首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
These studies were undertaken to assess the relative expression and autocrine activation of the epidermal growth factor receptor (EGFR) in normal and transformed prostatic epithelial cells and to determine whether EGFR activation plays a functional role in androgen-stimulated growth of prostate cancer cells in vitro. EGFR expression was determined by Western blot analysis and ELISA immunoassays. Immunoprecipitation of radiophosphorylated EGFR and evaluation of tyrosine phosphorylation was used to assess EGFR activation. The human androgen-independent prostate cancer cell lines PC3 and DU145 exhibited higher levels of EGFR expression and autocrine phosphorylation than normal human prostatic epithelial cells or the human androgen-responsive prostate cancer cell line LNCaP. PC3 and DU145 cells also showed higher levels of autonomous growth under serum-free defined conditions. Normal prostatic epithelial cells expressed EGFR but did not exhibit detectable levels of EGFR phosphorylation when cultured in the absence of exogenous EGF. Addition of EGF stimulated EGFR phosphorylation and induced proliferation of normal cells. LNCaP cells exhibited autocrine phosphorylation of EGFR but did not undergo significant proliferation when cultured in the absence of exogenous growth factors. A biphasic growth curve was observed when LNCaP cells were cultured with dihydrotestosterone (DHT). Maximum proliferation occurred at 1 nM DHT with regression of the growth response at DHT concentrations greater than 1 nM. However, neither EGFR expression nor phosphorylation was altered in LNCaP cells after androgen stimulation. In addition, DHT-stimulated growth of LNCaP cells was not inhibited by anti-EGFR. These studies show that autocrine activation of EGFR is a common feature of prostatic carcinoma cells in contrast to normal epithelial cells. However, EGFR activation does not appear to play a functional role in androgen-stimulated growth of LNCaP cells in vitro.  相似文献   

2.
In order to ascertain autocrine growth factors in esophageal carcinomas, we analysed expression of mRNAs and proteins for epidermal growth factor (EGF), transforming growth factor-alpha (TGF-alpha) and epidermal growth factor receptor (EGFR) in 6 esophageal carcinoma cell lines. Gene alterations were also examined. All of the esophageal carcinoma cell lines expressed mRNA for EGFR and TGF-alpha genes. Interestingly, EGF mRNA of about 5.0 kb was also detected in TE-1, TE-2, and TE-8 cells. Production of protein was also confirmed by binding assay and ELISA on 3 of the 6 cell lines. The cells had a relatively high number of EGFRs and produced TGF-alpha and EGF protein at the same time. Furthermore, anti-EGF (KEM-10) and anti-TGF-alpha (WA-3) monoclonal antibodies (MAbs) inhibited spontaneous uptake of tritiated thymidine (3H-TdR) by TE-1 cells which expressed EGF, TGF-alpha and EGFR mRNA and protein. These results strongly suggest that EGF and/or TGF-alpha produced by carcinoma cells function as autocrine growth factors for human esophageal carcinomas.  相似文献   

3.
Autocrine growth factors for the epidermal growth factor receptor (EGFR) have been identified in prostate tumors, implicating a role for EGFR in the progression of prostate cancer. To investigate early signaling mechanisms used by the EGFR in prostate tumor cells, we have characterized the involvement of the Shc (src homology 2/x-collagen related) adapter protein in EGFR signaling in several human prostate tumor cell lines. In androgen-responsive lymph node-prostate cancer (LNCaP) cells and androgen-insensitive PC3, DU145 and PPC-1 cells, Shc was identified as one of the most prominent phosphotyrosine proteins to be elevated in response to EGF. Equivalent levels of the 46- and 52-kDa Shc isoforms were detected in all of the tumor cell lines tested. However, levels of the 66-kDa isoform were variable among the cell lines. In all of the tumor cell lines, EGF caused an association between Shc and Grb2, another adapter protein linked to cellular ras activation. Additionally, several phosphotyrosine proteins, including a 115–120-kDa protein in EGF-treated LNCaP cells, co-associated with Shc. The profile of these Shc-associating proteins, however, differed among the tumor cell lines. Our results indicate that Shc is a common downstream element of EGFR signaling in prostate tumor cells and suggest multiple functions for Shc in prostate tumorigenesis. Int. J. Cancer 77:923–927, 1998.© 1998 Wiley-Liss, Inc.  相似文献   

