首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 839 毫秒
1.
Summary Effects of verapamil on the acetylcholine (ACh)-induced K+ current were examined in single atrial cells, using the tight-seal whole-cell clamp technique. The pipette solution contained guanosine-5-triphosphate (GTP) or guanosine-5-O-(3-thiotriphosphate) (GTP-S, a non-hydrolysable GTP analogue). In GTP-loaded cells, ACh induced a specific K+ current, which is known to be mediated by pertussis toxin-sensitive GTP-binding (G) proteins. Verapamil (0.1–100 M) depressed the ACh-induced K+ current in a concentration-dependent fashion. In GTP-S-loaded cells, the K+ current remained persistently after wash-out of ACh, probably due to irreversible activation of G proteins by GTP-S. Verapamil (0.1–100 M) also depressed the intracellular GTP-S-induced K+ current. However, the magnitude of verapamil-depression of the K+ current in GTP-S-loaded cells was significantly smaller than that in GTP-loaded cells at concentrations between 1 and 10 M of the drug. From these results, it is suggested that verapamil may block not only the function of muscarinic ACh receptors but also of G proteins and/or the K+ channel itself and thereby depress the ACh-induced K+ current in isolated atrial myocytes.Supported by grants from the Ministry of Education, Science and Culture of Japan and the Research Program on Ca Signal Control Send offprint requests to Y. Kurachi at the above address  相似文献   

2.
The anti-anginal drug nicorandil has been demonstrated to protect the myocardium against ischemic injury in both experimental and clinical studies. Although nicorandil seems to protect the myocardium via activation of mitochondrial ATP-sensitive K+ (mitoKATP) channels, the mechanisms underlying its cardioprotection have remained elusive. We therefore examined whether nicorandil depolarizes the mitochondrial membrane and attenuates the mitochondrial Ca2+ overload. With the use of a Nipkow confocal system, the mitochondrial Ca2+ concentration ([Ca2+]m) and the mitochondrial membrane potential (m) in rat ventricular myocytes were measured by loading cells with rhod-2 and JC-1 respectively. The number of cell hypercontractures resulting from mitochondrial Ca2+ overload was counted. Exposing cells to ouabain (1 mM) evoked mitochondrial Ca2+ overload and increased the intensity of rhod-2 fluorescence to 180±15% of baseline (p<0.001). Nicorandil (100 M) significantly attenuated the ouabain-induced mitochondrial Ca2+ overload (129±4% of baseline; p<0.001 vs. ouabain). Nicorandil decreased the m during application of ouabain, thereby reducing the intensity of JC-1 fluorescence to 89±2% of baseline (p<0.05). Exposure of myocytes to ouabain eventually resulted in cell hypercontracture (51±2%). This ouabain-induced cell hypercontracture was blunted by application of nicorandil (37±2%, p<0.05 vs. ouabain). Moreover, these effects of nicorandil were abolished by 5-hydroxydecanoate (500 M), a putative mitoKATP channel blocker, and by glibenclamide (10 M), a nonselective KATP channel blocker. Our results suggest that nicorandil attenuates the matrix Ca2+ overload with accompanying depolarization of the mitochondrial membrane. Such effect might potentially be attributed to the mechanism of cardioprotection afforded by nicorandil.  相似文献   

3.
Summary Postsynaptic mechanisms underlying the anticholinergic effects of quinidine were examined in single atrial cells, using the tight-seal whole-cell recording technique. The solution in the glass pipettes contained guanosine-5triphosphate (GTP) or guanosine-5-O-(3-thiotriphosphate) (GTP-S, a non-hydrolyzable GTP analogue). In both cases, acetylcholine (ACh), applied to the bath, induced a specific K+ current. In GTP-loaded cells, quinidine in the bath solution depressed the ACh-induced K+ current concentration-dependently. Atropine also blocked the K+ current. On the other hand, in GTP-S-loaded cells, the ACh-induced current was not blocked by atropine and persisted even when ACh was washed out from the bath, indicating that GTP-S causes uncoupling of the K+ channels from the muscarine receptors. Quinidine, however, did depress the increased K+ current concentration-dependently. The percent inhibition curves for quinidine to depress the K+ current were very similar between GTP-loaded and GTP-S-loaded cells. From these observations, we suggest that direct inhibition of the muscarine receptor-activated K+ channel current by quinidine, and not blockade of the muscarine receptor itself, is mainly responsible for the anticholinergic effects of the drug in atrial myocytes. Send offprint requests to Y. Kurachi at the above address  相似文献   

