首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Tumour necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL) is a member of the tumour necrosis factor-alpha (TNF-alpha) family of cytokines which is known to induce apoptosis upon binding to its death domain-containing receptors, DR4/TRAIL-R1 and DR5/TRAIL-R2. Two additional TRAIL receptors, DcR1/TRAIL-R3 and DcR2/TRAIL-R4, lack functional death domains and act as decoy receptors for TRAIL. In this study, the presence of TRAIL and its receptors was investigated by immunohistochemistry in adult human testes. In addition, TRAIL and its receptors were studied in terms of protein and mRNA using western blot analysis and RT-PCR respectively. TRAIL and its receptors were immunodetected according to the different testicular cell types: TRAIL, DR5/TRAIL-R2 and DcR2/TRAIL-R4 were localized in Leydig cells, DR4/TRAIL-R1 was seen in peritubular and Sertoli cells whereas ligand and all receptors were detected in germ cells. Proteins and mRNA corresponding to TRAIL and its receptors were also identified in adult human testes. In conclusion, TRAIL and its receptors DR4/TRAIL-R1, DR5/TRAIL-R2, DcR1/TRAIL-R3 and DcR2/TRAIL-R4 are expressed in the human testis, and are predominantly localized in different germ cell types.  相似文献   

2.
TRAIL (tumor necrosis factor-related apoptosis-inducing ligand), a cytokine belonging to the TNF (tumor necrosis factor) family, is currently regarded as a potential anti-cancer agent. Nevertheless, several types of cancer cells display a low sensitivity to TRAIL or are completely resistant to this pro-apoptotic cytokine. TRAIL signalling is dependent on four receptors. Two of them, death receptors 4 and 5 (DR4 and DR5), induce apoptosis, whereas decoy receptors 1 and 2 (DcR1 and DcR2) are unable to evoke cell death upon TRAIL binding. TRAIL resistance may be related to the expression of TRAIL decoy receptors. TRAIL has been proposed as a novel therapeutic agent for the treatment of haematological disorders, including acute myeloid leukaemia (AML). Surprisingly, however, very limited information is available concerning the expression of TRAIL receptors in AML blasts. Here, we have evaluated, using flow cytometry, TRAIL receptor surface expression and sensitivity to TRAIL-dependent apoptosis of AML blasts from 30 patients. We observed frequent expression of TRAIL DcR1 and DcR2, while expression of DR4 and DR5 was less frequent. Nevertheless, the expression of DR4 or DR5 in leukaemic cells was always matched by a similar expression of one of the decoy receptors. Leukaemic blasts were invariably resistant, even to a high concentration (1000 ng/ml) of TRAIL. We suggest that AML blasts are resistant to TRAIL apoptosis in vitro. Therefore, it is unlikely that TRAIL alone might be used in the future as an innovative pharmacological agent for the treatment of AML.  相似文献   

3.
比较重组人可溶性TRAIL(rhsTRAIL)诱导Jurkat细胞株、K562细胞株以及HL-60细胞株凋亡之间的差异,探讨这些差异与细胞表面TRAIL受体(DR4、DR5、DcR1和DcR2)表达量的关系。不同浓度的rhsTRAIL分别处理Jurkat细胞、K562细胞和HL-60细胞12 h、24 h和48 h后,用流式细胞仪检测经碘化丙啶(PI)染色后的细胞凋亡情况;用RT-PCR方法检测细胞表面受体DR4、DR5、DcR1、DcR2的表达。培养12 h、24 h、48 h后,不同浓度rhsTRAIL诱导Jurkat细胞株的凋亡率均明显高于对照组,且具有剂量依赖性和时间依赖性;但K562细胞株和HL-60细胞株未见明显的凋亡发生。RT-PCR结果显示,培养12 h、24 h、48 h后,Jurkat细胞株表面DR4的表达随时间的延长和rhsTRAIL浓度的升高而升高,而DR5、DcR1和DcR2的表达未检出;K562和HL-60细胞株表面DR4的表达没有明显变化,而且DR5、DcR1和DcR2的表达也未检出。rhsTRAIL诱导Jurkat细胞株的凋亡具有剂量依赖性和时间依赖性,且与其细胞表面DR4的表达呈正相关;在一定的浓度条件下,rhsTRAIL未能诱导K 562和HL-60细胞株发生明显凋亡,且其细胞表面DR4的表达也未见明显变化。这些结果提示,应用TRAIL治疗不同种类白血病时,应注意它的使用剂量和适应范围。  相似文献   

