首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alzheimer's disease (AD) involves progressive accumulation of amyloid β-peptide (Aβ) and neurofibrillary pathologies, and glucose hypometabolism in brain regions critical for memory. The 3xTgAD mouse model was used to test the hypothesis that a ketone ester–based diet can ameliorate AD pathogenesis. Beginning at a presymptomatic age, 2 groups of male 3xTgAD mice were fed a diet containing a physiological enantiomeric precursor of ketone bodies (KET) or an isocaloric carbohydrate diet. The results of behavioral tests performed at 4 and 7 months after diet initiation revealed that KET-fed mice exhibited significantly less anxiety in 2 different tests. 3xTgAD mice on the KET diet also exhibited significant, albeit relatively subtle, improvements in performance on learning and memory tests. Immunohistochemical analyses revealed that KET-fed mice exhibited decreased Aβ deposition in the subiculum, CA1 and CA3 regions of the hippocampus, and the amygdala. KET-fed mice exhibited reduced levels of hyperphosphorylated tau deposition in the same regions of the hippocampus, amygdala, and cortex. Thus, a novel ketone ester can ameliorate proteopathic and behavioral deficits in a mouse AD model.  相似文献   

2.
Abnormal neuronal excitability and impaired synaptic plasticity might occur before the degeneration and death of neurons in Alzheimer's disease (AD). To elucidate potential biophysical alterations underlying aberrant neuronal network activity in AD, we performed whole-cell patch clamp analyses of L-type (nifedipine-sensitive) Ca2+ currents (L-VGCC), 4–aminopyridine-sensitive K+ currents, and AMPA (2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid) and NMDA (N-methyl-D-aspartate) currents in CA1, CA3, and dentate granule neurons in hippocampal slices from young, middle-age, and old 3xTgAD mice and age-matched wild type mice. 3xTgAD mice develop progressive widespread accumulation of amyloid β-peptide, and selective hyperphosphorylated tau pathology in hippocampal CA1 neurons, which are associated with cognitive deficits, but independent of overt neuronal degeneration. An age-related elevation of L-type Ca2+ channel current density occurred in CA1 neurons in 3xTgAD mice, but not in wild type mice, with the magnitude being significantly greater in older 3xTgAD mice. The NMDA current was also significantly elevated in CA1 neurons of old 3xTgAD mice compared with in old wild type mice. There were no differences in the amplitude of K+ or AMPA currents in CA1 neurons of 3xTgAD mice compared with wild type mice at any age. There were no significant differences in Ca2+, K+, AMPA, or NMDA currents in CA3 and dentate neurons from 3xTgAD mice compared with wild type mice at any age. Our results reveal an age-related increase of L-VGCC density in CA1 neurons, but not in CA3 or dentate granule neurons, of 3xTgAD mice. These findings suggest a potential contribution of altered L-VGCC to the selective vulnerability of CA1 neurons to tau pathology in the 3xTgAD mice and to their degeneration in AD patients.  相似文献   

3.
2型糖尿病与阿尔茨海默病互为发病风险的机制探讨   总被引:2,自引:1,他引:1       下载免费PDF全文
目的:比较2型糖尿病(T2DM)大鼠和Alzheimers病(AD)大鼠模型胰腺与海马病变,通过检测糖原合成激酶-3β(GSK-3β)及蛋白酯酶2A(PP2A)变化,探讨两者之间共同的发病基础。方法:用高糖、高脂及高蛋白饮食加小剂量链脲佐菌素(STZ)尾静脉注射建立2型糖尿病模型,海马定位注射STZ建立AD大鼠模型,蛋白质印迹法及免疫组化法检测大鼠大脑和胰腺组织tau蛋白磷酸化及淀粉样β蛋白(Aβ)水平;放射性配体结合实验检测GSK-3β和PP2A活性。结果:T2DM大鼠海马组织中,tau蛋白呈过度磷酸化状态,Aβ水平增加,PP2A活性下降,GSK-3β活性上升,与AD大鼠大脑各项改变相似;在AD大鼠胰腺组织中,Aβ水平增加,PP2A活性下降,GSK-3β活性上升,与2型糖尿病大鼠胰腺组织病变程度相似。但在2组大鼠胰腺组织中均未检出tau蛋白。结论:在T2DM中,由于GSK-3β的活性增高和PP2A的活性降低,导致大脑tau蛋白过度磷酸化及Aβ沉积,是T2DM成为AD发病的重要风险因子的重要原因;在AD中,由于胰岛素抵抗导致胰腺出现Aβ的沉积可能是导致T2DM发病的重要原因。  相似文献   