4.
Summary The cromakalim-induced effluxes of 42K+ and 86Rb+ were compared in rat aortic segments and in guinea-pig portal vein. In both vessels, low concentrations of cromakalim (0.1 M) increased the permeability to 86Rb+ 3–4 times less than that to 42K+; at 10 M the difference was about a factor of 1.3–2. In rat aorta, the threshold concentration of cromakalim for 42K+ efflux was 0.03 M; with 86Rb+ as the tracer ion it was 0.1 M. At similar concentrations, cromakalim relaxed the tension of aortic segments precontracted with 23 mM KCl (IC50 = 0.06 ± 0.01 M). However, no concomitant increase in 42K+ or 86Rb+ efflux could be detected from this stimulated preparation at these concentrations. In guinea-pig portal vein, 42K+ efflux measurements were performed in the presence and absence of the dihydropyridine Ca2+ entry blocker PN 200-110 (isradipine) yielding comparable results. In the presence of PN 200-110, where spontaneous activity and the K+ efflux associated with it were abolished, the threshold concentration of cromakalim for 42K+ efflux was 0.02 M as compared to 0.06 M for 86Rb+ efflux. In the absence of PN 200-110, spontaneous activity of the portal vein was inhibited by 70% and 90% at these concentrations. In double isotope experiments, the K+ channel inhibitor tetraethylammonium did not discriminate between the effluxes of 42K+ and 86Rb+ stimulated by cromakalim.It is concluded that in the two vascular tissues examined, cromakalim increased the permeability to 42K+ more than to 86Rb+, the difference being more marked at low cromakalim concentrations. The use of 42K+ as the tracer ion narrows the apparent gap between the concentrations of cromakalim which elicit vasorelaxant effects and those which induce an observable increase in K+ permeability; however a significant difference persists.Part of the data was presented at the Winter Meeting of the British Pharmacological Society London 1988 [Br J Pharmacol 93 (1988) p 19] Send offprint requests to U. Quasi at the above address  相似文献   

5.
Effects of organotin compounds were studied on voltage-gated K+ current in whole-cell voltage clamped lymphocytes and in NlE-115 neuroblastoma cells. In human peripheral blood lymphocytes the immunotoxic compounds dibutyltinchloride (DBT, 2.5 M) and triphenyltinchloride (TPhT, 2.5 M) decrease the peak amplitude of the K+ current and prolong time to peak. Tributyltinchloride (TBT, 2.5 M) decreases the K+ current to a greater extent than DBT and TPhT, without affecting the time to peak. The neurotoxic organotin compound trimethyltinchloride (TMT, 2.5 M) does not affect the voltage-gated K+ current in lymphocytes. Similar effects of DBT were observed in freshly isolated and PHA-activated human lymphocytes and with rat thymocytes. On the other hand, in mouse NIE-115 neuroblastoma cells, none of the organotin compounds altered the voltage-dependent K+ current.In human lymphocytes DBT affects both the peak amplitude and the time to peak of the K+ current in a concentration-dependent manner. At the maximum concentration of 10 M tested, the peak amplitude of the K+ current was reduced to 22 ± 4% of the control current. The IC50 and slope factor for block of the peak outward current by DBT amounts to 6.7 ± 0.4 M, and 2.7 ± 0.4, respectively. The delay in K+ current activation does not saturate. At 10 M DMT increases the time to peak to 332 ± 12% of the control value. The present results suggest that the effects by DBT originate from two separate interactions with the voltage-gated K+ channel at the extracellular site of the membrane: a direct effect on the closed K+ channel causing a delay in current activation and a membrane-related effect causing inhibition of the K+ current. The differential effects of the organotin compounds may relate to their differential toxicological action.  相似文献   

