首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using resting state (RS) functional magnetic resonance imaging (fMRI), the connectivity patterns of the default mode (DMN), frontoparietal, executive, and salience networks were explored in 13 Alzheimer's disease (AD) patients, 12 amnestic mild cognitive impairment (aMCI) patients, and 13 healthy controls. Compared with controls and aMCI, AD was associated with opposing connectivity effects in the DMN (decreased) and frontal networks (enhanced). The only RS abnormality found in aMCI patients compared with controls was a precuneus connectivity reduction in the DMN. RS fMRI group differences were only partly related to gray matter atrophy. In AD patients, the mean executive network connectivity was positively associated with frontal-executive and language neuropsychological scores. These results suggest that AD is associated with an alteration of large-scale functional brain networks, which extends well beyond the DMN. In AD, the limited resources of the DMN may be paralleled, in an attempt to maintain cognitive efficiency, by an increased prefrontal connectivity. A medial parietal RS fMRI signal change seems to be present since the early phase of AD.  相似文献   

2.
While resting state functional connectivity has been shown to decrease in patients with mild and/or moderate Alzheimer's disease, it is not yet known how functional connectivity changes in patients as the disease progresses. Furthermore, it has been noted that the default mode network is not as homogenous as previously assumed and several fractionations of the network have been proposed. Here, we separately investigated the modulation of 3 default mode subnetworks, as identified with group independent component analysis, by comparing Alzheimer's disease patients to healthy controls and by assessing connectivity changes over time. Our results showed decreased connectivity at baseline in patients versus controls in the posterior default mode network, and increased connectivity in the anterior and ventral default mode networks. At follow-up, functional connectivity decreased across all default mode systems in patients. Our results suggest that earlier in the disease, regions of the posterior default mode network start to disengage whereas regions within the anterior and ventral networks enhance their connectivity. However, as the disease progresses, connectivity within all systems eventually deteriorates.  相似文献   

3.
Insulin resistance (IR) is the main pathological condition underlying vascular disorders, such as diabetes and cardiovascular disease, which are well established risk factors for cognitive decline and Alzheimer disease (AD). Hippocampal atrophy has been associated with cognitive decline, but little is known about the influence of IR on hippocampus integrity in non-diabetic, cognitively intact individuals. Herein, 50 women ages 50-65, current users of hormone therapy, underwent magnetic resonance imaging, cognitive testing, and homeostatic assessment of insulin resistance (HOMA-IR), as part of a longitudinal study examining brain structure and function in postmenopausal women at risk for AD. Results demonstrated a significant negative relationship between HOMA-IR and right and total hippocampal volume, overall cognitive performance, and selective tests of verbal and non-verbal memory. The main effect of HOMA-IR on brain structure and cognition was not altered by the presence of APOE-ε4 allele or by reproductive history, such as duration of endogenous and exogenous estrogen exposure. These results suggest that IR in middle-aged individuals at risk for AD may be biomarker for dementia risk.  相似文献   

4.
Functional magnetic resonance imaging (fMRI) of default mode network (DMN) brain activity during resting is recently gaining attention as a potential noninvasive biomarker to diagnose incipient Alzheimer's disease. The aim of this study was to determine which method of data processing provides highest diagnostic power and to define metrics to further optimize the diagnostic value. fMRI was acquired in 21 healthy subjects, 17 subjects with mild cognitive impairment and 15 patients with Alzheimer's disease (AD) and data evaluated both with volumes of interest (VOI)-based signal time course evaluations and independent component analyses (ICA). The first approach determines the amount of DMN region interconnectivity (as expressed with correlation coefficients); the second method determines the magnitude of DMN coactivation. Apolipoprotein E (ApoE) genotyping was available in 41 of the subjects examined. Diagnostic power (expressed as accuracy) of data of a single DMN region in independent component analyses was 64%, that of a single correlation of time courses between 2 DMN regions was 71%, respectively. With multivariate analyses combining both methods of analysis and data from various regions, accuracy could be increased to 97% (sensitivity 100%, specificity 95%). In nondemented subjects, no significant differences in activity within DMN could be detected comparing ApoE ε4 allele carriers and ApoE ε4 allele noncarriers. However, there were some indications that fMRI might yield useful information given a larger sample. Time course correlation analyses seem to outperform independent component analyses in the identification of patients with Alzheimer's disease. However, multivariate analyses combining both methods of analysis by considering the activity of various parts of the DMN as well as the interconnectivity between these regions are required to achieve optimal and clinically acceptable diagnostic power.  相似文献   

