance of the classical pathway. At low dilution, sera deficient of C1q, C4 or C2 supported C3 fragment deposition demonstrating alternative pathway activation. In conclusion, we have found that complement‐mediated opsonization and phagocytosis of apoptotic cells, particularly those undergoing secondary necrosis, are dependent mainly upon an intact classical pathway. The alternative pathway is less important, but may play a role in some conditions. C1q was not more important than other classical pathway components, suggesting a role in additional pathogenetic processes in SLE other than clearance of apoptotic cells.  相似文献   

11.
Like man, mouse has evolved a unique set of regulatory proteins which provide protection from complement-mediated damage to self membranes. The recently described mouse protein Crry/p65 has been shown to inhibit classical complement pathway C3 deposition on cell membranes in which it is expressed. In two distinct experimental systems, we now further delineate the regulatory activity of Crry/p65 and demonstrate its inhibitory effect on alternative complement pathway C3 activation. First, significant inhibition of mouse alternative pathway C3 deposition was demonstrated on neuraminidase-treated human K562 cells expressing recombinant Crry/p65. Second, using a baculovirus technique, recombinant Crry/p65 was synthesized as a soluble molecule and then purified. This molecule was found to inhibit mouse C3 deposition on the surface of zymosan, a potent alternative complement pathway activator. These studies, combined with our earlier findings, demonstrate that Crry/p65 can regulate both the classical and alternative complement pathways. Crry/p65 must, therefore, exert its effects prior to, or at the level of, the C3 convertases, in a fashion similar to that of human membrane cofactor protein and/or decay-accelerating factor. These studies provide further proof of the hypothesis that Crry/p65 is an evolutionarily unique, complement regulatory protein which has developed in mouse.  相似文献   

12.
To investigate the mechanism of action of colchicine in blocking amyloid deposition, two model systems of amyloidosis in CBA/J mice were studied. In experimental chronic inflammation, daily injection of silver nitrate (AgNO3) resulted in the deposition of 667 +/- 68 ng of amyloid A protein (AA)/mg of spleen after 25 days. Treatment with 10 micrograms of colchicine daily decreased AgNO3-induced AA deposition to 12 +/- 1 ng of AA/mg of spleen (p less than 0.001). Colchicine diminished the acute phase serum amyloid A protein (SAA) response after 24 hours. Over a 25-day period, SAA concentrations declined and approached baseline both in colchicine-treated and (unexpectedly) in control mice. This suggested that suppression of SAA levels was not the primary event inhibiting amyloid deposition. In a model of accelerated amyloid deposition, injection of preformed amyloid-enhancing factor along with AgNO3 induced the deposition of 974 +/- 46 ng of AA/mg of spleen 48 hours later. Colchicine only partially decreased amyloid-enhancing factor-induced amyloid deposition to 578 +/- 91 ng of AA/mg of spleen, while blunting the acute phase SAA response. These results suggest that colchicine inhibits amyloidosis in the predeposition phase, possibly by blocking formation of amyloid-enhancing factor.  相似文献   

13.
The complement system is a key component of the host immune response for the recognition and clearance of Streptococcus pneumoniae. In this study, we demonstrate that the amidase LytA, the main pneumococcal autolysin, inhibits complement-mediated immunity independently of effects on pneumolysin by a complex process of impaired complement activation, increased binding of complement regulators, and direct degradation of complement C3. The use of human sera depleted of either C1q or factor B confirmed that LytA prevented activation of both the classical and alternative pathways, whereas pneumolysin inhibited only the classical pathway. LytA prevented binding of C1q and the acute-phase protein C-reactive protein to S. pneumoniae, thereby reducing activation of the classical pathway on the bacterial surface. In addition, LytA increased recruitment of the complement downregulators C4BP and factor H to the pneumococcal cell wall and directly cleaved C3b and iC3b to generate degradation products. As a consequence, C3b deposition and phagocytosis increased in the absence of LytA and were markedly enhanced for the lytA ply double mutant, confirming that a combination of LytA and Ply is essential for the establishment of pneumococcal pneumonia and sepsis in a murine model of infection. These data demonstrate that LytA has pleiotropic effects on complement activation, a finding which, in combination with the effects of pneumolysin on complement to assist with pneumococcal complement evasion, confirms a major role of both proteins for the full virulence of the microorganism during septicemia.  相似文献   