4.
The expressions of mRNA for epidermal growth factor (EGF), transforming growth factor-alpha (TGF-alpha) and EGF receptor (EGFR) genes were examined in 7 human gastric carcinoma cell lines and 15 gastric carcinoma tissues and the corresponding normal mucosas. All of the gastric carcinoma cell lines expressed mRNA for EGFR and TGF-alpha genes. TMK-1 and MKN-28 cells also expressed EGF mRNA. Production of EGF, TGF-alpha and EGFR protein by gastric carcinoma cell lines was also confirmed by EGF and TGF-alpha specific monoclonal antibody binding. As for surgical specimens, EGFR and TGF-alpha mRNA were detected at high levels in all the tumor tissues. Interestingly, EGF mRNA was detected in 5 (33.3%) of the 15 gastric carcinomas but it was not detected in normal tissues. Moreover, anti-EGF and anti-TGF-alpha monoclonal antibodies inhibited the spontaneous 3H-TdR uptake by gastric carcinoma cells. These results suggest that EGF and/or TGF-alpha produced by tumor cells act as autocrine growth factors for gastric carcinomas.  相似文献   

5.
The deregulation of the epidermal growth factor receptor (EGFR) pathway plays a major role in the pathogenesis of prostate cancer (PCa). However, therapies targeting EGFR have demonstrated limited effectiveness in PCa. A potential mechanism to overcome EGFR blockade in cancer cells is the autocrine activation of alternative receptors of the human EGFR (HER) family through the overexpression of the HER receptors and ligands. In the present study, we were interested in analyzing if this intrinsic resistance mechanism might contribute to the inefficacy of EGFR inhibitors in PCa. To this end, we selected two androgen-independent human prostate carcinoma cell lines (DU145 and PC3) and established DU145 erlotinib-resistant cells (DUErR). Cells were treated with three EGFR inhibitors (cetuximab, gefinitib and erlotinib) and the sensitivity to each treatment was assessed. The gene expression of the four EGFR/HER receptors and seven ligands of the HER family was analyzed by real-time PCR prior to and after each treatment. The receptors expression and activation were further characterized by flow cytometry and western blot analysis. EGFR inhibition rapidly induced enhanced gene expression of the EGF, betacellulin and neuregulin-1 ligands along with HER2, HER3 and HER4 receptors in the DU145 cells. In contrast, slight changes were observed in the PC3 cells, which are defective in the phosphatase and tensin homolog (PTEN) tumor suppressor gene. In the erlotinib-resistant DUErR cells, the expression of HER2 and HER3 was increased at mRNA and protein levels together with neuregulin-1, leading to enhanced HER3 phosphorylation and the activation of the downstream PI3K/Akt survival pathway. HER3 blockage by a monoclonal antibody restored the cytostatic activity of erlotinib in DUErR cells. Our results confirm that the overexpression and autocrine activation of HER3 play a key role in mediating the resistance to EGFR inhibitors in androgen-independent PCa cells.  相似文献   

6.
The androgen-independent prostatic carcinoma cell line PC3 is known to exhibit autonomous growth in vitro and in vivo. The purpose of the present study was to investigate the role of transforming growth factor alpha (TGF-alpha) and its receptor, the epidermal growth factor (EGF) receptor, in the regulation of PC3 cell proliferation. Results showed that PC3 cells secrete factors into conditioned medium that are mitogenic for the less aggressive prostatic carcinoma lines DU145 and LNCaP. Gel filtration chromatography of PC3-conditioned medium revealed a major peak of mitogenic activity at a molecular weight of 5,000 to 10,000 which was inhibited by the addition of antibody to TGF-alpha. The synthesis and secretion of TGF-alpha by PC3 cells were further demonstrated by immunoblotting and radioimmunoassay. Radioreceptor analysis showed a single class (Kd 5.3 nM) of EGF receptors on PC3 cells. The presence of Mr 170,000 EGF receptors on PC3 cells was further demonstrated by immunoprecipitation of metabolically labeled proteins. TGF-alpha was effective in stimulating the growth of low-density, but not high-density, PC3 cultures. In addition, the proliferation of PC3 cells under serum-free defined conditions was inhibited by antibodies to TGF-alpha and/or the EGF receptor. These data indicate that TGF-alpha/EGF receptor interactions are partially responsible for autonomous growth of the PC3 cell line and may explain one mechanism of escape from androgen-dependent growth in human prostatic carcinoma.  相似文献   