6.
Summary The resting membrane potential of smooth muscle cells of the rabbit portal vein was –51.2 mV. LP-805 (8-tert-butyl-6,7-dihydropyrrolo[3,2-e] 5-methylpyrazolo [1,5-a] pyrimidine-3-carbonitrile) hyperpolarized the membrane to –62.3 mV (10 M) and inhibited the burst spike discharges as measured using the microelectrode method. In dispersed smooth muscle cells, LP-805 (10 M) generated an outward-current with a maximum amplitude of 68 pA at a holding potential of –40 mV in experiments using the voltage-clamp procedure. The reversal potential of the outward current evoked by LP-805 was –82 mV and this value was close to the equilibrium potential for K+ (–80 mV) in the present ionic conditions, suggesting that LP-805 activated the K+ channel. Generation of both the hyperpolarization and the outward c urrent by LP-805 was inhibited by glibenclamide ( 1 M). Using the cell-attached and cell-free patch-clamp (in the presence of GDP) procedures, the maxi-K+ channel current (150 pS) could be recorded in the absence of LP-805; application of LP-805 additionally opened a small conductance K+ channel current (15 pS) without change in the activity of the maxi-K+ channel. The maxi-K+ channel was sensitive to charybdotoxin (0.1 M) and to intracellular Ca2+ ([Ca2+]i) concentration. The 15 pS channel was insensitive to [Ca2+]i and charybdotoxin, but sensitive to intracellular ATP concentration. Glibenclamide (> 1 M) inhibited the 15 pS K+ channel activated by LP-805. These actions of LP-805 on the maxi-K+ and 15 pS K+ channels are the same as those previously observed for nicorandil and pinacidil. Thus, LP-805 is a K+ channel opener with a chemical structure different from those of the known openers. Correspondence to M. Kamouchi at the above address  相似文献   

7.
ICV cromakalim, a K+ channel opener, produced antinociception. This effect was completely antagonized by ICV glibenclamide, a selective adenosine triphosphate-sensitive K+ channel (KATP channel) blocker. Furthermore, direct opening of central KATP channels by ICV cromakalim increased the spinal noradrenaline (NA) turnover. On the other hand, the antinociception induced by ICV morphine ( opioid agonist), but not ICV U-50,488H ( opioid agonist) was markedly potentiated by cromakalim. These findings suggest that the opening of central KATP channels may elicit the antinociceptive effect and activate the descending NAergic pathway, and central KATP channels play an important role as a modulator of the antinociception induced by agonists but not agonists.  相似文献   

8.
Summary The patch-clamp technique was used to examine the tolbutamide-sensitivity of the adenosine 5-triphosphate (ATP)-dependent K+ channel in mouse pancreatic B-cells. When studied at 37°C in cell-attached membrane patches, this channel had a single-channel conductance of 88 pS and was half-maximally inhibited by 2.2 mol/l tolbutamide in the presence of 3 mmol/l d-glucose and 10 mol/l nifedipine. The tolbutamide-induced decrease in the amplitude of the single-channel currents indicated that the membrane potential was sufficiently depolarized for initiation of insulin release by 30 but not by 10 mol/l of tolbutamide. Using 300 mol/l diazoxide to open the ATP-dependent K+ channels already closed by 3 mmol/l d-glucose alone, it was demonstrated that initiation of insulin release requires closure of more than 98% of all ATP-dependent K+ channels. In excised inside-out membrane patches, the K+ channel-blocking potency of tolbutamide was maximally enhanced by 0.3 mmol/1 adenosine 5t'-diphosphate (ADP) at the cytoplasmic side. This ADP effect required the presence of Mg2+. Inhibition of K+ channel activity by ATP, ADP (Mg2+-free) or their non-hydrolyzable analogues adenylyl-imidodiphosphate (AMP-PNP) and , methylene adenosine 5-diphosphate (AMP-CP) was not accompanied by enhancement of tolbutamide-sensitivity. The results suggest that cytosolic MgADP controls tolbutamide-sensitivity by interaction with a receptor site not identical with the site mediating channel closure and that this control plays a role in the intact B-cell.Some of the results described here are part of the medical theses of F. Rosenberger and K. SchefferSend offprint requests to U. Panten at the above address  相似文献   