5.
Age-related effects on the default mode network (DMN) connectivity as measured at rest using functional magnetic resonance imaging (fMRI) are now well described. Little is known however about the relationships between these changes and age-related effects on cognition or on the unconstrained thoughts which occur during the resting-state scan, called inner experience. Brain resting-state activity, inner experience, and cognitive ability measurements were obtained in 70 participants aged 19–80 years. The anterior-posterior disruption of DMN activity with age reported in previous studies was recovered here. A significant effect of age was also found on cognitive abilities but not on inner experience. Finally, age-related changes in DMN connectivity were found to correlate with cognitive abilities, and more specifically with autobiographical memory performance. These findings provide new information to fuel the debate on the role of the brain default mode and more specifically on the effect of age-related changes in resting-state activity as measured with fMRI.  相似文献   

6.
Regional functional connectivity (FC) of 39 patients with Alzheimer's disease (AD), 23 patients with mild cognitive impairment (MCI), and 43 healthy elderly controls was studied using resting-state functional magnetic resonance imaging (rs-fMRI). After a mean follow-up of 2.8 ± 1.9 years, 7 MCI patients converted to AD, while 14 patients remained cognitively stable. Resting-state functional magnetic resonance imaging scans were analyzed using independent component analysis (ICA), followed by a "dual-regression" technique to create and compare subject-specific maps of each independent spatiotemporal component, correcting for age, sex, and gray matter atrophy. AD patients displayed lower FC within the default-mode network (DMN) in the precuneus and posterior cingulate cortex compared with controls, independent of cortical atrophy. Regional FC values of MCI patients were numerically in between AD patients and controls, but only the difference between AD and stable MCI patients was statistically significant. Correlation with cognitive dysfunction demonstrated the clinical relevance of FC changes within the DMN. In conclusion, clinically relevant decreased FC within the DMN was observed in AD.  相似文献   

7.
Alzheimer's disease (AD) has a long preclinical phase in which amyloid and tau cerebral pathology accumulate without producing cognitive symptoms. Resting state functional connectivity magnetic resonance imaging has demonstrated that brain networks degrade during symptomatic AD. It is unclear to what extent these degradations exist before symptomatic onset. In this study, we investigated graph theory metrics of functional integration (path length), functional segregation (clustering coefficient), and functional distinctness (modularity) as a function of disease severity. Further, we assessed whether these graph metrics were affected in cognitively normal participants with cerebrospinal fluid evidence of preclinical AD. Clustering coefficient and modularity, but not path length, were reduced in AD. Cognitively normal participants who harbored AD biomarker pathology also showed reduced values in these graph measures, demonstrating brain changes similar to, but smaller than, symptomatic AD. Only modularity was significantly affected by age. We also demonstrate that AD has a particular effect on hub-like regions in the brain. We conclude that AD causes large-scale disconnection that is present before onset of symptoms.  相似文献   

8.
Task-induced deactivation is frequently reported in the ventro-medial prefrontal cortex (vmPFC) and posterior cingulate cortex (PCC), regions considered to belong to the default mode network. To investigate the effect of dopamine on task-induced deactivation, we used positron emission tomography to measure cerebral blood flow during performance of the Tower of London task before and after administration of the dopamine receptor agonist apomorphine in six healthy volunteers (49–66 years old) and six Parkinson disease patients (52–69 years old). Although task-induced deactivation was observed in the vmPFC and PCC in both groups and in both conditions, an inverse correlation between activation and problem complexity was observed in the vmPFC only in the apomorphine condition.  相似文献   