7.
Malignant cells frequently acquire a certain independency of exogenous growth factors via the coexpression of epidermal growth factor receptor (EGFR) and epidermal growth factor (EGF)-related molecules. In the present study we investigate a possible involvement of EGF-related molecules in the growth of human lung mesothelioma. Four well-characterised cell lines are analysed for their responsiveness to exogenous EGF and transforming growth factor alpha (TGF-alpha) as well as for coexpression of EGFR and EGF/TGF-alpha. Both growth factors are able to stimulate DNA synthesis in three cell lines, although the degree of responsiveness is very variable, but neither EGF nor TGF-alpha has an effect on the cell line ZL34. In contrast, no heterogeneity is observed in the expression of EGFR, which is similarly high in all cell lines. Analysis of cell supernatants reveals that, whereas no EGF is detected, TGF-alpha is released by two cell lines. Furthermore, these two cell lines, ZL5 and ZL34, are shown to express the membrane anchored precursor pro-TGF-alpha. Thus, coexpression of EGFR and TGF-alpha is observed on two mesothelioma cell lines. The potential autocrine mitogenic role of TGF-alpha in these two cell lines was tested using neutralising antibodies against TGF-alpha and EGFR. In ZL5 cells DNA synthesis was not affected by the presence of neutralising antibodies, indicating that an external autocrine mitogenic pathway is not active in these cells. In ZL34 cells, however, the potential autocrine loop could be disrupted, as DNA synthesis was significantly reduced in the presence of neutralising antibodies. This result gives strong evidence for an autocrine role of TGF-alpha in the growth of the mesothelioma cell line ZL34.  相似文献   

8.
Despite multiple reports of overexpression in prostate cancer (PC), the reliance of PC cells on activated epidermal growth factor receptor (EGFR) and its downstream signaling to phosphoinositide 3'-kinase/Akt (PI3K/Akt/PTEN) and/or mitogen-activated protein kinase (MAPK/ERK) pathways has not been fully elucidated. In this study, we compared the role of EGF-mediated signaling in nonmalignant (BPH-1, PNT1A, and PNT1B) and PC cell lines (DU145, PC3, LNCaP, and CWR22Rv1). EGF-induced proliferation was observed in all EGFR-expressing PC cells except PC3, indicating that EGFR expression does not unequivocally trigger proliferation following EGF stimulation. ErbB2 recruitment potentiated EGF-induced signals and was associated with the most pronounced effects of EGF despite low EGFR expression. In this way, the sum of EGFR and ErbB2 receptor phosphorylation proved to be a more sensitive indicator of EGF-induced proliferation than quantification of the expression of either receptor alone. Both Akt and ERK were rapidly phosphorylated in response to EGF, with ERK phosphorylation being the weakest in PC3 cells. Extrapolation of these findings to clinical PC suggests that assessment of phosphorylated EGFR + ErbB2 together could serve as a marker for sensitivity to anti-EGFR-targeted therapies.  相似文献   

9.
To investigate the effects of the autocrine loop of epidermal growth factor receptor (EGFR)-epidermal growth factor (EGF) / transforming growth factor-alpha (TGF-alpha) on the proliferation and differentiation of malignant rhabdoid tumor (MRT), we used five MRT cell lines, TM87-16, STM91-01, TTC549, TTC642, and YAM-RTK1. RT-PCR analyses revealed expression of EGFR mRNA in all MRT cell lines. In contrast, the expression of either EGF or TGF-alpha mRNA was detected in all MRT cell lines. Expression of EGF, TGF-alpha, and EGFR as determined by immunocytochemical staining and in situ hybridization, correlated with the results of RT-PCR. Upon differentiation-induction with 12-O-tetradecanoylphorbol-13-acetate (TPA), in TTC549, showing an expression of TGF-alpha but not EGF initially, de novo expression of EGF mRNA appeared abruptly on day 2 of TPA treatment. To confirm the EGFR-EGF / TGF-alpha autocrine loop, we used TGF-alpha, EGF, and their antibodies in the cultures. Monoclonal antibody (mAb) to EGFR alone significantly inhibited the growth of cell line TTC549. However, mAb to EGF or TGF-alpha could inhibit proliferation of this cell line only when administrated together. Our findings would suggest that growth of the TTC549 cell line is constitutionally regulated by TGF-alpha / EGFR, but that inhibition of this autocrine mechanism results in transient activation of an autocrine loop involving EGF / EGFR. Our results may indicate the presence of two different autocrine loops of EGFR-EGF and / or EGFR-TGF-alpha in MRT cell lines. The heterogeneity of autocrine mechanisms found in MRT cell lines would be consistent with the multiphenotypic diversity and aggressive characteristics of this enigmatic tumor.  相似文献   

