首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Formation of four oxidative metabolites from the anticonvulsant drug phenytoin (DPH) catalyzed by human liver microsomal cytochrome P450 (P450) enzymes was determined simultaneously. Under the conditions in which linearity for formation of 4'-hydroxylated DPH (4'-HPPH; main metabolite) was observed, human liver cytosol increased microsome-mediated DPH oxidation. 3',4'-Dihydroxylated product (3', 4'-diHPPH) formation was 10 to 40% of total DPH oxidation in the presence of liver cytosol. 3'-Hydroxy DPH formation was catalyzed by only one of the human liver microsomal samples examined and 3', 4'-dihydrodiol formation could not be detected in all samples. In the presence of liver cytosol, 3',4'-diHPPH formation activity from 100 microM 4'-HPPH was correlated with testosterone 6beta-hydroxylation activity and CYP3A4 content. However, 3', 4'-diHPPH formation using 1 or 10 microM 4'-HPPH as a substrate was not correlated with contents of any P450s or marker activities. Of 10 cDNA-expressed human P450 enzymes examined, CYP2C19, CYP2C9, and CYP3A4 catalyzed 3',4'-diHPPH formation from the primary hydroxylated metabolites (3'-hydroxy-DPH and 4'-HPPH). Fluvoxamine and anti-CYP2C antibody inhibited 3',4'-diHPPH formation from 10 microM 4'-HPPH in a human liver sample that contained relatively high levels of CYP2C, whereas ketoconazole and anti-CYP3A antibody showed inhibitory effects on the activities in liver microsomal samples in which CYP3A4 levels were relatively high. These results suggest that CYP2C9, CYP2C19, and CYP3A4 all have catalytic activities in 3',4'-diHPPH formation from primary hydroxylated metabolites in human liver and that the hepatic contents of these three P450 forms determine which P450 enzymes play major roles of DPH oxidation in individual humans.  相似文献   

2.
Objective: The purpose of the present study was to elucidate the cytochrome P450 (P450) isoform(s) involved in the metabolism of loperamide (LOP) to N-demethylated LOP (DLOP) in human liver microsomes. Methods: Three established approaches were used to identify the P450 isoforms responsible for LOP N-demethylation using human liver microsomes and cDNA-expressed P450 isoforms: (1) correlation of LOP N-demethylation activity with marker P450 activities in a panel of human liver microsomes, (2) inhibition of enzyme activity by P450-selective inhibitors, and (3) measurement of DLOP formation by cDNA-expressed P450 isoforms. The relative contribution of P450 isoforms involved in LOP N-demethylation in human liver microsomes were estimated by applying relative activity factor (RAF) values. Results: The formation rate of DLOP showed biphasic kinetics, suggesting the involvement of multiple P450 isoforms. Apparent Km and Vmax values were 21.1 M and 122.3 pmol/min per milligram of protein for the high-affinity component and 83.9 M and 412.0 pmol/min per milligram of protein for the low-affinity component, respectively. Of the cDNA-expressed P450 s tested, CYP2B6, CYP2C8, CYP2D6, and CYP3A4 catalyzed LOP N-demethylation. LOP N-demethylation was significantly inhibited when coincubated with quercetin (a CYP2C8 inhibitor) and ketoconazole (a CYP3A4 inhibitor) by 40 and 90%, respectively, but other chemical inhibitors tested showed weak or no significant inhibition. DLOP formation was highly correlated with CYP3A4-catalyzed midazolam 1-hydroxylation (rs=0.829; P<0.01), CYP2B6-catalzyed 7-ethoxy-4-trifluoromethylcoumarin O-deethylation (rs=0.691; P<0.05), and CYP2C8-catalyzed paclitaxel 6-hydroxylation (rs=0.797; P<0.05). Conclusion: CYP2B6, CYP2C8, CYP2D6, and CYP3A4 catalyze LOP N-demethylation in human liver microsomes, and among them, CYP2C8 and CYP3A4 may play a crucial role in LOP metabolism at the therapeutic concentrations of LOP. Coadministration of these P450 inhibitors may cause drug interactions with LOP. However, the clinical significance of potential interaction of LOP metabolism by CYP2C8 and CYP3A4 inhibitors should be studied further.  相似文献   