9.
We explored resting-state metabolic connectivity in prodromal Alzheimer's disease (pAD) patients and in healthy controls (CTR), through a voxel-wise interregional correlation analysis of 18F-fluorodeoxyglucose (FDG)-positron emission tomography (PET) by means of statistical parametric mapping. Baseline 18F-fluorodeoxyglucose-positron emission tomography of 36 patients with amnestic mild cognitive impairment who converted to Alzheimer's disease (AD) dementia after an average time of 2 years (pAD) and of 105 CTR were processed. The area of hypometabolism in pAD showed less metabolic connectivity in patients than in CTR (autocorrelation and correlation with large temporal and frontal areas, respectively). pAD patients showed limited correlation even in selected nonhypometabolic areas, including the hippocampi and the dorsolateral prefrontal cortex (DLFC). On the contrary, in CTR group correlation was highlighted between hippocampi and precuneus/posterior cingulate and frontal cortex, and between dorsolateral prefrontal cortex and caudate nuclei and parietal cortex. The reduced metabolic connections both in hypometabolic and nonhypometabolic areas in pAD patients suggest that metabolic disconnection (reflecting early diaschisis) may antedate remote hypometabolism (early sign of synaptic degeneration).  相似文献   

10.
By probing its functional anatomy, the default mode network (DMN) can be considered consisting of two interacting hub and non-hub subsystems. The hub subsystem includes posterior cingulate cortex (PCC), medial prefrontal cortex (MPFC) and bilateral inferior parietal cortex (IPC). The non-hub subsystem contains inferior temporal cortex (ITC) and (para) hippocampus (HC). In this study, Gaussian Bayesian Network (BN) and Gaussian Dynamic Bayesian Network (DBN) were applied separately to detect the instantaneous and temporal connection relationship within each and between the two DMN subsystems. It was found that the directional instantaneous interactions between the two subsystems were primarily “from non-hub to hub”. The temporal interactions between hub and non-hub regions, on the other hand, are less presented between the two subsystems. The hub subsystem demonstrated both strong instantaneous and temporal interactions among the hub regions, while the non-hub regions were only strongly inter-connected instantaneously but temporally isolated with each other. In addition, one of the hub regions, PCC, appears to be a confluent node and important in the functional integration within the network.  相似文献   

11.
Despite the recent identification of several novel risk genes for Alzheimer's disease (AD), little is known about their influence on the age at onset (AAO) of AD. The AAO is a phenotype with a heritable component distinct from disease risk and may be a useful trait to study in the context of developing interventions for delaying the onset of AD. We studied the influence of 10 recently identified AD risk genes and APOE in relation to AAO in a large cohort of AD patients (N = 2569). We find that the novel AD risk gene, PICALM, exerts a small effect on the AAO of AD with earlier disease onset in risk allele carriers. In addition, we confirmed the previously reported association between the APOE ε4 allele and earlier disease onset. None of the other AD risk genes influenced AAO of AD. Our results suggest that besides APOE, other genes associated with AD risk do not exert large effects on the AAO phenotype of AD.  相似文献   

12.
Hippocampal atrophy as assessed by magnetic resonance imaging (MRI) and abnormal cerebrospinal fluid (CSF) biomarkers are supportive features for the diagnosis of Alzheimer's disease (AD) and are assumed to be indirect pathological markers of the disease. In AD patients, antemortem MRI hippocampal volumes (HVs) correlate with the density of neurofibrillary tangles (but not with senile plaques) at autopsy suggesting that HVs may better correlate with CSF tau and hyperphosphorylated tau (P-tau) levels than CSF amyloid beta protein (Aβ)(42) level. Here, we tested this hypothesis in a well-defined AD group. Patients were selected according to the New Research Criteria for AD, including specific episodic memory deficit and CSF AD profile (defined as abnormal ratio of Aβ(42):tau). MRI was performed within 6 months of lumbar puncture. HVs were obtained using automated segmentation software. Thirty-six patients were included. Left HV correlated with CSF tau (R = -0.53) and P-tau (R = -0.56) levels. Mean HVs correlated with the CSF P-tau level (R = -0.52). No correlation was found between any brain measurement and CSF Aβ(42) level. The CSF tau and P-tau levels, but not the CSF Aβ(42) level, correlated with HV, suggesting that CSF tau markers reflect the neuronal loss associated with the physiopathological process of AD.  相似文献   

