首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alport syndrome (ATS) is a hereditary nephropathy often associated with sensorineural hypoacusis and ocular abnormalities. Mutations in the COL4A5 gene cause X-linked ATS. Mutations in COL4A4 and COL4A3 genes have been reported in both autosomal recessive and autosomal dominant ATS. The conventional mutation screening, performed by DHPLC and/or Sanger sequencing, is time-consuming and has relatively high costs because of the absence of hot spots and to the high number of exons per gene: 51 (COL4A5), 48 (COL4A4) and 52 (COL4A3). Several months are usually necessary to complete the diagnosis, especially in cases with less informative pedigrees. To overcome these limitations, we designed a next-generation sequencing (NGS) protocol enabling simultaneous detection of all possible variants in the three genes. We used a method coupling selective amplification to the 454 Roche DNA sequencing platform (Genome Sequencer junior). The application of this technology allowed us to identify the second mutation in two ATS patients (p.Ser1147Phe in COL4A3 and p.Arg1682Trp in COL4A4) and to reconsider the diagnosis of ATS in a third patient. This study, therefore, illustrates the successful application of NGS to mutation screening of Mendelian disorders with locus heterogeneity.  相似文献   

2.
Rare, atypical, and undiagnosed autosomal‐recessive disorders frequently occur in the offspring of consanguineous couples. Current routine diagnostic genetic tests fail to establish a diagnosis in many cases. We employed exome sequencing to identify the underlying molecular defects in patients with unresolved but putatively autosomal‐recessive disorders in consanguineous families and postulated that the pathogenic variants would reside within homozygous regions. Fifty consanguineous families participated in the study, with a wide spectrum of clinical phenotypes suggestive of autosomal‐recessive inheritance, but with no definitive molecular diagnosis. DNA samples from the patient(s), unaffected sibling(s), and the parents were genotyped with a 720K SNP array. Exome sequencing and array CGH (comparative genomic hybridization) were then performed on one affected individual per family. High‐confidence pathogenic variants were found in homozygosity in known disease‐causing genes in 18 families (36%) (one by array CGH and 17 by exome sequencing), accounting for the clinical phenotype in whole or in part. In the remainder of the families, no causative variant in a known pathogenic gene was identified. Our study shows that exome sequencing, in addition to being a powerful diagnostic tool, promises to rapidly expand our knowledge of rare genetic Mendelian disorders and can be used to establish more detailed causative links between mutant genotypes and clinical phenotypes.  相似文献   

3.
Targeted massively parallel sequencing (TMPS) has been used in genetic diagnosis for Mendelian disorders. In the past few years, the TMPS has identified new and already described genes associated with primary ovarian insufficiency (POI) phenotype. Here, we performed a targeted gene sequencing to find a genetic diagnosis in idiopathic cases of Brazilian POI cohort. A custom SureSelectXT DNA target enrichment panel was designed and the sequencing was performed on Illumina NextSeq sequencer. We identified 1 homozygous 1‐bp deletion variant (c.783delC) in the GDF9 gene in 1 patient with POI. The variant was confirmed and segregated using Sanger sequencing. The c.783delC GDF9 variant changed an amino acid creating a premature termination codon (p.Ser262Hisfs*2). This variant was not present in all public databases (ExAC/gnomAD, NHLBI/EVS and 1000Genomes). Moreover, it was absent in 400 alleles from fertile Brazilian women screened by Sanger sequencing. The patient's mother and her unaffected sister carried the c.783delC variant in a heterozygous state, as expected for an autosomal recessive inheritance. Here, the TMPS identified the first homozygous 1‐bp deletion variant in GDF9. This finding reveals a novel inheritance pattern of pathogenic variant in GDF9 associated with POI, thus improving the genetic diagnosis of this disorder.  相似文献   

4.
Next-generation sequencing (NGS) techniques have already shown their potential in the identification of mutations underlying rare inherited disorders. We report here the application of linkage analysis in combination with targeted DNA capture and NGS to a Norwegian family affected by an undiagnosed mental retardation disorder with an autosomal recessive inheritance pattern. Linkage analysis identified two loci on chromosomes 9 and 17 which were subject to target enrichment by hybridization to a custom microarray. NGS achieved 20-fold or greater sequence coverage of 83% of all protein-coding exons in the target regions. This led to the identification of compound heterozygous mutations in NAGLU, compatible with the diagnosis of Mucopolysaccharidosis IIIB (MPS IIIB or Sanfilippo Syndrome type B). This diagnosis was confirmed by demonstrating elevated levels of heparan sulphate in urine and low activity of α-N-acetyl-glucosaminidase in cultured fibroblasts. Our findings describe a mild form of MPS IIIB and illustrate the diagnostic potential of targeted NGS in Mendelian disease with unknown aetiology.  相似文献   