4.
《Neurobiology of aging》2014,35(12):2726-2735
Currently, there are no available approaches to cure or slow down the progression of Alzheimer's disease (AD), which is characterized by the accumulation of extracellular amyloid-β (Aβ) deposits and intraneuronal tangles that comprised hyperphosphorylated tau. The β2 adrenergic receptors (β2ARs) are expressed throughout the cortex and hippocampus and play a key role in cognitive functions. Alterations in the function of these receptors have been linked to AD; however, these data remain controversial as apparent contradicting reports have been published. Given the current demographics of growing elderly population and the high likelihood of concurrent β-blocker use for other chronic conditions, more studies into the role of this receptor in AD animal models are needed. Here, we show that administration of ICI 118,551 (ICI), a selective β2AR antagonist, exacerbates cognitive deficits in a mouse model of AD, the 3xTg-AD mice. Neuropathologically, ICI increased Aβ levels and Aβ plaque burden. Concomitantly, ICI-treated 3xTg-AD mice showed an increase in tau phosphorylation and accumulation. Mechanistically, these changes were linked to an increase in amyloidogenic amyloid precursor protein processing. These results suggest that under the conditions used here, selective pharmacologic inhibition of β2ARs has detrimental effects on AD-like pathology in mice. Overall, these studies strengthen the notion that the link between β2ARs and AD is likely highly complex and suggest caution in generalizing the beneficial effects of β blockers on AD.  相似文献   

5.
6.
Nicotinamide adenine dinucleotide (NAD)+, a coenzyme involved in redox activities in the mitochondrial electron transport chain, has been identified as a key regulator of the lifespan-extending effects, and the activation of NAD+ expression has been linked with a decrease in beta-amyloid (Aβ) toxicity in Alzheimer's disease (AD). Nicotinamide riboside (NR) is a NAD+ precursor, it promotes peroxisome proliferator-activated receptor-γ coactivator 1 (PGC)-1α expression in the brain. Evidence has shown that PGC-1α is a crucial regulator of Aβ generation because it affects β-secretase (BACE1) degradation. In this study we tested the hypothesis that NR treatment in an AD mouse model could attenuate Aβ toxicity through the activation of PGC-1α-mediated BACE1 degradation. Using the Tg2576 AD mouse model, using in vivo behavioral analyses, biochemistry assays, small hairpin RNA (shRNA) gene silencing and electrophysiological recording, we found (1) dietary treatment of Tg2576 mice with 250 mg/kg/day of NR for 3 months significantly attenuates cognitive deterioration in Tg2576 mice and coincides with an increase in the steady-state levels of NAD+ in the cerebral cortex; (2) application of NR to hippocampal slices (10 μM) for 4 hours abolishes the deficits in long-term potentiation recorded in the CA1 region of Tg2576 mice; (3) NR treatment promotes PGC-1α expression in the brain coinciding with enhanced degradation of BACE1 and the reduction of Aβ production in Tg2576 mice. Further in vitro studies confirmed that BACE1 protein content is decreased by NR treatment in primary neuronal cultures derived from Tg2576 embryos, in which BACE1 degradation was prevented by PGC-1α-shRNA gene silencing; and (4) NR treatment and PGC-1α overexpression enhance BACE1 ubiquitination and proteasomal degradation. Our studies suggest that dietary treatment with NR might benefit AD cognitive function and synaptic plasticity, in part by promoting PGC-1α-mediated BACE1 ubiquitination and degradation, thus preventing Aβ production in the brain.  相似文献   