10.
Wang L  Liu X  Kreis W  Budman D 《Oncology reports》1996,3(5):911-917
Since its identification in 1979, prostatic specific antigen (PSA) has been used extensively as a serum marker for diagnosis and prognosis of prostate cancer. In addition, PSA is an immunohistochemical marker for the identification of prostatic tissues and cells in histological specimens. PSA is found in normal prostate, benign prostatic hypertrophy (BPH) tissue, in cancer of the prostate, and its metastases as well as in other hormone dependent cancers, such as breast and ovarian carcinoma. However, the importance of PSA as a regulator of cell growth generally has not been appreciated. The role of PSA in the development of prostate or other hormone-dependent cancers has remained unclear. We therefore examined the role of PSA in the control of cell growth using both the PSA positive cell line, LNCaP cells and the PSA negative cell line PC-3 and DU145. LNCaP cell growth was stimulated by the conditioned medium (CM) from LNCaP cells, but not by CM from PC-3 or DU145 cells. No such stimulation was observed when PC-3 or DU145 cells were exposed to CM from LNCaP cells nor from CM produced by their own lines. The stimulation of LNCaP cell growth by its own CM could not be attributed to the high level of insulin-like growth factor binding protein-2 (IGFBP-2) present in the CM since even higher level of IGFBP-2 was also found to be present in CM from both PC-3 and DU145 CMs. High level of PSA and 66 kDa epidermal growth factor (EGF) were present in LNCaP CM as measured by Western blotting. The stimulation of LNCaP cell growth by its own CM was eliminated partially by PSA or EGF antibody. Stimulation of DNA biosynthesis in LNCaP cells by LNCaP CM or pure PSA was also observed. These data indicate that PSA and EGF are involved in the growth regulation of PSA positive LNCaP cell line.  相似文献   

11.
Adipocyte-fatty acid binding protein (A-FABP) is a 14-15 kDa cytoplasmic protein that binds unesterified fatty acids (FA). It is believed that A-FABP is present in normal cells and disappears in cancer cells. Prostate cancer DU145 cells lack expression of A-FABP. Here, we report that transfection of A-FABP blocked growth of DU145 cells suggesting its role as a tumor suppressor. A-FABP transfected- prostate cancer DU145 cells underwent apoptosis when induced to overexpress A-FABP using an ecdysone-controlled expression system. DU145 cell cultures in complete medium exhibited a maximum of approximately 28% of apoptotic cells after 96 h of exposure to an ecdysone analog, Ponasterone A. We found that the possible mechanisms leading to the observed apoptotic effect may be due, in part, to an overexpression of tumor necrosis factor-alpha (TNF-alpha) and a moderate downregulation of transforming growth factor-alpha (TGF-alpha) in DU145 cells overexpressing A-FABP. The epidermal growth factor receptor (EGFR)/phosphatidyl inositol 3-kinase (PI 3-kinase) signaling pathway was not altered in these cells, suggesting that A-FABP may cause apoptosis by inducing downregulation of essential autocrine growth factors and/or upregulation of pro-apoptotic ones.  相似文献   