5.
Consanguinity is one of the most frequent risk factors for congenital disorders. In theory, prospective exome sequencing of consanguineous couples could identify couples who both are carriers of autosomal recessive diseases, and empower such couples to make informed reproductive decisions. To investigate this, we sent blood samples to our laboratory of four pairs of consanguineous parents having one or more children affected by an autosomal recessive disorder, without revealing any diagnostic information. The study was restricted to find identical, previously described, or evidently pathogenic mutations in both parents of each couple, in over 400 genes known to result in severe autosomal recessive disorders. Out of the six autosomal recessive disorders known to the four couples studied, two were correctly identified. Carrier status of one not previously known autosomal recessive disorder was discovered. As expected, given the pipeline used, large deletions, mutations in genes not present in the gene list, mutations outside the exons and consensus splice sites, and mutations that were not evidently pathogenic and previously not reported, were not identified. The restriction to detecting only couples with identical mutations diminishes the risk of revealing unsolicited findings and shortens the time needed for analysis, but also results in missing couples with different mutations in the same gene. In addition to the proposed pipeline, couples should be offered testing for carrier status of frequent disorders that can present themselves by large deletions, non-exonic mutations or compound heterozygous mutations (e.g. thalassemia, spinal muscular atrophy, cystic fibrosis). Even though sensitivity is reduced, offering exome sequencing prospectively will increase reproductive options for consanguineous couples.  相似文献   

6.
Cockayne syndrome (CS) is one the rare DNA‐repair deficiency disorders with autosomal recessive inheritance. Failure to thrive and microcephaly are the major criteria of diagnosis. Owing to genetic heterogeneity of CS, whole exome sequencing is promising way to determine the genetic basis of the disease. Here, we present c.1053delT in ERCC8 gene in an Iranian family with symptom of CS using whole exome sequencing. The deletion was novel and was not previously reported elsewhere.  相似文献   

7.
Hereditary hearing loss (HL) has high genetic and phenotypical heterogeneity including the overlapping and variable phenotypic features. For sporadic HL without a family history, it is more difficult to indicate the contribution of genetic factors to define a pattern of inheritance. We assessed the contribution of genetic variants and patterns of inheritance by a family trio-based sequencing and provided new insight into genetics. We conducted an analysis of data from unrelated sporadic patients with HL (n = 404) who underwent trio-based whole-exome sequencing (trio-WES) or proband-only WES (p-WES) or targeted exome sequencing (TES), and the samples of their unaffected-parents (n = 808)were validated. A molecular diagnosis was rendered for 191 of 404 sporadic HL patients (47.3%) in multiple modes of inheritance, including autosomal recessive (AR), autosomal dominant (AD) caused by de novo variants, copy-number variants (CNVs), X-linked recessive, and dual genetic diagnosis. Among these patients, 83 (43.5%) cases were diagnosed with variants in rare genes. Sporadic HL patients were identified by multiple modes of transmission. Observed variations in rare genes and multiple modes of inheritance can strikingly emphasize the important etiological contribution of recessive and de novo genetic variants to a large cohort of sporadic HL cases plus their parents.  相似文献   

8.
目的对7个鸟氨酸氨甲酰基转移酶缺陷症(ornithine transcarbamylase deficiency,OTCD)家系进行OTC基因变异检测,明确其致病原因并为家系的遗传咨询和产前诊断提供依据。方法应用靶向高通量测序(next-generation sequencing,NGS)技术对7例经串联质谱筛查或临床诊断可疑OTCD的患儿或其母亲进行遗传代谢病相关基因panel检测,发现可疑致病变异位点后,应用PCR扩增和Sanger测序进行变异验证分析。在患儿母亲再次妊娠时抽取绒毛或羊水细胞进行相应基因变异检测,用于产前诊断。结果7个家系中共检测到7种OTC基因变异,分别为c.583G>A(p.Glyl95Arg).c.6260 T(p.Ala209Val)、c.6740 T(p.Pro225Leu)、c.482A>G(p.Asnl61Ser)、IVS1-2A>G、c.116G>T(p.Gly39Val).c.898delT(p.300Phefs*22),其中IVSl-2A>G、c・116G>T(p.Gly39Val)和c.898delT(p.300Phefs*22)为未报道过的新变异。产前诊断家系中3例胎儿基因测序均发现携带OTC基因变异半合子,性别为男性,孕妇选择终止妊娠,胎儿流产组织基因变异分析结果与产前诊断一致;另1例胎儿为OTC基因杂合变异,性别为女性,出生后新生儿筛查结果阴性,随访12个月,生长发育未见异常。结论OTC基因变异为7个OTCD家系的致病原因,致病变异的检出为家系的遗传咨询和产前诊断提供了依据。  相似文献   