7.
Calpains are cysteine proteinases that selectively cleave proteins in response to calcium signals. Exacerbated activation of calpain has been implicated as a major component in the signaling cascade that leads to β-amyloid (Aβ) production and tau hyperphosphorylation in Alzheimer's disease (AD). In this study, we analyzed the potential therapeutic efficacy of inhibiting the activation of calpain by a novel calpain inhibitor in aged 3xTgAD mice with well-established cognitive impairment, plaques, and tangles. The administration of a novel inhibitor of calpain, A-705253, attenuated cognitive impairment and synaptic dysfunction in a dose-dependent manner in 3xTgAD mice. Inhibition of calpain lowered Aβ(40) and Aβ(42) levels in both detergent-soluble and detergent-insoluble fractions and also reduced the total number and size of thioflavin S-positive fibrillar Aβ deposits. Mechanistically, these effects were, in part, explained by a down-regulation of β-secretase 1 (BACE1) and an up-regulation of ATP-binding cassette transporter A1 (ABCA1) expression, which, in turn, contributed to reduced production and increased clearance of Aβ, respectively. Moreover, A-705253 decreased the activation of cyclin-dependent kinase 5 (CDK5) and thereby diminished the hyperphosphorylation of tau. Finally, blockage of calpain activation reduced the astrocytic and microglial responses associated with AD-like pathological characteristics in aged 3xTgAD mice. Our data provide relevant functional and molecular insights into the beneficial therapeutic effects of inhibiting calpain activation for the management of AD.  相似文献   

8.
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder. The major pathological changes in AD progression are the generation and accumulation of amyloid-beta (Aβ) peptides as well as the presence of abnormally hyperphosphorylated tau proteins in the brain. Autophagy is a conserved degradation pathway that eliminates abnormal protein aggregates and damaged organelles. Previous studies have suggested that autophagy plays a key role in the production and clearance of Aβ peptides to maintain a steady-state of Aβ peptides levels. However, a growing body of evidence suggests that autophagy is significantly impaired in the pathogenesis of AD, especially in Aβ metabolism. Therefore, this article reviews the latest studies concerning the mechanisms of autophagy, the metabolism of Aβ peptides, and the defective autophagy in the production and clearance of Aβ peptides. Here, we also summarize the established and new strategies for targeting autophagy in vivo and through clinical AD trials to identify gaps in our knowledge and to generate further questions.  相似文献   

9.
We recently reported increased mitochondrial fission and decreased fusion, increased amyloid beta (Aβ) interaction with the mitochondrial fission protein Drp1, increased mitochondrial fragmentation, impaired axonal transport of mitochondria and synaptic degeneration in neurons affected by AD. In the present study, we extended our previous investigations to determine whether phosphorylated tau interacts with Drp1 and to elucidate mitochondrial damage in the progression of AD. We also investigated GTPase activity, which is critical for mitochondrial fragmentation, in postmortem brain tissues from patients with AD and brain tissues from APP, APP/PS1 and 3XTg.AD mice. Using co-immunoprecipitation and immunofluorescence analyses, for the first time, we demonstrated the physical interaction between phosphorylated tau and Drp1. Mitochondrial fission-linked GTPase activity was significantly elevated in the postmortem frontal cortex tissues from AD patients and cortical tissues from APP, APP/PS1 and 3XTg.AD mice. On the basis of these findings, we conclude that Drp1 interacts with Aβ and phosphorylated tau, likely leading to excessive mitochondrial fragmentation, and mitochondrial and synaptic deficiencies, ultimately possibly leading to neuronal damage and cognitive decline. Treatment designed to reduce the expression of Drp1, Aβ and/or phosphorylated tau may decrease the interaction between Drp1 and phosphorylated tau and the interaction between Drp1 and Aβ, conferring protection to neurons from toxic insults of excessive Drp1, Aβ and/or phosphorylated tau.  相似文献   

10.
Chronic stress may be a risk factor for developing Alzheimer's disease (AD), but most studies of the effects of stress in models of AD utilize acute adverse stressors of questionable clinical relevance. The goal of this work was to determine how chronic psychosocial stress affects behavioral and pathological outcomes in an animal model of AD, and to elucidate underlying mechanisms. A triple-transgenic mouse model of AD (3xTgAD mice) and nontransgenic control mice were used to test for an affect of chronic mild social stress on blood glucose, plasma glucocorticoids, plasma insulin, anxiety, and hippocampal amyloid β-particle (Aβ), phosphorylated tau (ptau), and brain-derived neurotrophic factor (BDNF) levels. Despite the fact that both control and 3xTgAD mice experienced rises in corticosterone during episodes of mild social stress, at the end of the 6-week stress period 3xTgAD mice displayed increased anxiety, elevated levels of Aβ oligomers and intraneuronal Aβ, and decreased brain-derived neurotrophic factor levels, whereas control mice did not. Findings suggest 3xTgAD mice are more vulnerable than control mice to chronic psychosocial stress, and that such chronic stress exacerbates Aβ accumulation and impairs neurotrophic signaling.  相似文献   