4.
目的探索慢性乙肝患者外周血单个核细胞(PBMC)肿瘤细胞坏死因子相关的凋亡诱导配体(TRAIL)受体在PBMC凋亡中的作用,及其与机体肝脏损伤的相关性。方法用RT-PCR和流式细胞术检测55例慢性乙肝患者(包括轻度、中度、重度)外周血单个核细胞TRAIL各受体(DR4、DR5、DcR1和DcR2)表达水平,同时检测肝功能相关指标,并进行相关性分析。以30例正常人作为对照。结果诱骗受体DcR1在慢性乙肝患者中的表达显著低于对照组(P<0.05)。DcR1的表达随慢性乙肝病情的加重而逐渐降低。慢性乙肝患者的DcR1表达与转氨酶(ALT)呈显著负相关,与血清白蛋白成显著正相关。结论慢性乙肝患者外周血单个核细胞DcR1表达下调可能是其细胞凋亡增加的机制之一,且DcR1表达情况可从一定程度上反映肝脏的损伤程度。  相似文献   

5.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in melanoma by interaction with death receptors TRAIL-R1 (DR4) or TRAIL-R2 (DR5) on melanoma cells or resists apoptosis by interaction with decoy receptors TRAIL-R3 (DcR1) or TRAIL-R4 (DcR2). Studies on cell lines suggest that there is a wide variation in TRAIL death receptor expression; however, their expression on excised human melanoma is not well documented. In view of this, we studied death receptor expression on melanomas using monoclonal antibodies specific for these receptors. Immunohistochemical staining for DR4, DR5, and DcR1/DcR2 was performed on formalin-fixed paraffin-embedded sections of 100 cases of primary melanoma, metastatic melanoma, and benign nevi. Percentage expressions of DR4 versus DR5 in benign nevi, primary melanoma, and melanoma metastases were 40% versus 90%, 69% versus 98%, and 55% versus 66%, respectively. There were significant differences in the mean percentage of DR5-positive cells between different groups of melanocytic lesions. Percent expression was higher in thin (< or =1.0 mm) compared with thick primary melanoma (88.9% versus 66.9%), and expression was less in subcutaneous metastases (49%) and lymph node metastases (30.6%) (P < .005). Expression was also higher in compound nevi (57%) than dysplastic nevi (49%). DcR1/DcR2 was found in 75% of benign nevi, 62% of primary melanomas, and 74% melanoma metastases. The results showed a wide variation in the expression of death receptors for TRAIL between and within primary and metastatic melanoma and a decreased expression on the thick primary melanoma and metastatic melanoma. This suggests that melanoma may not respond to treatment with TRAIL unless given with agents that increase the expression of TRAIL death receptors.  相似文献   

6.
We examined the role of osteoprotegerin (OPG) on tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in rheumatoid fibroblast-like synovial cells (FLS). OPG protein concentrations in synovial fluid from patients with rheumatoid arthritis (RA) correlated with those of interleukin (IL)-1beta or IL-6. A similar correlation was present between IL-1beta and IL-6 concentrations. Rheumatoid FLS in vitro expressed both death domain-containing receptors [death receptor 4 (DR4) and DR5] and decoy receptors [decoy receptor 1 (DcR1) and DcR2]. DR4 expression on FLS was weak compared with the expression of DR5, DcR1 and DcR2. Recombinant TRAIL (rTRAIL) rapidly induced apoptosis of FLS. DR5 as well as DR4 were functional with regard to TRAIL-mediated apoptosis induction in FLS; however, DR5 appeared be more efficient than DR4. In addition to soluble DR5 (sDR5) and sDR4, OPG administration significantly inhibited TRAIL-induced apoptogenic activity. OPG was identified in the culture supernatants of FLS, and its concentration increased significantly by the addition of IL-1beta in a time-dependent manner. Neither IL-6 nor tumour necrosis factor (TNF)-alpha increased the production of OPG from FLS. TRAIL-induced apoptogenic activity towards FLS was reduced when rTRAIL was added without exchanging the culture media, and this was particularly noticeable in the IL-1beta-stimulated FLS culture; however, the sensitivity of FLS to TRAIL-induced apoptosis itself was not changed by IL-1beta. Interestingly, neutralization of endogenous OPG by adding anti-OPG monoclonal antibody (MoAb) to FLS culture restored TRAIL-mediated apoptosis. Our data demonstrate that OPG is an endogenous decoy receptor for TRAIL-induced apoptosis of FLS. In addition, IL-1beta seems to promote the growth of rheumatoid synovial tissues through stimulation of OPG production, which interferes with TRAIL death signals in a competitive manner.  相似文献   