9.
Rare genetic disorders can go undiagnosed for years as the entire spectrum of phenotypic variation is not well characterized given the reduced number of patients reported in the literature and the low frequency at which these occur. Moreover, the current paradigm for clinical diagnostics defines disease diagnosis by a specified spectrum of phenotypic findings; when such parameters are either missing, or other findings not usually observed are seen, the phenotype driven approach to diagnosis may result in a specific etiological diagnosis not even being considered within the differential diagnosis. The novel implementation of genomic sequencing approaches to investigate rare genetic disorders is allowing not only the discovery of new genes, but also the phenotypic expansion of known Mendelian genetic disorders. Here we report the detailed clinical assessment of a patient with a rare genetic disorder with undefined molecular diagnosis. We applied whole-exome sequencing to this patient and unaffected parents in order to identify the molecular cause of her disorder. We identified compound heterozygous mutations in the CTSA gene, responsible for causing galactosialidosis; the molecular diagnosis was further confirmed by biochemical studies. This report expands on the clinical spectrum of this rare lysosomal disorder and exemplifies how genomic approaches are further elucidating the characterization and understanding of genetic diseases.  相似文献   

10.
《Genetics in medicine》2012,14(6):594-603
PurposeMendelian disorders are most commonly caused by mutations identifiable by DNA sequencing. Exonic deletions and duplications can go undetected by sequencing, and their frequency in most Mendelian disorders is unknown.MethodsWe designed an array comparative genomic hybridization (CGH) test with probes in exonic regions of 589 genes. Targeted testing was performed for 219 genes in 3,018 patients. We demonstrate for the first time the utility of exon-level array CGH in a large clinical cohort by testing for 136 autosomal dominant, 53 autosomal recessive, and 30 X-linked disorders.ResultsOverall, 98 deletions and two duplications were identified in 53 genes, corresponding to a detection rate of 3.3%. Approximately 40% of positive findings were deletions of only one or two exons. A high frequency of deletions was observed for several autosomal dominant disorders, with a detection rate of 2.9%. For autosomal recessive disorders, array CGH was usually performed after a single mutation was identified by sequencing. Among 138 individuals tested for recessive disorders, 10.1% had intragenic deletions. For X-linked disorders, 3.5% of 313 patients carried a deletion or duplication.ConclusionOur results demonstrate that exon-level array CGH provides a robust option for intragenic copy number analysis and should routinely supplement sequence analysis for Mendelian disorders.Genet Med 2012:14(6):594–603  相似文献   

11.
Exome and genome sequencing were used to identify the genetic etiology of a severe neurodevelopmental disorder in two unrelated Ashkenazi Jewish families with three affected individuals. The clinical findings included a prenatal presentation of microcephaly, polyhydramnios and clenched hands while postnatal findings included microcephaly, severe developmental delay, dysmorphism, neurologic deficits, and death in infancy. A shared rare homozygous, missense variant (c.274A > G; p.Ser92Gly, NM_024516.4) was identified in PAGR1, a gene currently not associated with a Mendelian disease. PAGR1 encodes a component of the histone methyltransferase MLL2/MLL3 complex and may function in the DNA damage response pathway. Complete knockout of the murine Pagr1a is embryonic-lethal. Given the available evidence, PAGR1 is a strong candidate gene for a novel autosomal recessive severe syndromic neurodevelopmental disorder.  相似文献   

12.
The advent of next generation sequencing (NGS) techniques has greatly simplified the molecular diagnosis and gene identification in very rare and highly heterogeneous Mendelian disorders. Over the last two years, these approaches, especially whole exome sequencing (WES), alone or combined with homozygosity mapping and linkage analysis, have proved to be successful in the identification of more than 25 new causative retinal dystrophy genes. NGS-approaches have also identified a wealth of new mutations in previously reported genes and have provided more comprehensive information concerning the landscape of genotype-phenotype correlations and the genetic complexity/diversity of human control populations. Although whole genome sequencing is far more informative than WES, the functional meaning of the genetic variants identified by the latter can be more easily interpreted, and final diagnosis of inherited retinal dystrophies is extremely successful, reaching 80%, particularly for recessive cases. Even considering the present limitations of WES, the reductions in costs and time, the continual technical improvements, the implementation of refined bioinformatic tools and the unbiased comprehensive genetic information it provides, make WES a very promising diagnostic tool for routine clinical and genetic diagnosis in the future.  相似文献   