9.
Summary Tedisamil, a new bradycardic agent with an inhibitory action on K+ channels in cardiac muscle, was found to inhibit in a non-competitive manner the relaxation induced by the K+ channel opener cromakalim in noradrenaline-stimulated helical strips from rabbit aortae. Tedisamil tended to be more potent in this respect than glibenclamide; the latter however competitively antagonized the cromakalim-induced relaxation. In rabbit aorta preloaded with 86Rb as a marker of K+, 10 mol/l tedisamil inhibited the 86Rb efflux induced by 10 mol/l cromakalim. — While the 86Rb efflux evoked by depolarization with 100 mmol/l K+ aspartate was inhibited by tedisamil, too, the rise of 86Rb efflux induced by noradrenaline was unaffected by the drug.In non-stimulated rabbit aorta, tedisamil increased mechanical tension in a concentration-dependent manner (EC50 for peak contractions: 32 mol/l; for maintained tension: 24 mol/l), and enhanced 86Rb efflux. Both stimulant actions were antagonized by the calcium antagonist diltiazem.In conclusion, tedisamil affects different K+ channels in vascular smooth muscle. Its stimulant effects are assumed to be secondary to membrane depolarization and subsequent activation of voltage-dependent Ca2+ channels.Supported by the Deutsche Forschungsgemeinschaft Send offprint requests to V. A. W. Kreye at the above address  相似文献   

10.
Summary The pathology of Alzheimer's disease is primarily characterized by the deposition of -amyloid/A peptide as the major component of senile or neuritic plaques. The A peptide is produced as a result of proteolytic cleavage of the transmembrane protein precursor, APP, during its normal cellular metabolism. The free amino terminus of the A peptide is generated by an endopeptidic cleavage between Met671-Asp672 by a protease termed -secretase. Increased cleavage at this site takes place in a rare, inherited double mutation (Lys670-Met671 to Asn670-Leu671), leading to increased A production and consequent development of Alzheimer's disease on an accelerated time scale in the affected individuals, underscoring the pathological importance of -secretase activity. Cellular studies provide direct evidence that inhibition of -secretase activity would appear to be effective in inhibiting A production as a rational approach to developing therapeutics for the disease.  相似文献   

11.
Summary Calcium-dependent release of neurotransmitters is thought to be due to Ca2+ entry into nerve terminals, but the identities of the various voltage-sensitive Ca2+ channels (VSCC) involved in this process remain obscure. To elucidate the types of VSCCs involved in the release process, we studied the effects of various organic Ca2+ channel antagonists and agonists on the release of endogenous -aminobutyric acid (GABA) from mouse striatal neurones differentiated in primary culture. Diltiazem, verapamil and methoxyverapamil (D 600) inhibited K+-evoked (30 mM) GABA release at very high concentrations (> 1 M). The dihydropyridine (DHP) nifedipine, at low concentrations (0.01–1.00 M), was able to inhibit part of the K+-evoked GABA release (25.6±7.3% inhibition at 1 M). This is in agreement with the high affinity of nifedipine for DHP binding sites. The DHPs, BAY K 8644 (EC50 = 41±15 nM) and CGP 28.392, which possess agonist properties at VSCCs, increased the 15 mM K+-evoked GABA release. The release evoked by the combination of K+ (15 M) and BAY K 8644 (up to 10 M) remained smaller than the release elicited by 30 mM K+. The effect of BAY K 8644 (1 M) was inhibited by nifedipine (IC50 0.55±0.05 M). When Na+ ions were replaced by choline, basal and K+-evoked GABA release was significantly increased. Even in the absence of external Na+, nifedipine (1 M) was not able to totally block the K+ effect. Moreover amiloride, a drug known to inhibit Na+/Ca+ exchange, and tetrodotoxin (TTX), did not modify the 30 mM K+ response. Therefore, nifedipine-insensitive K+-evoked GABA release is not due to Na+-dependent Ca2+ entry. These results can be explained by the presence of DHP-sensitive and insensitive Ca2+ channels on nerve terminals, each involved in the release process.Abbreviations CGP 28.392 4-[2-(difluoromethoxy)phenyl]-1,4,5,7-tetrahydro-2-methyl-5-oxo-furo[3,4-b]pyridine-3-carboxylic acid ethylester - BAY K 8644 (±)-methyl 1,4-dihydro-2,6-dimethyl-3nitro-4-(2 trifluoromethyl) pyridine-5-carboxylate - DHP 1,4-dihydropyridine - DIV days in vitro - D 600 methoxyverapamil - GABA -aminobutyric acid - HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - HPLC high performance liquid chromatography - TTX tetrodotoxin - VSCC voltage-sensitive calcium channel Send offprint requests to J.-P. Pin at the above address  相似文献   