7.
TRAIL受体在肿瘤细胞系上的表达及意义   总被引:5,自引:4,他引:5  
目的 检测TNF相关凋亡诱导配体(TRAIL)的受体,在来源于血液系统、肝脏、肺脏和大肠的8个肿瘤细胞系中的表达,并探讨其意义。方法 采用半定量RT-PCR,对TRAIL受体的表达进行半定量检测。结果 TRAIL凋亡通路中,能够诱导凋亡反应的死亡受体DR4和DR5,在所检测的肿瘤细胞系中都有表达,其中DR5在所有肿瘤细胞系中的表达水平均显著高于DR4(P<0.05)。而能够竞争性与TRAIL诱导的凋亡反应的诱骗受体DcR1和DcR2,在所有的肿瘤细胞中都呈低水平表达或不表达。结论 DR5可能在TRAIL诱导凋亡的通路中发挥最重要的作用。TRAIL死亡受体和诱骗受体在肿瘤细胞系中的表达具有差异性,这种差异性可在一定程度上解释不同细胞对TRAIL诱导凋亡的敏感度。  相似文献   

8.
目的:探讨杭白菊提取液对肿瘤坏死因子相关凋亡诱导配体基因(TRAIL)抑制人大肠癌细胞株DLD-1作用的影响及其可能机制。 方法: 杭白菊提取液联合重组腺病毒载体(Ad)介导的TRAIL基因作用于人大肠癌细胞株DLD-1,通过倒置显微镜、MTT比色法和流式细胞仪,研究分析其对DLD-1细胞抑制作用的效果。采用逆转录聚合酶链反应(RT-PCR)和流式细胞术检测杭白菊提取液作用前后DLD-1细胞TRAIL、TRAIL受体(TRAIL-Rs)mRNA以及细胞表面TRAIL蛋白表达的变化。 结果: Ad/hTERT-gTRAIL对DLD-1细胞的生长抑制率和凋亡率分别为31.4%和13.5%;联合杭白菊提取液后,生长抑制率和凋亡率均显著提高,达93.1%和45.4%(P<0.05)。杭白菊提取液作用后DLD-1细胞TRAIL mRNA的表达量从作用前的0.46上调至1.01, 细胞表面TRAIL蛋白表达的百分率从作用前的2.2%升高到5.0%(P<0.05)。TRAIL死亡受体(DR4、DR5)mRNA的表达量分别从0.70和0.22上调至1.10和0.83(P<0.05),而TRAIL诱骗受体(DcR1、DcR2)mRNA的表达量从0.60和1.15下调至0.19和0.78(P<0.05)。 结论: 杭白菊提取液联合重组腺病毒载体(Ad)介导的TRAIL基因(Ad/hTERT-gTRAIL)能有效诱导DLD-1细胞的凋亡。杭白菊提取液上调TRAIL死亡受体表达以及下调TRAIL诱骗受体的表达可能在增强TRAIL诱导的凋亡作用中起着重要作用。  相似文献   