3.
AIMS: The aims of the present study were to investigate the metabolism of astemizole in human liver microsomes, to assess possible pharmacokinetic drug-interactions with astemizole and to compare its metabolism with terfenadine, a typical H1 receptor antagonist known to be metabolized predominantly by CYP3A4. METHODS: Astemizole or terfenadine were incubated with human liver microsomes or recombinant cytochromes P450 in the absence or presence of chemical inhibitors and antibodies. RESULTS: Troleandomycin, a CYP3A4 inhibitor, markedly reduced the oxidation of terfenadine (26% of controls) in human liver microsomes, but showed only a marginal inhibition on the oxidation of astemizole (81% of controls). Three metabolites of astemizole were detected in a liver microsomal system, i.e. desmethylastemizole (DES-AST), 6-hydroxyastemizole (6OH-AST) and norastemizole (NOR-AST) at the ratio of 7.4 : 2.8 : 1. Experiments with recombinant P450s and antibodies indicate a negligible role for CYP3A4 on the main metabolic route of astemizole, i.e. formation of DES-AST, although CYP3A4 may mediate the relatively minor metabolic routes to 6OH-AST and NOR-AST. Recombinant CYP2D6 catalysed the formation of 6OH-AST and DES-AST. Studies with human liver microsomes, however, suggest a major role for a mono P450 in DES-AST formation. CONCLUSIONS: In contrast to terfenadine, a minor role for CYP3A4 and involvement of multiple P450 isozymes are suggested in the metabolism of astemizole. These differences in P450 isozymes involved in the metabolism of astemizole and terfenadine may associate with distinct pharmacokinetic influences observed with coadministration of drugs metabolized by CYP3A4.  相似文献   

4.
Involvement of cytochrome P450 (P450 or CYP) 2C19, 2C9, and 3A4 in N-oxidation of voriconazole, a new triazole antifungal agent, has been demonstrated using human liver microsomes. To confirm the precise roles of P450 isoforms in voriconazole clearance in individuals, we investigated the oxidative metabolism of voriconazole catalyzed by recombinant P450s as well as human liver microsomes genotyped for the CYP2C19 gene. Among recombinant P450 isoforms using Escherichia coli expression systems, CYP2C19 and CYP3A4 had voriconazole N-oxidation activities, but not CYP2C9. Apparent K(m) and V(max) values of CYP2C19 and CYP3A4 for voriconazole N-oxidation were 14+/-6 microM and 0.22+/-0.02 nmol/min/nmol CYP2C19 and 16+/-10 microM and 0.05+/-0.01 nmol/min/nmol CYP3A4, respectively (mean+/-S.E.). CYP3A4 produced a new methyl hydroxylated metabolite from voriconazole, detected by LC/UV and LC/MS/MS and confirmed by 1H and 13C NMR analyses, with K(m) and V(max) values of 11+/-3 microM and 0.10+/-0.01 nmol/min/nmol CYP3A4. The voriconazole 4-hydroxylation to N-oxidation metabolic ratios in liver microsomes from the wild-type CYP2C19*1/*1 individuals (0.07) were lower than those observed in other genotypes (0.20-0.27) at a substrate concentration of 25 microM based on the reported clinical plasma level. These results suggest that the CYP2C19 genotype, but not CYP2C9 genotype, would be evaluated as a key factor in the pharmacokinetics of voriconazole and that 4-hydroxyvoriconazole formation may become an important pathway for voriconazole metabolism in individuals with poor CYP2C19 catalytic function.  相似文献   

5.
1.?4′-(p-Toluenesulfonylamide)-4-hydroxychalcone (TSAHC) is a synthetic sulfonylamino chalcone compound possessing anti-cancer properties. The aim of this study was to elucidate the metabolism of TSAHC in human liver microsomes (HLMs) and to characterize the cytochrome P450 (P450) enzymes that are involved in the metabolism of TSAHC.