12.
The K+ channel openers activate ATP-sensitive K+ channels (KATP) in vascular smooth muscle and induce relaxation. In this study, the relationship between these two effects was examined in rings of rat aorta using levcromakalim and minoxidil sulfate as the openers and Ba2+ as the K+ channel blocker; K+ channel opening was assessed by determining the rate constant of 86Rb+ efflux from the preparation.Ba2+ inhibited the 86Rb+ efflux stimulated by levcromakalim in a noncompetitive manner with an IC50 value of 29 M and a Hill-coefficient of 1.2. At concentrations > 300 M, Ba2+ increased the tension of rat aortic rings concentration-dependently. Levcromakalim relaxed contractions to Ba2+ (0.5 and 1 mM) with potencies similar to those determined against KCl (25 mM) or noradrenaline as spasmogens (EC50 values 15–40 nM). The vasorelaxant effect against Ba2+ was inhibited by the KATP channel blockers, glibenclamide and tedisamil, and abolished in depolarizing medium (55 mM KCl). At 3 mM Ba2+, levcromakalim was still able to transiently induce complete relaxation; however, within 1 h oscillations in tension developed, leading to a stable level of only 15% relaxation. A similar level of relaxation was achieved against 10 mM Ba2+ whereas the combination of 0.5 mM Ba2+ and 3 M tedisamil blocked the relaxant effect of levcromakalim completely. With minoxidil sulfate as the KATP channel opener the results of the 86Rb+ efflux and tension experiments were similar to those obtained with levcromakalim.It is concluded that Ba2+ is more potent in inhibiting the K+ channel opening than the vasorelaxant effects of the openers. On the basis of the 86Rb+ efflux experiments it is estimated that at least 97% of the channels opened by the activators can be blocked without major effects on vasorelaxation suggesting a dissociation between the two effects. However, if the block is pushed to extremes ( 99.95%) the vasorelaxant effect of the openers is also abolished suggesting a link between both effects. This paradoxon remains to be solved.  相似文献   

13.
The effects of carbamazepine (CBZ) on 22Na+ influx, 45Ca2+ influx, catecholamine secretion and cyclic GMP production were examined in cultured bovine adrenal medullary cells. 1 CBZ (40–120 mol/l) inhibited 22Na+ influx evoked by carbachol in a concentration-dependent manner. CBZ inhibited carbachol-evoked 45Ca2+ influx and catecholamine secretion at concentrations similar to those which suppressed 22Na+ influx. 2 CBZ (4–120 mol/l) inhibited veratridine-induced 22Na+ influx, 45Ca2+ influx and catecholamine secretion. 3 CBZ (12 or 40–120 mol/l) suppressed 56 mmol/1 K+-evoked 45Ca2+ influx and catecholamine secretion, respectively. 4 Combination of CBZ with nitrendipine or -agatoxin-IVA produced further inhibition of 56 mmol/l K+ - evoked 45Ca2+ influx and catecholamine secretion, compared to the effect of CBZ alone, whereas CBZ plus -conotoxin-GVIA did not produce any further inhibition. 5 CBZ (40 mol/1) attenuated the production of cyclic GMP caused by muscarine. These results suggest that CBZ at therapeutic concentrations (16–48 mol/l: 4–12 g/ml) inhibits catecholamine secretion by interfering with nicotinic acetylcholine receptor-associated ion channels, voltage-dependent Na+ channels and N-type voltage-dependent Ca2+ channels, and may have an antimuscarinic effect in adrenal medullary cells.  相似文献   