9.
The proto-oncogene Bcl-2 encodes a protein that protects cells from programmed cell death (apoptosis). The protein is expressed in the proliferative compartment of several normal tissues, including normal colonic crypts. The aim of this study was to test Bcl-2 expression in colorectal neoplasms, assuming that, as a regulator of apoptosis, it might be involved in the progression from adenoma to carcinoma. To this end, Bcl-2 reactivity was tested by immunohistochemistry in hyperplastic polyps, colonic adenomas, and carcinomas and its expression was compared with staining for the proliferation-associated Ki-67 antigen, using the MIB-1 antibody. Bcl-2 expression occurred in 2 out of 10 hyperplastic polyps and in 31 out of 35 (tubular, villous, and tubulovillous) adenomas, irrespective of their degree of dysplasia. Of ten carcinomas, only three were focally Bcl-2-positive, all moderately to well differentiated. In two of four carcinomas in Bcl-2-positive adenomas, no Bcl-2 staining was observed. High numbers of MIB-1-positive cells were found in all hyperplastic and neoplastic lesions, without apparent correlation between proliferation and Bcl-2 expression. These findings suggest that in the pathogenesis of hyperplastic polyps, increased crypt cell proliferation is primarily involved, but in some lesions decreased apoptosis may play a role. Furthermore, the increased Bcl-2 expression in adenomas but not in the majority of the carcinomas suggests either that decreased apoptosis is not usually involved in the pathogenesis of these lesions or that the regulation of apoptosis in colorectal epithelia involves additional regulatory factors.  相似文献   

10.
TRAIL is a cytokine that can induce tumor-specific apoptosis through its specific death receptors (DR4 and DR5) and p53 has been proven to increase the expression of death receptors. To examine their interaction in tumor suppression, p53 and TRAIL genes were inserted in recombinant adenovirus vectors and transferred simultaneously into non-small cell lung cancer cell lines (NCI-H157, NCI-H358, NCI-H460 and A549). Western blot assay demonstrated production of TRAIL protein in NCI-H157 and A549 cell lines. Increased expressions of DR4 and DR5 of NCI-H157 and DR4 of A549 after p53 overexpression were confirmed by flow cytometry. p53 or TRAIL gene transfer increased sub-G1 fraction in cell cycle analysis and inhibited the tumor growth dose-dependently and the degree was potentiated by co-transfer. But isobologram analysis indicated an additive effect. Together, these data indicate that p53 and TRAIL interact additively on tumor apoptosis despite theoretical synergism.  相似文献   

11.
TNF相关的凋亡诱导配体(TNF-related apoptosis-inducing ligand, TRAIL),属于TNF 超家族成员,又称为Apo-2L,TRAIL能诱导多种肿瘤细胞的凋亡,而正常的细胞却对其不敏感,TRAIL主要通过与其受体结合激活caspase-8,启动非线粒体和线粒体依赖途径导致细胞凋亡。部分肿瘤细胞对TRAIL的敏感性较差,其原因与TRAIL的受体、信号转导途径激酶以及相关蛋白存在密切联系。  相似文献   

12.
Intestinal mucosa is constantly exposed to normal environmental antigens. A significant number of intestinal mucosal T cells are being deleted through apoptosis. In contrast, T cells from inflamed mucosa of ulcerative colitis patients did not undergo apoptosis. In this study, we determined whether the apoptosis of normal mucosal T cells was induced by antigen receptor stimulation and further determined pathways that mediated the apoptosis. Freshly isolated lamina propria T cells were stimulated with CD3 mAb and apoptosis was determined by Annexin V staining. Normal mucosal T cells underwent apoptosis upon CD3 mAb stimulation whereas the T cells from inflamed mucosa did not. The apoptosis in normal T cells was blocked by TRAIL-R1:Fc and an inhibiting CD95 antibody. Interestingly, decoy receptor (DcR)1, DcR2, and DcR3 that compete with death receptor (DR)4/5 and CD95 were highly expressed by the T cells from inflamed mucosa, but much lower by T cells from normal mucosa. Our data suggest that normal mucosal T cells are constantly deleted in response to environmental antigens mediated through DR4/5 and CD95 pathways and mucosal T cells from ulcerative colitis resist to undergoing apoptosis due to highly expression of DcR1, DcR2, and DcR3.  相似文献   