11.
Alzheimer's disease (AD) is the most common progressive form of dementia in aged people. Microscopical changes in the brains of AD patients include the formation of senile plaques (SPs), neurofibrillary tangles (NFTs) and granulovacuolar degeneration and the deposition of amyloid-beta (Aβ). Aged dogs are known to suffer from cognitive dysfunction and this state is associated with deposition of Aβ in the brain. The aim of the present study was to investigate tau phosphorylation of neurons and astrocytes in the brain of aged dogs with progressive cognitive impairment. Changes in the brain of aged dogs with cognitive dysfunction were compared with those in the brain of patients with AD of Braak stage V. Immunohistochemically, Aβ deposition, phosphorylated tau Ser396 (p-tau Ser396) and ubiquitin were observed in the parietal cortex and hippocampus of aged dogs with cognitive dysfunction. Astrocytes with expression of p-tau Ser396 and neurons with co-localization of p-tau Ser396 and ubiquitin were observed. Expression of p-tau Ser396 and accumulation of ubiquitin were significantly increased in the parietal cortex and dorsal part of the hippocampus of the brain of aged dogs when compared with expression of these molecules in human AD.  相似文献   

12.
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder involving select neurons of the hippocampus, neocortex, and other regions of the brain. Markers of end stage disease include fibrillar lesions, which accumulate hyperphosphorylated tau protein polymerized into filaments, and granulovacuolar lesions, which appear primarily within the hippocampus. The mechanism by which only select populations of neurons develop these lesions as well as the relationship between them is unknown. To address these questions, we have turned to AD tissue to search for enzymes specifically involved in tau hyperphosphorylation. Recently, we showed that the principal phosphotransferases associated with AD brain-derived tau filaments are members of the casein kinase-1 (CK1) family of protein kinases. Here we report the distribution of three CK1 isoforms (Ckialpha, Ckidelta, and Ckiepsilon) in AD and control brains using immunohistochemistry and Western analysis. In addition to colocalizing with elements of the fibrillar pathology, CK1 is found within the matrix of granulovacuolar degeneration bodies. Furthermore, levels of all CK1 isoforms are elevated in the CA1 region of AD hippocampus relative to controls, with one isoform, Ckidelta, being elevated >30-fold. We propose that overexpression of this protein kinase family plays a key role in the hyperphosphorylation of tau and in the formation of AD-related pathology.  相似文献   

13.
Previously, we demonstrated that reproductive senescence was associated with mitochondrial deficits comparable to those of female triple-transgenic Alzheimer's mice (3xTgAD). Herein, we investigated the impact of chronic ovarian hormone deprivation and 17β-estradiol (E2) replacement on mitochondrial function in nontransgenic (nonTg) and 3xTgAD female mouse brain. Depletion of ovarian hormones by ovariectomy (OVX) in nontransgenic mice significantly decreased brain bioenergetics, and induced mitochondrial dysfunction and oxidative stress. In 3xTgAD mice, OVX significantly exacerbated mitochondrial dysfunction and induced mitochondrial β-amyloid and β-amyloid (Aβ)-binding-alcohol-dehydrogenase (ABAD) expression. Treatment with E2 at OVX prevented OVX-induced mitochondrial deficits, sustained mitochondrial bioenergetic function, decreased oxidative stress, and prevented mitochondrial β-amyloid and ABAD accumulation. In vitro, E2 increased maximal mitochondrial respiration in neurons and basal and maximal respiration in glia. Collectively, these data demonstrate that ovarian hormone loss induced a mitochondrial phenotype comparable to a transgenic female model of Alzheimer's disease (AD), which was prevented by E2. These findings provide a plausible mechanism for increased risk of Alzheimer's disease in premenopausally oophorectomized women while also suggesting a therapeutic strategy for prevention.  相似文献   

14.
Alzheimer’s disease (AD) is a common form of dementia in aged people, which is defined by two pathological characteristics: β-amyloid protein (Aβ) deposition and tau hyperphosphorylation. Although the mechanisms of AD development are still being debated, a series of evidence supports the idea that metals, such as copper, iron, zinc, magnesium and aluminium, are involved in the pathogenesis of the disease. In particular, the processes of Aβ deposition in senile plaques (SP) and the inclusion of phosphorylated tau in neurofibrillary tangles (NFTs) are markedly influenced by alterations in the homeostasis of the aforementioned metal ions. Moreover, the mechanisms of oxidative stress, synaptic plasticity, neurotoxicity, autophagy and apoptosis mediate the effects of metal ions-induced the aggregation state of Aβ and phosphorylated tau on AD development. More importantly, imbalance of these mechanisms finally caused cognitive decline in different experiment models. Collectively, reconstructing the signaling network that regulates AD progression by metal ions may provide novel insights for developing chelators specific for metal ions to combat AD.  相似文献   