14.
The effect of cocaine on K+ currents activated by the KATP channel opener cromakalim was investigated in follicular cells of Xenopus oocytes. The results indicate that cocaine in the concentration range of 3–500 M reversibly inhibits cromakalim-induced K+ currents. The IC50 value for cocaine was 96 M. Inhibition of the cromakalim-activated K+ current by cocaine was noncompetitive and voltage independent. Pretreatment with the Ca2+ chelator BAPTA did not modify the cocaine-induced inhibition of cromakalim-induced K+ currents, suggesting that Ca2+-activated second messenger pathways are not involved in the actions of cocaine. Outward K+ currents activated by the application of 8-Br-cAMP or forskolin were also inhibited by cocaine. The EC50 and slope values for the activation of K+ currents by cromakalim were 184±19 M and 1.14 in the absence of cocaine as compared to 191±23 M and 1.03 in the presence of cocaine (300 M). Cocaine also blocked K+ currents mediated through C-terminally deleted form of Kir6.2 (KirC26) in the absence of sulfonylurea receptor with an IC50 value of 87 M, suggesting that cocaine interacts directly with the channel forming Kir6.2 subunit. Radioligand binding studies indicated that cocaine (100 M) did not affect the binding characteristics of the KATP ligand, [3H]glibenclamide. These results demonstrate that cromakalim-activated K+ currents in follicular cells of Xenopus oocytes are modulated by cocaine.  相似文献   

15.
Summary The components of Dictamnus dasycarpus Turcz were tested for their vasorelaxing effect on the rat aorta, and fraxinellone and dictamine were shown to be effective vasorelaxants. In high K+ (60 mmol/l) medium, Ca2+ (0.03 to 3 mmol/l)-induced vasoconstriction was inhibited concentration-dependently by both agents. The IC50 for fraxinellone and dictamine were calculated to be about 25 mol/l and 15 mol/l (for Ca2+) concentration of (1 mmol/l), respectively. Cromakalim (0.2–10) mol/l relaxed aortic rings precontracted with 15 but not 60 mmol/l of K+. Fraxinellone and verapamil were more potent and effective in producing relaxation in 60 mmol/l than in 15 mmol/l K+-induced contraction. However, dictamine was more potent in producing relaxation in 5 mmol/l K+-induced contraction. Nifedipine (1 mol/l), dictamine (100 mol/l) and fraxinellone (100 mol/l) relaxed the aortic contraction caused by KCl or Bay K 8644. The tonic contraction elicited by nor adrenaline (NA, 3 mol/l) was also relaxed by dictamine (500 mol/l), but not by fraxinellone (500 mol/l) in the nifedipine (1 mol/l)-treated aorta. This relaxing effect of dictamine persisted in endothelium-denuded aorta. Glibenclamide (10 mol/l) shifted the concentration-relaxation curve of cromakalim, but not that of dictamine, to the right in rat aortic rings precontracted with NA. Dictamine (500 mol/l) did not affect tonic contraction of NA which are reduced by H-7 (1 mol/l) in Ca2+ depleted medium. In conclusion, fraxinellone is a selective blocker of voltage-dependent Ca2+ channel, while dictamine relaxed the rat aorta by suppressing the Ca2+ influx through both voltage-dependent and receptor-operated Ca2+ channels.This work was supported by a research grant from the Nationat Science Council of the Republic of China (NSC80-0420-B002-18) Send offprint requests to C. M. Teng, Pharmacological Institute, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, Sect. 1, Taipei, 10018, Taiwan  相似文献   