13.
TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis upon binding to TRAIL receptors 1 and 2 (TRAIL-R1/DR4 and TRAIL-R2/DR5). TRAIL-R3 (DcR1) and TRAIL-R4 (DcR2) have no or only a truncated cytoplasmic death domain. Consequently, they cannot induce apoptosis and instead have been proposed to inhibit apoptosis induction by TRAIL. Agonists for the apoptosis-inducing TRAIL-R1 and TRAIL-R2 are currently tested in clinical trials. To determine the expression pattern of all surface-bound TRAIL receptors and their prognostic clinical value, we investigated tumour samples of 311 patients with breast cancer by immunohistochemistry. TRAIL receptor expression profiles were correlated with clinico-pathological data, disease-free survival and overall survival. TRAIL-R1 was more strongly expressed in better differentiated tumours, and correlated positively with surrogate markers of a better prognosis (hormone receptor status, Bcl-2, negative nodal status), but negatively with the expression of Her2/neu and the proliferation marker Ki67. In contrast, TRAIL-R2 and TRAIL-R4 expression correlated with higher tumour grades, higher Ki67 index, higher Her2/neu expression and a positive nodal status at the time of diagnosis, but with lower expression of Bcl-2. Thus, the TRAIL receptor expression pattern was predictive of nodal status. Patients with grade 1 and 2 tumours, who had TRAIL-R2 but no TRAIL-R1, showed a positive lymph node status in 47% of the cases. Vice versa, only 19% had a positive nodal status with high TRAIL-R1 but low TRAIL-R2. Most strikingly, TRAIL-R4 and -R2 expression negatively correlated with overall survival of breast cancer patients. Although TRAIL-R2 correlated with more aggressive tumour behaviour, mammary carcinoma could be sensitised to TRAIL-R2-induced apoptosis, suggesting that TRAIL-R2 might therefore be used to therapeutically target such tumours. Hence, determination of the TRAIL receptor expression profile may aid in defining which breast cancer patients have a higher risk of lymph node metastasis and worse overall survival and on the other hand will help to guide TRAIL-based tumour therapy.  相似文献   

14.
目的:构建重组人肿瘤坏死因子相关的凋亡诱导配体(tumor necrosis factor-related apoptosis-inducing ligand,TRAIL)原核表达质粒p ET-28a(+)-TRAIL114-281,优化蛋白表达和纯化条件,制备重组人可溶性TRAIL并鉴定其活性。方法:使用CCK-8初步验证TRAIL是否具有抑制肿瘤细胞生长的生物活性;将制备的TRAIL单独或联合50 nmol/L硼替佐米应用于H460细胞(对TRAIL敏感)和K562细胞(对TRAIL抵抗)24 h,流式细胞术检测细胞凋亡率,比色法检测caspase-8、-9、-3的活化程度,Western blot分析细胞中Bax、Bcl-2和c FLIP蛋白的表达。流式细胞术检测硼替佐米处理H460细胞和K562细胞24 h后DR4和DR5的表达量变化。结果:制备了具有生物学活性且性质稳定的重组人可溶性TRAIL,且成功诱导H460和K562细胞凋亡。不同浓度TRAIL处理H460细胞后其凋亡率随着TRAIL浓度升高而显著升高(P0.05),但K562细胞凋亡率并未随着TRAIL浓度明显升高。联合用药组的H460和K562细胞凋亡率均显著高于单独用药组(P0.05),凋亡过程中caspase-8、-9、-3均被活化,药物处理组的Bcl-2和c FLIP表达量均比对照组下降,尤其联合用药组表达量下降最为显著(P0.05),而Bax表达量无明显变化。硼替佐米处理H460和K562细胞后DR4和DR5表达量均上调(P0.05)。结论:硼替佐米能协同TRAIL启动内源性凋亡途径诱导H460和K562细胞凋亡,其可能机制是通过上调死亡受体DR4和DR5的表达量、下调抗凋亡蛋白Bcl-2和c FLIP的表达量来实现的。  相似文献   

15.
目的 探讨TNF相关诱导凋亡因子(TRAIL)及其DR4、DR5受体在人胎盘组织的表达及其意义。方法 免疫组织化学结合图像分析定量方法观察TRAIL及其DR4、DR5受体在人胎盘组织的表达及其含量的周龄变化。结果 人胎盘滋养层细胞、绒毛基质细胞及毛细血管的内皮细胞均呈TRAIL及DR4、DR5受体免疫反应阳性,阳性反应物分布于胞膜及胞质,胞核阴性。在人胎盘绒毛的不同发育阶段中,TRAIL的含量相对稳定,而其受体DR4、DR5的含量随着周龄的增加而升高。结论 结果显示胎盘不仅能产生TRAIL,而且也是TRAIL的靶器官,TRAIL及其DR4、DR5受体系统可能参与胎盘的特免调节。  相似文献   