14.
Complement may be important for immunity to infection with parasitic helminths, by promoting the recruitment of leukocytes to infected tissues and by modulating the function of cytotoxic effector leukocytes. However, the importance of complement in vivo during helminth infection is poorly understood. In this study, mice lacking classical (C1q-deficient), alternative (factor B-deficient) or all pathways of complement activation (C3-deficient) were used to assess the role of complement in immunity to the nematode Nippostrongylus brasiliensis. Double-mutant complement-deficient/IL-5 transgenic (Tg) mice were used to determine if complement is required for the strong eosinophil-dependent resistance to this parasite. Complement activation on larvae (C3 deposition), extracellular eosinophil peroxidase activity, larval aggregation and eosinophil recruitment to the skin 30 min post-injection (p.i.) of larvae were reduced in factor B-deficient mice. Inhibition of the C5a receptor with the antagonist PMX53 impaired eosinophil and neutrophil recruitment to the skin. C3 deposition on larvae was minimal by 150 min p.i. and at this time cell adherence, larval aggregation, eosinophil recruitment and degranulation were complement-independent. Factor B and C3 deficiency were associated with higher lung larval burdens in primary infections. Complement-deficient/IL-5 Tg mice were highly resistant to N. brasiliensis, suggesting that eosinophils can limit infection in a complement-independent manner. Potent secondary immunity was similarly complement-independent. In conclusion, although the alternative pathway is important for parasite recognition and leukocyte recruitment early in N. brasiliensis infections, the parasite soon becomes resistant to complement and other factors can compensate to promote eosinophil-dependent immunity.  相似文献   

15.
Complement activation in vitro by cryoglobulins isolated from the sera of 28 patients with systemic lupus erythematosus (SLE) was examined by incubating the cryoglobulin with normal human serum and performing crossed-immunoelectrophoresis of the mixture to detect C3 conversion. Eighteen of the 28 SLE cryoglobulins activated complement; eight by the classical pathway, four by the alternative pathway exclusively, and six by both pathways. In contrast only two out of 20 cryoglobulins isolated from the sera of normal subjects activated complement and both did so by the classical pathway. Twenty-three of the 28 SLE sera activated complement and complement activating cryoglobulins were isolated from 15 of these 23 sera. The parent sera of cryoglobulins activating complement had lower C4 and C3 concentrations than sera whose cryoglobulins did not split complement but these differences were not significant. The ability of SLE cryoglobulins to activate complement in vitro suggests that these immune complexes activate complement in vivo and thus may contribute to tissue damage in this disease. The activation of both classical and alternative complement pathways is in keeping with other evidence that both pathways are involved in SLE.  相似文献   

16.
Modified muscle use can result in muscle inflammation that is triggered by unidentified events. In the present investigation, we tested whether the activation of the complement system is a component of muscle inflammation that results from changes in muscle loading. Modified rat hindlimb muscle loading was achieved by removing weight-bearing from the hindlimbs for 10 days followed by reloading through normal ambulation. Experimental animals were injected with the recombinant, soluble complement receptor sCR1 to inhibit complement activation. Assays for complement C4 or factor B in sera showed that sCR1 produced large reductions in the capacity for activation of the complement system through both the classical and alternative pathways. Analysis of complement C4 concentration in serum in untreated animals showed that the classical pathway was activated during the first 2 hours of reloading. Analysis of factor B concentration in untreated animals showed activation of the alternative pathway at 6 hours of reloading. Administration of sCR1 significantly attenuated the invasion of neutrophils (-49%) and ED1(+) macrophages (-52%) that occurred in nontreated animals after 6 hours of reloading. The presence of sCR1 also reduced significantly the degree of edema by 22% as compared to untreated animals. Together, these data show that increased muscle loading activated the complement system which then briefly contributes to the early recruitment of inflammatory cells during modified muscle loading.  相似文献   

17.
Complement activation is a crucial early event in Wallerian degeneration. In this study we show that treatment of rats with soluble complement receptor 1 (sCR1), an inhibitor of all complement pathways, blocked both systemic and local complement activation after crush injury of the sciatic nerve. Deposition of membrane attack complex (MAC) in the nerve was inhibited, the nerve was protected from axonal and myelin breakdown at 3 days after injury, and macrophage infiltration and activation was strongly reduced. We show that both classical and alternative complement pathways are activated after acute nerve trauma. Inhibition of the classical pathway by C1 inhibitor (Cetor) diminished, but did not completely block, MAC deposition in the injured nerve, blocked myelin breakdown, inhibited macrophage infiltration, and prevented macrophage activation at 3 days after injury. However, in contrast to sCR1 treatment, early signs of axonal degradation were visible in the nerve, linking MAC deposition to axonal damage. We conclude that sCR1 protects the nerve from early axon loss after injury and propose complement inhibition as a potential therapy for the treatment of diseases in which axon loss is the main cause of disabilities.  相似文献   