2.?TSAHC was incubated with HLMs or recombinant P450 isoforms (rP450) in the presence of an nicotinamide adenine dinucleotide phosphate, reduced form (NADPH)-regenerating system. The metabolites were identified and analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). P450 isoforms, responsible for TSAHC metabolite formation, were characterized by chemical inhibition and correlation studies in HLMs and enzyme kinetic studies with a panel of rP450 isoforms.

3.?Two hydroxyl metabolites, that is M1 and M2, were produced from the human liver microsomal incubations (Km and Vmax values were 2.46?µM and 85.1?pmol/min/mg protein for M1 and 9.98?µM and 32.1?pmol/min/mg protein for M2, respectively). The specific P450 isoforms responsible for two hydroxy-TSAHC formations were identified using a combination of chemical inhibition, correlation analysis and metabolism by expressed recombinant P450 isoforms. The known P450 enzyme activities and the rate of TSAHC metabolite formation in the 15 HLMs showed that TSAHC metabolism is correlated with CYP2C and CYP3A activity. The P450 isoform-selective inhibition study in HLMs and the incubation study of cDNA-expressed enzymes also showed that two hydroxyl metabolites M1 and M2 biotransformed from TSAHC are mainly mediated by CYP2C and CYP3A, respectively. These findings suggest that CYP2C8, CYP2C9, CYP2C19, CYP3A4 and CYP3A5 isoforms are major enzymes contributing to TSAHC metabolism.  相似文献   

6.
This study was aimed at identifying the isoform(s) of human liver cytochrome P450 (CYP) involved in the hepatic biotransformation of trans-resveratrol (trans-3,5,4'-trihydroxystilbene). Trans-resveratrol metabolism was found to yield two major metabolites, piceatannol (3,5,3',4'-tetrahydroxystilbene) and another tetrahydroxystilbene named M1. Trans-resveratrol was hydroxylated to give piceatannol and M1 with apparent K(m) of 21 and 31 microM, respectively. Metabolic rates were in the range 14-101 pmol min(-1) mg(-1) protein for piceatannol and 29-161 pmol min(-1) mg(-1) protein for M1 in the 13 human liver microsomes tested. Using microsomal preparations from different human liver samples, piceatannol and M1 formation significantly correlated with ethoxy-resorufin-O-deethylation (r(2) = 0.84 and 0.88, respectively), phenacetin-O-deethylation (r(2) = 0.92 and 0.94) and immuno-quantified CYP1A2 (r(2) = 0.85 and 0.90). Formation of these metabolites was markedly inhibited by alpha-naphthoflavone and furafylline, two inhibitors of CYP1A2. Antibodies raised against CYP1A2 also inhibited the biotransformation of trans-resveratrol. In addition, the metabolism of trans-resveratrol into these two metabolites was catalyzed by recombinant human CYP1A1, CYP1A2 and CYP1B1. Our results provide evidence that in human liver, CYP1A2 plays a major role in the metabolism of trans-resveratrol into piceatannol and tetrahydroxystilbene M1.  相似文献   

7.
彭文兴  李焕德  周宏灏 《药学学报》2004,39(11):892-896
目的探讨大豆苷元在人肝微粒中羟基化代谢所涉及的肝细胞色素P450(CYP)同工酶,为研究其在人体内的代谢提供基础。方法通过分析大豆苷元在肝微粒体中和重组CYP酶中形成的单羟化代谢物的酶促动力学,分析其酶学模型,然后用不同CYP同工酶选择性抑制剂或底物进行抑制实验,初步筛选出介导大豆苷元单羟化代谢所涉及的CYP同工酶。结果代谢物的形成动力学符合米氏方程单酶模型。CYP1A2选择性抑制剂呋喃茶碱和CYP1A2单克隆抗体均能明显抑制3种单羟化代谢物的形成。而其他CYP选择性的抑制剂对3种代谢物的形成没有或较小产生抑制作用。用重组酶实验得出相同结果。结论体外肝微粒体研究表明,大豆苷元的单羟基代谢主要由CYP1A2所介导。  相似文献   