16.
背景:诱骗受体1输肿瘤坏死因子相关凋亡配体受体,其可能作为诱饵受体生理性阻断细胞凋亡过程。 目的:观察诱骗受体1在突出和正常腰椎间盘组织中的表达。 方法:2010-01/09收集退行性椎间盘患者手术切除的突出椎间盘标本20个及自愿流产的胎儿的正常腰椎间盘标本8个,免疫组化方法检测诱骗受体1蛋白在不同椎间盘组织中的分布。 结果与结论:突出腰椎间盘组织中诱骗受体1阳性表达的髓核和纤维环细胞明显多于正常椎间盘,说明突出椎间盘组织中诱骗受体的表达提高。  相似文献   

17.
《Immunobiology》2017,222(2):198-205
Our previous study showed that TLR3 induces apoptosis via both death receptors and mitochondial in human endothelial cells. We report here that the activation of TLR4 induced dose- and time-dependent cell death in moncytic THP-1 cells. LPS treatment of THP-1 cells induced the activation of both caspase 8 and 9, suggesting the involvement of intrinsic and extrinsic apoptosis pathways. TNFα was induced by TLR4 activation at both mRNA and protein levels, but its neutralization did not down-regulated TLR4-induced cell death. TLR4 activation also induced the up-regulation of TRAIL and its receptors DR4 and DR5, and the neutralization of TRAIL ameliorated TLR4 induced apoptosis, suggesting the involvement of TRAIL and its receptors DR4 and DR5 in LPS-induced cell death. Meanwhile, LPS treatment down-regulated the expression of FLICE inhibitory protein (FLIP), a suppressor of death receptor-induced cell death. In addition, TLR4 activation down-regulated the anti-apoptotic protein bcl-2, and up-regulated the pro-apoptotic proteins Noxa and Puma, suggesting that mitochondrial apoptotic pathway was also involved in LPS-induced cell death. Furthermore, we found that TAP63α might confer to the activation of intrinsic and extrinsic apoptotic pathways. The treatment of THP-1 cells with LPS induced the translocation of TAP63α from cytoplasm to nucleus. Taken together, our study suggested that both death receptors and mitochondial were involved in TLR4-induced cell death, and TAP63α may be a target for the prevention of LPS-induced cell death.  相似文献   

18.
TRAIL/Apo2L is a CD95 ligand-related member of the TNF family that initiates apoptosis in immune and neoplastic cells after binding to specific surface receptors. The authors previously reported a specific topographic pattern of TRAIL expression in the normal colonic mucosa and the loss of TRAIL expression in tubular adenomas as well as in most colon carcinomas. Therefore, they hypothesized that similar changes may occur during the malignant transformation of Barrett's esophagus. The aim of this study was to compare TRAIL/Apo2L expression in normal gastroesophageal (GE) junction, Barrett's esophagus with and without dysplasia, and associated adenocarcinoma. Immunohistochemical evaluation of TRAIL expression was performed on formalin-fixed paraffin-embedded sections from 29 GE junction/esophageal biopsies, 20 gastric biopsies, 6 esophagectomies, 2 small bowel resection specimens, and 5 colon biopsies. The expression was graded semiquantitatively on a 4-point scale (0-3). TRAIL was expressed in the foveolar epithelium of the histologically normal GE junctional mucosa and stomach as well as in the normal intestinal epithelium, with maximal expression in the surface epithelium. TRAIL was always detected in Barrett's metaplasia (21/21, 100%), and the overall expression was similar to that of the columnar portion of the normal GE junction (8/8, 100%). TRAIL was rarely and weakly (1+) expressed in Barrett's esophagus with dysplasia (3/18, 16.7%) and adenocarcinoma (1/10, 10.0%) (P<0.001). Similarities in the topographic pattern of TRAIL expression in the normal GE junction, stomach, small intestine, and colon suggest a common function of TRAIL throughout the gastrointestinal tract. These results show that the downregulation of TRAIL is associated with development of dysplasia in Barrett's esophagus. Thus, the immunohistochemically detected downregulation of TRAIL expression appears to be a promising indicator of dysplasia in Barrett's esophagus.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号