13.
BackgroundThe EPIGENE network was created in 2014 by four multidisciplinary teams composed of geneticists, pediatric neurologists and neurologists specialized in epileptology and neurophysiology. The ambition of the network was to harmonize and improve the diagnostic strategy of Mendelian epileptic disorders using next-generation sequencing, in France. Over the years, five additional centers have joined EPIGENE and the network has been working in close collaboration, since 2018, with the French reference center for rare epilepsies (CRéER).ResultsSince 2014, biannual meetings have led to the design of four successive versions of a monogenic epilepsy gene panel (PAGEM), increasing from 68 to 144 genes. A total of 4035 index cases with epileptic disorders have been analyzed with a diagnostic yield of 31% (n = 1265/4035). The top 10 genes, SCN1A, KCNQ2, STXBP1, SCN2A, SCN8A, PRRT2, PCDH19, KCNT1, SYNGAP1, and GRIN2A, account for one-sixth of patients and half of the diagnoses provided by the PAGEM.ConclusionThese results suggest that a gene-panel approach is an efficient first-tier test for the genetic diagnosis of Mendelian epileptic disorders. In a near future, French patients with “drug-resistant epilepsies with seizure-onset in the first two-years of life” can benefit from whole-genome sequencing (WGS), as a second line genetic screening with the implementation of the 2025 French Genomic Medicine Plan. The EPIGENE network has also promoted scientific collaborations on genetic epilepsies within CRéER.  相似文献   

14.
Persistent hypokalemic hypochloremic metabolic alkalosis represents a heterogeneous group of genetic disorders of which the most common is Bartter syndrome (BS). BS is an inherited renal tubulopathy caused by defective salt reabsorption in the thick ascending loop of Henle, which results in persistent hypokalemic hypochloremic metabolic alkalosis. Here we report a 10-year-old girl of a consanguineous family. She presented prenatally with severe polyhydramnios and distended bowel loops. Thereafter, she displayed failure to thrive and had recurrent admissions due to dehydration episodes associated with diarrhea, and characterized by hypokalemia, hypochloremia and metabolic alkalosis. BS was considered her working diagnosis for several years despite negative genetic analysis of the known genes associated with BS. Whole exome sequencing identified a novel homozygous c.1652delT deleterious frameshift mutation in the SLC26A3 gene, which confirmed the diagnosis of congenital chloride diarrhea (CCD), a rare autosomal recessive disease that mimics biochemically BS. A review of twelve additional reported cases of CCD that were initially misdiagnosed as BS, emphasizes CCD in the differential diagnosis of BS, and highlights the clinical discrepancies between these two entities. Taken together, our report further emphasizes the typical clinical features of CCD, and the importance of next generation sequencing in the diagnosis of syndromes with genetic heterogeneity. We suggest including SLC26A3 in the extended BS targeted gene panels.  相似文献   

15.
16.
Background

Inborn errors of immunity (IEI) are a group of heterogeneous disorders with geographic and ethnic diversities. Although IEI are common in Egypt, genetic diagnosis is limited due to financial restrictions. This study aims to characterize the genetic spectrum of IEI patients in Egypt and highlights the adaptation of the molecular diagnostic methods to a resource-limited setting.

Methods

Genetic material from 504 patients was studied, and proper diagnosis was achieved in 282 patients from 246 families. Mutational analysis was done by Sanger sequencing, next-generation sequencing (NGS) targeting customized genes panels, and whole-exome sequencing (WES) according to the patients’ phenotypes and availability of genetic testing.

Results

A total of 194 variants involving 72 different genes were detected with RAG1/2 genes being the most encountered followed by DOCK8, CYBA, LRBA, NCF1, and JAK3. Autosomal recessive (AR) inheritance was detected in 233/282 patients (82.6%), X-linked (XL) recessive inheritance in 32/282 patients (11.3%), and autosomal dominant (AD) inheritance in 18/282 patients (6.4%), reflecting the impact of consanguineous marriages on the prevalence of different modes of inheritance and the distribution of the various IEI disorders.