8.
In vitro studies were conducted to identify the hepatic cytochrome P450 (CYP) enzymes responsible for the oxidative metabolism of loxapine to 8-hydroxyloxapine, 7-hydroxyloxapine, N-desmethylloxapine (amoxapine) and loxapine N-oxide. These studies included use of cDNA-expressed enzymes, correlation analysis with 12 phenotyped human liver microsomal samples, and use of selective inhibitors of cytochrome P450s. The resultant data indicated that loxapine was mainly metabolized by human liver microsomes to (i) 8-hydroxyloxapine by CYP1A2, (ii) 7-hydroxyloxapine by CYP2D6, (iii) N-desmethyloxapine by CYP3A4 and (iv) loxapine N-oxide by CYP3A4. The involvement of flavin-containing monooxygenase (FMO) in the formation of loxapine N-oxide was also observed.  相似文献   

9.
SUPERMIX is a commercially available formulation of insect cell-expressed human drug-metabolizing cytochrome P450 (CYP) isoforms, mixed in proportions that are optimized to parallel their relative activities in human liver microsomes. We have evaluated the apparent functional affinity and capacity of individual CYP isoforms in SUPERMIX in comparison with microsomes from a panel of 12 human livers, using enzyme kinetic studies of isoform-selective index reactions. In addition, we have measured the concentration of NADPH cytochrome P450 oxidoreductase (OR) in SUPERMIX and compared it with the concentrations of this accessory electron transfer protein in human liver microsomes. No important differences were evident in the catalytic activities of CYPs 1A2, 2C8, 2C9, 2C19, 2D6 and 3A4 between SUPERMIX and human liver microsomes. However, SUPERMIX lacks CYP2B6 activity and did not hydroxylate the antidepressant bupropion, a clinically relevant substrate of this enzyme. In addition, the concentration of OR in SUPERMIX (1198 pmol mg protein(-1)) is 17-fold higher than the mean value in human liver microsomes (70 pmol mg protein(-1)). In conclusion, SUPERMIX lacks CYP2B6 activity and contains supraphysiological concentrations of the accessory electron transfer protein OR. These factors should be considered when this formulation is used as an in vitro model in human liver microsomal drug metabolism studies.  相似文献   

10.
The aim of the present study was to estimate the relative contribution of cytochrome P450 isoforms (P450s), including P450s of the CYP2C subfamily, to the metabolism of caffeine in human liver. The experiments were carried out in vitro using cDNA-expressed P450s, liver microsomes and specific P450 inhibitors. The obtained results show that (1) apart from the 3-N-demethylation of caffeine - a CYP1A2 marker reaction and the main oxidation pathway of caffeine in man - 1-N-demethylation is also specifically catalyzed by CYP1A2 (not reported previously); (2) 7-N-demethylation is catalyzed non-specifically, mainly by CYP1A2 and, to a smaller extent, by CYP2C8/9 and CYP3A4 (and not by CYP2E1, as suggested previously); (3) C-8-hydroxylation preferentially involves CYP1A2 and CYP3A4 and, to a smaller degree, CYP2C8/9 and CYP2E1 (and not only CYP3A, as suggested previously) at a concentration of 100 microM corresponding to the maximum therapeutic concentration in humans. At a higher caffeine concentration, the contribution of CYP1A2 to this reaction decreases in favour of CYP2C8/9. The obtained data show for the first time the contribution of CYP2C isoforms to the metabolism of caffeine in human liver and suggest that apart from 3-N-demethylation, 1-N-demethylation may also be used for testing CYP1A2 activity. Moreover, they indicate that the C-8-hydroxylation is not exclusively catalyzed by CYP3A4.  相似文献   

11.