15.
F Govsa  G Kayalioglu 《Neuroscience》1999,93(4):1335-1337
The relationship between nicotinamide adenine dinucleotide phosphate-diaphorase-positive neurons and blood vessels was investigated within the rat basal ganglia. Nicotinamide adenine dinucleotide phosphate-diaphorase-positive cell bodies, dendrites or axon-like processes surrounding many but not all blood vessels were observed in the caudate-putamen, ventral pallidum, medial part of the globus pallidus, substantia nigra and subthalamic nucleus. It is concluded that this close relationship contributes to the local vasodilator effect of nitric oxide in the regulation of blood flow in cerebral blood vessels.  相似文献   

16.
Alzheimer's disease (AD) is a neurodegenerative disease characterized by amyloid beta (Aβ) deposits, hyperphosphorylated tau deposition, and cognitive dysfunction. Abnormalities in the expression of brain-derived neurotrophic factor (BDNF), which plays an important role in learning and memory formation, have been reported in the brains of AD patients. A BDNF modulating peptide (Neuropep-1) was previously identified by positional-scanning synthetic peptide combinatorial library. Here we examine the neuroprotective effects of Neuropep-1 on several in vitro neurotoxic insults, and triple-transgenic AD mouse model (3xTg-AD). Neuropep-1 protects cultured neurons against oligomeric Aβ1–42, 1-methyl-4-phenylpyridinium, and glutamate-induced neuronal cell death. Neuropep-1 injection also significantly rescues the spatial learning and memory deficits of 3xTg-AD mice compared with vehicle-treated control group. Neuropep-1 treatment markedly increases hippocampal and cortical BDNF levels. Furthermore, we found that Neuropep-1-injected 3xTg-AD mice exhibit dramatically reduced Aβ plaque deposition and Aβ levels without affecting tau pathology. Neuropep-1 treatment does not alter the expression or activity of full-length amyloid precursor protein, α-, β-, or γ-secretase, but levels of insulin degrading enzyme, an Aβ degrading enzyme, were increased. These findings suggest Neuropep-1 may be a therapeutic candidate for the treatment of AD.  相似文献   

17.
The diagnosis of Alzheimer's disease (AD) in patients with mild cognitive impairment (MCI) is limited because it is based on non-specific behavioral and neuroimaging findings. The lesions of Alzheimer's disease: amyloid beta (Abeta) deposits, tau pathology and cellular oxidative damage, affect the hippocampus in the earlier stages causing memory impairment. In a 2-year longitudinal study of MCI patients and normal controls, we examined the hypothesis that cerebrospinal fluid (CSF) markers for these pathological features improve the diagnostic accuracy over memory and magnetic resonance imaging (MRI)-hippocampal volume evaluations. Relative to control, MCI patients showed decreased memory and hippocampal volumes and elevated CSF levels of hyperphosphorylated tau and isoprostane. These two CSF measures consistently improved the diagnostic accuracy over the memory measures and the isoprostane measure incremented the accuracy of the hippocampal volume achieving overall diagnostic accuracies of about 90%. Among MCI patients, over 2 years, longitudinal hippocampal volume losses were closely associated with increasing hyperphosphorylated tau and decreasing amyloid beta-42 levels. These results demonstrate that CSF biomarkers for AD contribute to the characterization of MCI.  相似文献   

18.
Sun L  Liu SY  Zhou XW  Wang XC  Liu R  Wang Q  Wang JZ 《Neuroscience》2003,118(4):1175-1182
Tau hyperphosphorylation leads to formation of paired helical filament/neurofibrillary tangles, the hallmark lesion seen in Alzheimer's disease (AD) brain. An imbalanced regulation in protein kinases and protein phosphatases in the affected neurons is proposed to be a reasonable causative factor to the disease process. To verify the hypothesis, we have injected in the present study calyculin A, a potent and specific inhibitor of protein phosphatase (PP) 2A and PP1, into rat hippocampus bilaterally, thus reproduced an Alzheimer's-like deficiency in dephosphorylation system. It was found that calyculin A-injected rats developed lesions in spatial memory retention in Morris water maze test. At mean time, tau was hyperphosphorylated at Ser396/Ser404 (PHF-1) and Ser-262/Ser-356 (12E8) sites determined both by immunohistochemistry and Western blot. It is implicated that (1) PP2A and PP1 participate in the in vivo regulation of tau phosphorylation, and down-regulation of the two phosphatases will result in tau hyperphosphorylation; (2) hyperphosphorylation of tau at PHF-1 and 12E8 sites might be crucial to affect spatial memory in AD.  相似文献   