Conclusion

The study showed that a combination of Sanger sequencing in selected patients associated with targeted NGS or WES in other patients is an effective diagnostic strategy for IEI diagnosis in countries with limited diagnostic resources. Molecular testing can be used to validate other nonexpensive laboratory techniques that help to reach definitive diagnosis and help in genetic counseling and taking proper therapeutic decisions including stem cell transplantation or gene therapy.

  相似文献   

17.
Inherited neuromuscular disorder (NMD) is a wide term covering different genetic disorders affecting muscles, nerves, and neuromuscular junctions. Genetic and clinical heterogeneity is the main drawback in a routine gene‐by‐gene diagnostics. We present Czech NMD patients with a genetic cause identified using targeted next‐generation sequencing (NGS) and the spectrum of these causes. Overall 167 unrelated patients presenting NMD falling into categories of muscular dystrophies, congenital muscular dystrophies, congenital myopathies, distal myopathies, and other myopathies were tested by targeted NGS of 42 known NMD‐related genes. Pathogenic or probably pathogenic sequence changes were identified in 79 patients (47.3%). In total, 37 novel and 51 known disease‐causing variants were detected in 23 genes. In addition, variants of uncertain significance were suspected in 7 cases (4.2%), and in 81 cases (48.5%) sequence changes associated with NMD were not found. Our results strongly indicate that for molecular diagnostics of heterogeneous disorders such as NMDs, targeted panel testing has a high‐clinical yield and should therefore be the preferred first‐tier approach. Further, we show that in the genetic diagnostic practice of NMDs, it is necessary to take into account different types of inheritance including the occurrence of an autosomal recessive disorder in two generations of one family.  相似文献   

18.
《Genetics in medicine》2013,15(4):307-309
PurposeMendelian phenotypes in humans vary from benign variants to lethal disorders. Embryonic lethal phenotypes that are similar to what has been known for a long time in mice have remained largely unknown because of the difficulty in arriving at a molecular diagnosis. The purpose of this study is to test whether next generation sequencing can reveal the underlying etiology of recurrent fetal loss.MethodsWe hypothesized that exome sequencing combined with autozygome analysis can reveal the underlying mutation in a family in which recurrent fetal loss was likely to be autosomal recessive in origin.ResultsA novel mutation in CHRNA1 was identified. This gene is known to cause multiple pterygium and fetal akinesia syndrome.ConclusionThis is the first report of exome sequencing to identify the cause of recurrent fetal loss and reveal the diagnosis of a lethal human phenotype. Our results should inspire a systematic examination of the extent of “unborn” Mendelian phenotypes in humans using next-generation sequencing.Genet Med 2013:15(4):307–309  相似文献   

19.
This retrospective study aims to investigate the diagnostic yields of multiple strategies of next-generation sequencing (NGS) for children with rare neurological disorders (NDs). A total of 220 pediatric patients with NDs who visited our hospital between Jan 2017 and Dec 2018 and had undergone NGS were included. Most patients were 5 years old or younger, and the number of patients visiting the hospital decreased with age. Seizures were the most common symptom in this cohort. The positive rates for targeted NGS panels (Panel), whole-exome sequencing (WES), and copy number variation sequencing (CNVseq) were 26.5% (9/34), 36.6% (63/172), and 16.7% (22/132), respectively. The positive rate for patients undergoing a combination of WES and CNVseq (WES + CNVseq) was 47.8% (54/113), which was significantly better than the positive rate for patients who underwent WES alone (32.7%, 37/113). A total of 83 variants were found in 42 genes, and SCN1A was the most frequently mutanted gene. Twenty-four CNVs were identified in 22 patients: two CNVs were inherited from the mother; 12 CNVs were de novo; and the CNV origins could not be determined in 10 patients. WES + CNVseq may potentially be the mostly effective NGS approach for diagnosis of rare NDs in pediatric patients.  相似文献   

20.
目的对1例不明原因智力障碍患儿进行遗传学分析,明确导致常染色体隐性智力障碍-27(mental retardation,non-syndromic,autosomal recessive,MRT27)的遗传学病因。方法应用单核苷酸多态-微阵列比较基因组杂交技术以及目标基因捕获测序法对患儿进行智力障碍/发育迟缓相关基因外显子检测。结果排除患儿基因组微缺失/微重复。目标基因捕获测序法检测到患儿的LINS1基因c.722delA(p.Asp241fs)纯合变异,父母均携带c.722delA(p.Asp241fs)杂合变异,符合常染色体隐性遗传方式。结论LINS1基因c.722delA(p.Asp241fs)变异导致了患儿MRT27的发生。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号