BACKGROUND AND PURPOSE

Patients with diabetes mellitus require pharmacotherapy with numerous medications. However, the effect of diabetes on drug biotransformation is not well understood. Our goal was to investigate the effect of diabetes on liver cytochrome P450 3As, the most abundant phase I drug-metabolizing enzymes in humans.

EXPERIMENTAL APPROACH

Human liver microsomal fractions (HLMs) were prepared from diabetic (n = 12) and demographically matched nondiabetic (n = 12) donors, genotyped for CYP3A4*1B and CYP3A5*3 polymorphisms. Cytochrome P450 3A4, 3A5 and 2E1 mRNA expression, protein level and enzymatic activity were compared between the two groups.

KEY RESULTS

Midazolam 1′- or 4-hydroxylation and testosterone 6β-hydroxylation, catalyzed by P450 3A, were markedly reduced in diabetic HLMs, irrespective of genotype. Significantly lower P450 3A4 protein and comparable mRNA levels were observed in diabetic HLMs. In contrast, neither P450 3A5 protein level nor mRNA expression differed significantly between the two groups. Concurrently, we have observed increased P450 2E1 protein level and higher chlorzoxazone 6-hydroxylation activity in diabetic HLMs.

CONCLUSIONS AND IMPLICATIONS

These studies indicate that diabetes is associated with a significant decrease in hepatic P450 3A4 enzymatic activity and protein level. This finding could be clinically relevant for diabetic patients who have additional comorbidities and are receiving multiple medications. To further characterize the effect of diabetes on P450 3A4 activity, a well-controlled clinical study in diabetic patients is warranted.  相似文献   

12.
AIMS: The study aimed to identify the specific human cytochrome P450 (CYP450) enzymes involved in the metabolism of artemisinin. METHODS: Microsomes from human B-lymphoblastoid cell lines transformed with individual CYP450 cDNAs were investigated for their capacity to metabolize artemisinin. The effect on artemisinin metabolism in human liver microsomes by chemical inhibitors selective for individual forms of CYP450 was investigated. The relative contribution of individual CYP450 isoenzymes to artemisinin metabolism in human liver microsomes was evaluated with a tree-based regression model of artemisinin disappearance rate and specific CYP450 activities. RESULTS: The involvement of CYP2B6 in artemisinin metabolism was demonstrated by metabolism of artemisinin by recombinant CYP2B6, inhibition of artemisinin disappearance in human liver microsomes by orphenadrine (76%) and primary inclusion of CYP2B6 in the tree-based regression model. Recombinant CYP3A4 was catalytically competent in metabolizing artemisinin, although the rate was 10% of that for recombinant CYP2B6. The tree-based regression model suggested CYP3A4 to be of importance in individuals with low CYP2B6 expression. Even though ketoconazole inhibited artemisinin metabolism in human liver microsomes by 46%, incubation with ketoconazole together with orphenadrine did not increase the inhibition of artemisinin metabolism compared to orphenadrine alone. Troleandomycin failed to inhibit artemisinin metabolism. The rate of artemisinin metabolism in recombinant CYP2A6 was 15% of that for recombinant CYP2B6. The inhibition of artemisinin metabolism in human liver microsomes by 8-methoxypsoralen (a CYP2A6 inhibitor) was 82% but CYP2A6 activity was not included in the regression tree. CONCLUSIONS: Artemisinin metabolism in human liver microsomes is mediated primarily by CYP2B6 with probable secondary contribution of CYP3A4 in individuals with low CYP2B6 expression. The contribution of CYP2A6 to artemisinin metabolism is likely of minor importance.  相似文献   