13.
CYP19 haplotypes increase risk for Alzheimer's disease   总被引:3,自引:0,他引:3  
Cytochrome P450 aromatase, an enzyme that catalyses the conversion of androgens to oestrogen, is expressed at high levels in the gonads and in the brain. Aromatase activity is increased in the nucleus basalis of Meynert during aging and in Alzheimer's disease (AD), making the gene (CYP19), at 15q21.1, a potential candidate risk factor.We examined 18 single nucleotide polymorphisms spanning the 5′‐untranslated region and the entire coding region of CYP19 in 227 patients with AD and 131 control spouses.We found that the gene region could be divided into two haplotype blocks; a haplotype in block 1 and a haplotype in block 2 increased the risk of developing the disease by twofold in APOE 4 carriers. The implication of two haplotypes conferring increased risk for AD warrants further investigation of the regulation of aromatase activity in brain.  相似文献   

14.
We investigated whether microbleeds and white matter hyperintensities (WMH) in Alzheimer's disease (AD) associate more with conventional vascular risk factors or with risk factors that reflect amyloid burden. A total of 371 patients with probable AD were included. WMH (Fazekas 2 or 3) were present in 107 (29%) patients and microbleeds were seen in 98 (26%). Patients with both microbleeds and WMH were older and presented more frequently with lacunes and multiple microbleeds than patients with microbleeds in isolation (all p < 0.05). Using multivariate regression models, we found that WMH presence showed independent associations with age, hypertension, current smoking, and lacune presence. Microbleeds were independently associated with male gender, higher blood pressure, lower cerebrospinal fluid Aβ42, and apolipoprotein E ε4 homozygosity. Separate analyses for microbleeds according to their location showed that these associations were driven by microbleeds in lobar locations. Our results suggest that, unlike WMH, microbleeds in AD are particularly associated with additional amyloid burden, and as such, may relate to cerebral amyloid angiopathy.  相似文献   

15.
OBJECTIVE: There are few studies examining P300 in the biological children of patients with Alzheimer's disease (AD). In addition to examining P300 in patients with AD, the current study examined the utility of P300 as a preclinical marker in the offspring of AD patients. METHODS: P300 was elicited from an AD group, their biological children, and two age- and gender-matched control groups using the auditory oddball paradigm. Each group consisted of 20 subjects each. ERPs recorded from sites Fz, Cz, and Pz were analysed using analysis of variance. RESULTS: Amplitudes were significantly smaller in the AD group when compared to controls. Both amplitude and latency values in the FH+ group were significantly impaired when compared to its control group. CONCLUSION: These findings replicate previous P300 amplitude abnormalities found in patients with AD. Further, participants with a family history of AD demonstrate possible preclinical evidence at the electrophysiological level. Comparisons with other findings and theoretical implications are discussed.  相似文献   

16.
We used functional MRI (fMRI) and a network model based on graph theory to measure functional connectivity of brain motor network in the resting state in patients with Parkinson's disease (PD). FMRIs were acquired in 22 PD patients before and after levodopa administration, and in age- and sex-matched normal controls. The total connectivity degree of each region within the motor network was calculated and compared between patients and controls. We found that PD patients at off state had significantly decreased functional connectivity in the supplementary motor area, left dorsal lateral prefrontal cortex and left putamen, and had increased functional connectivity in the left cerebellum, left primary motor cortex, and left parietal cortex compared to normal subjects. Administration of levodopa relatively normalized the pattern of functional connectivity in PD patients. The functional connectivity in most of regions in the motor network correlated with the Unified Parkinson's Disease Rating Scale motor score in the patients. Our findings demonstrate that the pattern of functional connectivity of the motor network in the resting state is disrupted in PD. This change is secondary to dopamine deficiency, and related to the severity of the disease. We postulate that this abnormal functional connectivity of motor network in the baseline state is possibly an important factor contributing to some motor deficits in PD, e.g. akinesia.  相似文献   