18.
Complement plays a dual role in the progression of systemic lupus erythematosus since it has important protective functions, such as the clearance of immune complexes and apoptotic cells, but is also a mediator of renal inflammation. To investigate this balance in a clinically relevant setting, we investigated how targeted inhibition of all complement pathways vs. targeted inhibition of only the alternative pathway impacts immune and therapeutic outcomes in NZB/W F(1) mice. Following onset of proteinuria, mice were injected twice weekly with CR2-fH (inhibits alternative pathway), CR2-Crry (inhibits all pathways at C3 activation step), sCR2 (C3d targeting vehicle) or saline. Sera were analyzed every 2 weeks for anti-dsDNA antibody levels, and urinary albumin excretion was determined. Kidneys were collected for histological evaluation at 32 weeks. Compared to the control group, all CR2-fH, CR2-Crry and sCR2 treated groups showed significantly reduced serum anti-dsDNA antibody levels and strong trends towards reduced glomerular IgG deposition levels. Glomerular C3 deposition levels were also significantly reduced in all three-treated groups. However, significant reductions of disease activity (albuminuria and glomerulonephritis) were only seen in the CR2-fH treated group. These data highlight the dual role played by complement in the pathogenesis of lupus, and demonstrate a benefit of selectively inhibiting the alternative complement pathway, presumably because of protective contributions from the classical and/or lectin pathways. The sCR2 targeting moiety appears to be contributing to therapeutic outcome via modulation of autoimmunity. Furthermore, these results are largely consistent with our previous data using the MRL/lpr lupus model, thus broadening the significance of these findings.  相似文献   

19.
The amyloid plaque is the hallmark of Alzheimer's disease (AD). The transmembrane domain and a portion of the C-terminus (A beta) of the amyloid precursor protein, are known to form the nucleus of the amyloid plaque. It has been demonstrated recently, using in vitro assays, that the A beta peptide can activate both the classical (antibody-independent) and alternate pathways of complement activation. The proposed complement activation is due to the binding of A beta to the complement components C1q and C3, respectively, which initiate formation of the proinflammatory C5a and C5b-9 membrane attack complex. In this report, we have investigated the in vitro findings for the likely complement-dependent proinflammatory properties of the Alzheimer's disease A beta peptide. We have performed experiments using congenic C5-deficient and C5-sufficient mice injected with synthetic A beta and recombinant polypeptide (C-100) containing A beta. Injection of C-100 into C5-sufficient mice induced a clear increase in the number of polymorphonuclear cells (neutrophils) at the site of injection due to complement activation and the subsequent release of proinflammatory chemtoactic factors. In sharp contrast, the C5-deficient mice did not show any increase in cellular influx. The vaccinia virus complement control protein, an inhibitor of both the classical and alternate pathway can down-regulate the biologically significant activation of complement by A beta, as demonstrated by an in vitro immunassay. The therapeutic down-regulation of A beta-caused complement activation could greatly alleviate the progression of some of the chronic neurodegeneration characteristic of Alzheimer's disease.  相似文献   

20.
Tissue and organ replacement have quickly outpaced available supply. Tissue bioengineering holds the promise for additional tissue availability. Various scaffolds are currently used, whereas polyglycolic acid (PGA), which is currently used in absorbable sutures and orthopedic pins, provides an excellent support for tissue development. Unfortunately, PGA can induce a local inflammatory response following implantation. Therefore, we investigated the molecular mechanism of inflammation in vitro and in vivo. Degraded PGA induced an acute peritonitis, characterized by neutrophil (PMN) infiltration following intraperitoneal injection in mice. Similar observations were observed using the metabolite of PGA, glycolide. Dissolved PGA or glycolide, but not native PGA, activated the classical complement pathway in human sera, as determined by classical complement pathway hemolytic assays, C3a and C5a production, and C3 and immunoglobulin deposition. To investigate whether these in vitro observations translated to in vivo findings, we used genetically engineered mice. Intraperitoneal administration of glycolide or dissolved PGA in mice deficient in C1q, factor D, C1q and factor D, or C2 and factor B demonstrated significantly reduced PMN infiltration compared to congenic controls (WT). Mice deficient in C6 also demonstrated acute peritonitis. However, treatment of WT or C6 deficient mice with a monoclonal antibody against C5 prevented the inflammatory response. These data suggest that the hydrolysis of PGA to glycolide activates the classical complement pathway. Furthermore, complement is amplified via the alternative pathway and inflammation is induced by C5a generation. Inhibition of C5a may provide a potential therapeutic approach to limit the inflammation associated with PGA-derived materials following implantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号