19.
Park H  Kam TI  Kim Y  Choi H  Gwon Y  Kim C  Koh JY  Jung YK 《Human molecular genetics》2012,21(12):2725-2737
Abnormally hyperphosphorylated tau is often caused by tau kinases, such as GSK3β and Cdk5. Such occurrence leads to neurofibrillary tangle formation and neuronal degeneration in tauopathy, including Alzheimer's disease (AD). However, little is known about the signaling cascade underlying the pathologic phosphorylation of tau by Aβ(42). In this study, we show that adenylate kinase 1 (AK1) is a novel regulator of abnormal tau phosphorylation. AK1 expression is markedly increased in the brains of AD patients and AD model mice and is significantly induced by Aβ(42) in the primary neurons. Ectopic expression of AK1 alone augments the pathologic phosphorylation of tau at PHF1, CP13 and AT180 epitopes and enhances the formation of tau aggregates. Inversely, downregulation of AK1 alleviates Aβ(42)-induced hyperphosphorylation of tau. AK1 plays a role in Aβ(42)-induced impairment of AMPK activity and GSK3β activation in the primary neurons. Pharmacologic studies show that treatment with an AMPK inhibitor activates GSK3β, and a GSK3β inhibitor attenuates AK1-mediated tau phosphorylation. In a Drosophila model of human tauopathy, the retinal expression of human AK1 severely exacerbates rough eye phenotype and increases abnormal tau phosphorylation. Further, neural expression of AK1 reduces the lifespan of tau transgenic files. Taken together, these observations indicate that the neuronal expression of AK1 is induced by Aβ(42) to increase abnormal tau phosphorylation via AMPK-GSK3β and contributes to tau-mediated neurodegeneration, providing a new upstream modulator of GSK3β in the pathologic phosphorylation of tau.  相似文献   

20.
The neuropathological features associated with Alzheimer's disease (AD) brain include the presence of extracellular neuritic plaques composed of amyloid beta protein (Abeta), intracellular neurofibrillary tangles containing phosphorylated tau protein and the loss of basal forebrain cholinergic neurons which innervate regions such as the hippocampus and the cortex. Studies of the pathological changes that characterize AD and several other lines of evidence indicate that Abeta accumulation in vivo may initiate phosphorylation of tau protein, which by disrupting neuronal network may trigger the process of neurodegeneration observed in AD brains. However, the underlying cause of degeneration of the basal forebrain cholinergic neurons and their association, if any, to Abeta peptides or phosphorylated tau remains mostly unknown. In the present study, using rat primary septal cultures, we have shown that aggregated Abeta peptides, in a time (18-96 h)- and concentration (0.7-60 microM)-dependent manner, induce toxicity and decrease choline acetyltransferase enzyme activity in cultured neurons. Using immunocytochemistry and immunoblotting, we have also demonstrated that Abeta treatment can significantly increase the phosphorylation of tau protein in septal cultures. At the cellular level, hyperphosphorylated tau is mostly apparent in the somatodendritic compartment of the neurons. Abeta peptide (10 microM), in addition to tau phosphorylation, also activates mitogen-activated protein kinase and glycogen synthase kinase-3beta, the two kinases which are known to be involved in the formation of hyperphosphorylated tau in the AD brain. Exposure to specific inhibitors of the mitogen-activated protein kinase (i.e. PD98059) or glycogen synthase kinase-3beta (i.e. LiCl) attenuated the hyperphosphorylation of the tau protein in cultured neurons.Given the evidence that tau phosphorylation can induce cell loss by disrupting neuronal cytoskeleton, it is likely that aggregated Abeta peptide triggers degeneration of septal neurons, including those expressing the cholinergic phenotype, by phosphorylation of the tau protein activated by mitogen-activated protein kinase and glycogen synthase kinase-3beta. These results, taken together, suggest that cultured septal cholinergic neurons are vulnerable to Abeta-mediated toxicity and tau phosphorylation may play an important role in Abeta-induced neurodegeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号