13.
Chloroquine has been used for many decades in the prophylaxis and treatment of malaria. It is metabolized in humans through the N-dealkylation pathway, to desethylchloroquine (DCQ) and bisdesethylchloroquine (BDCQ), by cytochrome P450 (CYP). However, until recently, no data are available on the metabolic pathway of chloroquine. Therefore, the metabolic pathway of chloroquine was evaluated using human liver microsomes and cDNA-expressed CYPs. Chloroquine is mainly metabolized to DCQ, and its Eadie-Hofstee plots were biphasic, indicating the involvement of multiple enzymes, with apparent Km and Vmax values of 0.21 mM and 1.02 nmol/min/mg protein 3.43 mM and 10.47 nmol/min/mg protein for high and low affinity components, respectively. Of the cDNA-expressing CYPs examined, CYP1A2, 2C8, 2C19, 2D6 and 3A4/5 exhibited significant DCQ formation. A study using chemical inhibitors showed only quercetin (a CYP2C8 inhibitor) and ketoconazole (a CYP3A4/5 inhibitor) inhibited the DCQ formation. In addition, the DCQ formation significantly correlated with the CYP3A4/5-catalyzed midazolam 1-hydroxylation (r = 0.868) and CYP2C8-catalyzed paclitaxel 6alpha-hydroxylation (r = 0.900). In conclusion, the results of the present study demonstrated that CYP2C8 and CYP3A4/5 are the major enzymes responsible for the chloroquine N-deethylation to DCQ in human liver microsomes.  相似文献   

14.
1.?The in vitro metabolism of 3-((5-(6-methylpyridin-2-yl)-4-(quinoxalin-6-yl)-1H-imidazol-2-yl)methyl)benzamide (IN-1130), a selective activin receptor-like kinase-5 (ALK5) inhibitor and a candidate drug for fibrotic disease, was studied.

2.?The cytochrome P450s (CYPs) responsible for metabolism of IN-1130 in liver microsomes of rat, mouse, dog, monkey and human, and in human CYP supersomes?, were identified using specific CYP inhibitors. The order of disappearance of IN-1130 in various liver microsomal systems studied was as follows: monkey, mouse, rat, human, and dog.

3.?Five distinct metabolites (M1–M5) were identified in all the above microsomes and their production was substantially inhibited by CYP inhibitors such as SKF-525A and ketoconazole. Among nine human CYP supersomes? examined, CYP3A4, CYP2C8, CYP2D6*1, and CYP2C19 were involved in the metabolism of IN-1130, and the production of metabolites were significantly inhibited by specific CYP inhibitors. IN-1130 disappeared fastest in CYP2C8 supersomes. CYP3A4 produced four metabolites of IN-1130 (M1–M4), whereas supersomes expressing human FMO cDNAs, such as FMO1, FMO3, and FMO5, produced no metabolites.

4.?Hence, it is concluded that metabolism of IN-1130 is mediated by CYP3A4, CYP2C8, CYP2D6*1, and CYP2C19.  相似文献   

15.
《Drug metabolism reviews》2012,44(2-3):515-538
The microsomal cytochrome P450 (CYP) family 4 monooxygenases are the major fatty acid ω-hydroxylases. These enzymes remove excess free fatty acids to prevent lipotoxicity, catabolize leukotrienes and prostanoids, and also produce bioactive metabolites from arachidonic acid ω-hydroxylation. In addition to endogenous substrates, recent evidence indicates that CYP4 monooxygenases can also metabolize xenobiotics, including therapeutic drugs. This review focuses on human CYP4 enzymes and updates current knowledge concerning catalytic activity profiles, genetic variation and regulation of expression. Comparative differences between the human and rodent CYP4 enzymes regarding catalytic function and conditional expression are also discussed.  相似文献   