17.
Automatic intuitions and deliberate reasoning, sourcing internal representations of our personal norms and values, contribute to our beliefs of what is right and wrong. We used fMRI to directly compare moral (M) and non-moral (NM) decision-making processes using scenarios requiring conscious deliberation, whereby the main character declared an intention to take a course of action. Furthermore, we examined the relationship between BOLD signal, associated with M>NM decision-making, and moral judgment competence, psychopathy, and empathy. We observed greater activity in various parts of Theory of Mind, empathy and default mode networks during M>NM decision-making. There was a trend for high scores on primary psychopathy to correlate with decreased M>NM BOLD activation in an area extending from dorsolateral prefrontal cortex to medial prefrontal cortex. We suggest that moral decision-making entails a greater degree of internally directed processing, such as self-referential mental processing and the representation of intentions and feelings, than non-moral decision-making.  相似文献   

18.
The nuclear retinoid X receptor agonist, bexarotene, has been implicated in recovery of cognitive function in mouse models of Alzheimer's disease (AD). Since AD genetic mouse models also show abnormal neural hyperexcitability, which may play a destructive role in memory storage and retrieval, we studied whether bexarotene exerted dynamic network effects on electroencephalography cortical spike discharge rate and spectral frequency in an AD (hAPP J20 model) and non-AD (Kv1.1 null) mouse models of epilepsy. We find that oral treatment with bexarotene over 1 week acutely reduced spike discharges in both models and seizures in the Kv1.1 null mouse model without major alterations in the background frequency of brain rhythms. The effect was reversible and exhibited a similar rapid onset in hippocampal slices. While the exact mechanisms are unknown, bexarotene counteracts both amyloid-β-induced and amyloid-β-independent increases in cortical network hyperexcitability.  相似文献   

19.
The formation of 5-hydroxymethylcytosine (5hmC), a key intermediate of DNA demethylation, is driven by the ten eleven translocation (TET) family of proteins that oxidize 5-methylcytosine (5mC) to 5hmC. To determine whether methylation/demethylation status is altered during the progression of Alzheimer's disease (AD), levels of TET1, 5mC and subsequent intermediates, including 5hmC, 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) were quantified in nuclear DNA from the hippocampus/parahippocampal gyrus (HPG) and the cerebellum of 5 age-matched normal controls, 5 subjects with preclinical AD (PCAD) and 7 late-stage AD (LAD) subjects by immunochemistry. The results showed significantly (p < 0.05) increased levels of TET1, 5mC, and 5hmC in the HPG of PCAD and LAD subjects. In contrast, levels of 5fC and 5caC were significantly (p < 0.05) decreased in the HPG of PCAD and LAD subjects. Overall, the data suggest altered methylation/demethylation patterns in vulnerable brain regions prior to the onset of clinical symptoms in AD suggesting a role in the pathogenesis of the disease.  相似文献   

20.
Alzheimer's disease (AD) disrupts functional connectivity in distributed cortical networks. We analyzed changes in the S-estimator, a measure of multivariate intraregional synchronization, in electroencephalogram (EEG) source space in 15 mild AD patients versus 15 age-matched controls to evaluate its potential as a marker of AD progression. All participants underwent 2 clinical evaluations and 2 EEG recording sessions on diagnosis and after a year. The main effect of AD was hyposynchronization in the medial temporal and frontal regions and relative hypersynchronization in posterior cingulate, precuneus, cuneus, and parietotemporal cortices. However, the S-estimator did not change over time in either group. This result motivated an analysis of rapidly progressing AD versus slow-progressing patients. Rapidly progressing AD patients showed a significant reduction in synchronization with time, manifest in left frontotemporal cortex. Thus, the evolution of source EEG synchronization over time is correlated with the rate of disease progression and should be considered as a cost-effective AD biomarker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号