16.
Summary Some ligand-gated ion channels are important sites of action of ethanol. The aim of the study was to find out whether the P2X-purinoceptors mediating contraction of the rat isolated vas deferens also are selectively sensitive to ethanol. Contractions were elicited by ATP (1 mmol/1), ,ß-methylene ATP (0.3 mol/1), noradrenaline (3 mol/1), high K+ (20 mmol/1) or electrical (neural) stimulation by pairs of pulses 3 s apart. In electrical stimulation experiments, purinergic and adrenergic response components were isolated by prazosin and suramin, respectively. Concentration-effect curves were determined for ethanol and, for comparison, nifedipine. Tritium outflow from tissues preincubated with 3H-noradrenaline was also examined.Ethanol at relatively low concentrations reduced contractions elicited by high K+ (IC30 145 mmol/1), ATP (IC30 211 mmol/1) and ,ß-methylene ATP(IC30 215 mmol/1) as well the purinergic component of neurogenic twitches (IC30 110-126 mmol/1; a significant effect at 10–32 mmol/1) and the adrenergic component of twitch 2 of the twitch pairs (IC30 63 mmol/1). These contractions also were very sensitive to nifedipine. Higher concentrations of ethanol were needed to reduce contractions elicited by noradrenaline (IC30 365 mmol/1) and the adrenergic component of twitch 1 of the twitch pairs (IC30 382 mmol/1), contractions that also were less sensitive to nifedipine. Ethanol 1 mol/l abolished all contractions. In contrast, concentration-effect curves for the inhibition by nifedipine of contractions evoked by ATP, ,ß-methylene ATP and noradrenaline (rapid phase) levelled off at 60–70% inhibition. The contractions that remained when these agonists were administered in the presence of nifedipine 10 mol/l were depressed by ethanol (IC30 242–387 mmol/1). Ethanol 320 mmol/1 did not change the electrically evoked overflow of tritium from vasa deferentia preincubated with 3H-noradrenaline.It is concluded that the P2X-purinoceptors of rat vas deferens smooth muscle, although ligand-gated ion channels, are not selectively sensitive to ethanol. The reduction of contractions can be explained by, first, an inhibition of L-type voltage-dependent Ca2+ channels for which relatively low concentrations of ethanol are needed, and second, a non-specific depressant effect at an unknown site or at unknown sites which requires relatively high concentrations. Correspondence to R. Bultmann at the above address  相似文献   

17.
Zusammenfassung Prednison- und Prednisolonbisguanylhydrazon hemmen ebenso wie k-Strophanthin eine aus Meerschweinchenherzen gewonnene durch Na+ + K+ stimulierte Membran-ATPase. Eine 50%ige Hemmung erfolgt bei Konzentrationen von 3,8 M Prednisonbisguanylhydrazon, 0,28 M Prednisolonbisguanylhydrazon bzw. 1,3 M k-Strophanthin. Dieses Wirksamkeitsverhältnis der drei Verbindungen entspricht etwa der Hemmung des aktiven Ionentransportes an Meerschweinchenerythrocyten und dem positiv inotropen Effekt am isoliert durchströmten Meerschweinchenherzen.
Summary Prednison- and Prednisolonbisguanylhydrazon inhibit like k-Strophanthin the Na+ + K+-stimulated ATPase from guinea-pig hearts. 50% inhibition was stated with concentrations of 3,8 M Prednisonbisguanylhydrazon, 0,28 M Prednisolonbisguanylhydrazon or 1,3 M k-Strophanthin. This difference in effectiveness of the compounds corresponds to the inhibition of the active ion-transport in erythrocytes of guinea-pigs and to the positive inotropic effect in isolated perfused guinea-pig hearts.


Mit 1 TextabbildungDie Ergebnisse wurden auf der 5. Frühjahrstagung der Deutschen Pharmakologischen Gesellschaft am 28. April 1964 in Mainz vorgetragen. [Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 247, 341 (1964).]  相似文献   

18.
The effects of ouabain, an inhibitor of the plasmalemmal Na+/K+-ATPase activity, were examined in human isolated bronchus. Ouabain produced concentration-dependent contraction with –logEC50=7.16±0.11 and maximal effect of 67±4% of the response to acetylcholine (1 mM). Ouabain (10 M)-induced contraction was epithelium-independent and was not depressed by inhibitors of cyclooxygenase and lipoxygenase, antagonists of muscarinic, histamine H1-receptors and -adrenoceptors, or neuronal Na+ channel blockade. The inhibition of ouabain contraction in tissues bathed in K+-free medium, and the inhibition by ouabain of the K+-induced relaxation confirm that the contractile action of ouabain is mediated by inhibition of Na+/K+-ATPase. Furthermore, depolarization (16.4±0.9 mV) was observed in human isolated bronchus by intracellular microelectrode recording. Ouabain (10 M)-induced contractions were abolished by a Ca2+-free solution but not by blockers of L-type Ca2+ channels. In human cultured bronchial smooth muscle cells, ouabain (10 M) produced a sustained increase in [Ca2+]i (116±26 nM) abolished in Ca2+-free medium. Incubation with a Na+-free medium or amiloride (0.1 mM) markedly inhibited the spasmogenic effect of ouabain thus suggesting the role of Na+/Ca2+ exchange in ouabain contraction while selective inhibitors of Na+/H+-antiport, Na+/K+/Cl-antiport, or protein kinase C had no effect. Ouabain (10 M) failed to increase inositol phosphate accumulation in human bronchus. Ouabain (10 M) did not alter bronchial responsiveness to acetylcholine or histamine but inhibited the relaxant effects of isoprenaline, forskolin, levcromakalim, or sodium nitroprusside. These results indicate that ouabain acts directly to produce contraction of human airway smooth muscle that depends on extracellular Ca2+ entry unrelated to L-type channels and involving the Na+/Ca2+-antiporter.  相似文献   