16.
This article reviews in vitro metabolic activities [including Michaelis constants (Km), maximal velocities (Vmax) and Vmax/Km] and drug–steroid interactions [such as induction and cooperativity (activation)] of cytochromes P450 (P450 or CYP) in human tissues, including liver and adrenal gland, for 14 kinds of endogenous steroid compounds, including allopregnanolone, cholesterol, cortisol, cortisone, dehydroepiandrosterone, estradiol, estrone, pregnenolone, progesterone, testosterone and bile acids (cholic acid). First, we considered the drug-metabolizing P450s. 6β-Hydroxylation of many steroids, including cortisol, cortisone, progesterone and testosterone, was catalyzed primarily by CYP3A4. CYP1A2 and CYP3A4, respectively, are likely the major hepatic enzymes responsible for 2-/4-hydroxylation and 16α-hydroxylation of estradiol and estrone, steroids that can contribute to breast cancer risk. In contrast, CYP1A1 and CYP1B1 predominantly metabolized estrone and estradiol to 2- and 4-catechol estrogens, which are endogenous ultimate carcinogens if formed in the breast. Some metabolic activities of CYP3A4, including dehydroepiandrosterone 7β-/16α-hydroxylation, estrone 2-hydroxylation and testosterone 6β-hydroxylation, were higher than those for polymorphically expressed CYP3A5. Next, we considered typical steroidogenic P450s. CYP17A1, CYP19A1 and CYP27A1 catalyzed steroid synthesis, including hydroxylation at 17α, 19 and 27 positions, respectively. However, it was difficult to predict which hepatic drug-metabolizing P450 or steroidogenic P450 will be mainly responsible for metabolizing each steroid hormone in vivo based on these results. Further research is required on the metabolism of steroid hormones by various P450s and on prediction of their relative contributions to in vivo metabolism. The findings collected here provide fundamental and useful information on the metabolism of steroid compounds.  相似文献   

17.
Aims The present study was carried out to identify the cytochrome P450 isoenzyme(s) involved in the N-dealkylation of haloperidol (HAL). Methods In vitro studies were performed using human liver microsomes and c-DNA-expressed human P450 isoforms. N-dealkylation of HAL was assessed by measuring the formation of 4-(4-chlorophenyl)-4-hydroxypiperidine (CPHP). Results There was a tenfold variation in the extent of CPHP formation amongst the nine human liver microsomal preparations. The CPHP formation rates as a function of substrate concentration, measured in three livers, followed monophasic enzyme kinetics. Km and Vmax values ranged respectively from 50 to 78 μm and from 180 to 412 pmol mg−1 min−1. CPHP formation rates in the nine liver preparations were significantly correlated with dextromethorphan N-demethylase activity (a marker of CYP3A4 activity), but not with the activity of dextromethorphan O-demethylase (CYP2D6), phenacetin O-deethylase (CYP1A2) or tolbutamide hydroxylase (CYP2C9). Ketoconazole, an inhibitor of CYP3A4, inhibited competitively CPHP formation (Ki=0.1 μm ), whereas sulphaphenazole (CYP2C9), furafylline (CYP1A2) and quinidine (CYP2D6) gave only little inhibition (IC50>100 μm ). CPHP formation was, moreover, enhanced by α-naphtoflavone, an effect common to CYP3A4 mediated reactions. Anti-CYP3A4 antibodies strongly inhibited CPHP formation, whereas no inhibition was observed in the presence of CYP2D6 antibodies. Among the recombinant human CYP isoforms tested, CYP3A4 exhibited the highest activity with respect to CPHP formation rate, with no detectable effect of other CYP isoforms (CYP1A2, CYP2D6 and CYP2C9). HAL inhibited dextromethorphan O-demethylase (CYP2D6) with IC50 values between 2.7 and 8.5 μm, but not (IC50>100 μm ) dextromethorphan N-demethylase (CYP3A4), phenacetin O-deethylase (CYP1A2) or tolbutamide hydroxylase (CYP2C9). Conclusions These results strongly suggest that the N-dealkylation of HAL in human liver microsomal preparations is mediated by CYP3A4.  相似文献   

18.
Previous studies have suggested a relationship between cytochrome P450 (P450) 3A (CYP3A) conformation and the phospholipid composition of the associated membrane. In this study, we utilized a novel microsomal incubation system that mimics many of the characteristics of CYP3A degradation pathway that have been observed in vivo and in cultured cells to study the effects of phospholipid composition on protein stability. We found that addition of phosphatidylcholine-specific phospholipase D (PLD) stabilized CYP3A in this system, but that phosphatidylinositol-specific phospholipase C (PLC) was without effect. Addition of phosphatidic acid also stabilized CYP3A protein in the microsomes. The use of 1,10-phenanthroline (phenanthroline), an inhibitor of PLD activity, decreased CYP3A stability in incubated microsomes. Similarly, 6-h treatment of primary cultures of rat hepatocytes with phenanthroline resulted in nearly complete loss of CYP3A protein. Treatment of rats with nicardipine or dimethylsulfoxide (DMSO), which have been shown to affect CYP3A stability, altered the phospholipid composition of hepatic microsomes. It did not appear, though, that the changes in phospholipid composition that resulted from these in vivo treatments accounted for the change in CYP3A stability observed in hepatic microsomes from these animals.  相似文献   

19.
In vitro studies with human liver microsomes and cytochrome P450 (P450) prototype substrates were performed to characterize the selectivity and mechanism of inhibition of P450 by dimethyl-4,4'-dimethoxy-5,6,5',6'-dimethylenedioxybiphenyl-2,2'-dicarboxylate (DDB). DDB was found to be a strong inhibitor of testosterone 6beta-hydroxylation activity (CYP3A4) with a K(i) value of 0.27 +/- 0.21 microM. At higher concentrations, DDB marginally inhibited caffeine N(3)-demethylation (CYP1A2), diclofenac 4'-hydroxylation (CYP2C9), and dextromethorphan O-demethylation (CYP2D6) activities, but this compound had no effect on CYP2A6-, CYP2C19-, and CYP2E1-mediated reactions. Spectral analysis indicated that the formation of metabolite-P450 complex having absorbance at 456 nm was concentration-dependent; 5 to 33% of the total P450 was complexed in rat and human liver microsomes after a 5-min incubation with DDB. In addition, microsomal incubations with DDB in the presence of NADPH resulted in a loss of spectral P450 content, which was restored after adding K(3)Fe(CN)(6). This complex formation resulted in a time-dependent loss of CYP3A-catalyzed marker activity (testosterone 6beta-hydroxylation) in human liver microsomes. The inhibition was only partially restored upon dialysis. These results collectively suggest that formation of a metabolite-CYP3A complex with DDB was responsible for the CYP3A-selective time-dependent loss of catalytic function of CYP3A.  相似文献   

20.
The in vitro metabolism of permethrin and its hydrolysis products in rats was investigated. Cis- and trans-permethrin were mainly hydrolyzed by liver microsomes, and also by small-intestinal microsomes of rats. trans-Permethrin was much more effectively hydrolyzed than the cis-isomer. When NADPH was added to the incubation mixture of the liver microsomes, three metabolites, 3-phenoxybenzyl alcohol (PBAlc), 3-phenoxybenzaldehyde (PBAld) and 3-phenoxybenzoic acid (PBAcid), were formed. However, only PBAlc was formed by rat liver microsomes in the absence of cofactors. The microsomal activities of rat liver and small intestine were inhibited by bis-p-nitrophenyl phosphate, an inhibitor of carboxylesterase (CES). ES-3 and ES-10, isoforms of the CES 1 family, exhibited significant hydrolytic activities toward trans-permethrin. When PBAlc was incubated with rat liver microsomes in the presence of NADPH, PBAld and PBAcid were formed. The NADPH-linked oxidizing activity was inhibited by SKF 525-A. Rat recombinant cytochrome P450, CYP 2C6 and 3A1, exhibited significant oxidase activities with NADPH. When PBAld was incubated with the microsomes in the presence of NADPH, PBAcid was formed. CYP 1A2, 2B1, 2C6, 2D1 and 3A1 exhibited significant oxidase activities in this reaction. Thus, permethrin was hydrolyzed by CES, and PBAlc formed was oxidized to PBAld and PBAcid by the cytochrome P450 system in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号