19.
Summary There was stereospecific binding of 3H-lofentanil (K D value = 1.53 nM) to membranes of neuroblastoma-glioma NG 108-15 cells which are known to bear high affinity binding sites for enkephalin derivatives (-opiate receptor subtype). There was no high affinity specific binding of the -opiate specific ligand 3H-sufentanil. The specific binding of 3H-lofentanil to -opiate receptor subtype was down-regulated (decrease in B max value without change in the K D value) after prolonged incubation of the cells in the presence of leu- and met- enkephalin (0.1 M). There was no down-regulation of the opiate receptors (3H-lofentanil and 3H-d-ala-d-leu-enkephalin specific binding) after incubation of NG 108-15 cells with drugs from the fentanyl series (alfentanil or sufentanil).In cultured neurones from rat forebrain (15 day old embryos), the 3H-lofentanil binding was specific with high affinity (K D: 0.048 nM) and a slow dissociation rate similar to that in adult rat cortex. Drugs of the fentanyl series (4-anilino-piperidines) were potent displacers whereas agonists of the - (enkephalin derivatives), (phencyclidine, haloperidol, 3-hydroxyphenyl-propylpiperidine) or K- (U 50488) opiate sites had a low affinity (K i > 0.5 M) for 3H-lofentanil specific binding sites. Since there was also specific binding of 3H-sufentanil, the opiate receptors in cultured neurones seem to be mainly of the -subtype and this is consistent with the ontogeny of opiate receptors subtypes. These receptors were down-regulated after incubation in the presence of etorphine, sufentanil and alfentanil but not enkephalin derivatives.These results strongly suggest specific binding of 3H-sufentanil and 3H-lofentanil mainly to the so-called -opiate receptors in cultured neurones and a specific binding of 3H-lofentanil to lower affinity -opiate receptors in neuroblastoma-glioma cells. The down-regulation of the -opiate binding sites in cultured neurones and that of the -site in neuroblastoma × glioma hybrid cells were dose-and temperature-dependent, induced by the corresponding high affinity agonists and prevented by naloxone. Morphine did not induce down-regulation of or receptor sites, possibly because of a partial antagonist effect on both receptor subtypes. Send offprint requests to J. M. Maloteaux at the above address  相似文献   

20.
Summary We have studied the pharmacokinetics and haemodynamic effects of nicorandil after a 12-h infusion. Nicorandil is a mixed vasodilator combining the actions of a nitrate and a potassium channel opener.Nicorandil was infused for 12 h in 21 healthy volunteers at rates of 0.05, 0.10, and 0.20 g·kg–1·min–1 using a placebo controlled, crossover design. Systemic blood pressure, heart rate, electrocardiographic (ECG) intervals, and cardiac output (impedance cardiography) were measured supine and standing.Dose-related, steady-state plasma nicorandil concentrations occurred within 3 to 4 h. Nicorandil's pharmacokinetics were linear with dose.Four 0.20 g·kg–1·min–1 nicorandil infusions were terminated early primarily because of moderate or severe headaches. There were no safety concerns (ECG intervals, laboratory assays).Blood pressure fell versus placebo only in the standing position and heart rate increased slightly (not significant). That is, standing blood pressure in the 6 to 12 h interval fell from baseline 8.0*/6.8, 1.6/5.1, and 9.8*/7.9* mmHg (systolic/diastolic, *=P<0.05 versus placebo) at 0.05, 0.10, and 0.20 g·kg–1·min–1 respectively. Cardiac output increased slightly above placebo at lower doses. Haemodynamic changes correlated poorly with plasma nicorandil concentrations. Similar total doses were less well-tolerated when extended over 12 h. We saw no evidence of pharmacodynamic tolerance to nicorandil within 12 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号