12.
The present study was undertaken to compare the relationship between response to exogenous epidermal growth factor (EGF) and the expression of the EGF-receptor (EGF-R) in an androgen sensitive (LNCaP) and insensitive (DU145) prostate cancer cell line. Although both cell lines demonstrated a single EGF-R binding site of similar high affinities (mean dissociation constant (Kd) +/- S.D. for DU145 = 1.0 +/- 0.6 nmol l-1; LNCaP = 2.8 +/- 2.2 nmol l-1) the number of binding sites (RT) for the hormone insensitive DU145 cells (mean +/- S.D. = 2.5 +/- 1.0 x 10(5) sites/cell) and 10-fold greater than that expressed in the androgen responsive LNCaP cell line (mean +/- S.D. = 2.0 +/- 1 x 10(4) sites/cell). Additionally exogenous EGF only minimally affected the growth and DNA synthesis of DU145 cells whereas LNCaP cells showed a significant response which was dose dependent. The autologous production of EGF-like molecules by DU145 cells is believed to reduce the cells needs for exogenous mitogens, thereby rendering the cells autostimulatory. Treatment of LNCaP cells with Mibolerone--a synthetic androgen--did not affect either the expression of the EGF receptor or the proliferative response observed with EGF. Western blot analysis, using monoclonal antibodies directed against the EGF receptor revealed a band of approximately 170 kD with DU145 cell lysates but the LNCaP EGF receptor was not detected using this technique.  相似文献   

13.
Understanding the molecular action of gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor, might allow us to perform more effective therapies for hormone-independent advanced prostate cancer. A DNA microarray study was undertaken to comprehensively analyze the alteration of levels of 1,081 genes after gefitinib treatment in androgen-independent PC3 and DU145 cells and androgen-dependent LNCaP cells. The proliferation of PC3, DU145 and LNCaP cells was significantly inhibited by 50.2%, 83.8% and 55.2%, respectively, 6 days after 10 microM gefitinib administration. Of the above 1,081 genes, we identified 23, 13 and 33 genes with significantly different expression in PC3, DU145 and LNCaP cells, respectively, 24 h after 10 microM-gefitinib exposure. Among the identified genes, only Quiescin Q6, a negative cell cycle regulator, was increased after gefitinib treatment in all three cell lines regardless of gefitinib sensitivity. Except for Quiescin Q6, there were no overlapping genes between PC3 and DU145 cells. However, levels of several oncogenes or proliferation-related genes were changed after gefitinib treatment in the 2 androgen-independent cell lines. We also identified 7 unique genes [glycyl-tRNA synthetase, interferon, alpha-inducible protein, stratifin, nuclear factor of kappa light polypeptide gene enhancer in B-cells 1, dual specificity phosphatase 9, guanine nucleotide binding protein (G protein) beta polypeptide 2, neural retina leucine zipper] whose levels were altered exclusively after gefitinib administration in gefitinib-resistant PC3 and LNCaP cells, but not in DU145 cells, suggesting that these 7 genes could be targets for overcoming gefitinib resistance. Collectively, our molecular profiling data will serve as a framework for understanding the molecular action of gefitinib for prostate cancer.  相似文献   

14.
15.
Progression from an androgen-dependent to an androgen-independent state often occurs in patients with prostate cancer (PCa) who undergo hormonal therapy. We have investigated whether inhibition of the epidermal growth factor receptor (EGFR) signaling pathway affects the antitumor effect of a nonsteroidal antiandrogen. Gefitinib (Iressa), an EGFR tyrosine kinase inhibitor, and bicalutamide (Casodex), a nonsteroidal antiandrogen [androgen receptor (AR) antagonist], were administered alone and in combination to AR-positive human PCa cell lines. FACS analysis showed lower EGFR expression levels on AR-positive cells (LNCaP, CWR22, CWR22R 2152 and AR-transfected DU145 cell lines) compared with AR-negative cells (DU145, PC3 and TSU-Pr1). Moreover, in AR-transfected DU145 cells, chronic treatment with bicalutamide increased EGFR expression to levels similar to androgen-independent DU145 cells. All AR-positive PCa cell lines were sensitive to gefitinib (IC50 = 0.1-0.6 microM), whereas higher concentrations of bicalutamide were needed to reduce AR-positive PCa cell line proliferation (IC50 = 0.8-2.0 microM). Low doses of gefitinib increased the antitumor effects of bicalutamide by strongly reducing the IC50 of bicalutamide (approximately 10-fold). Similarly, bicalutamide increased the antiproliferative effects of gefitinib by reducing the IC50 of gefitinib (approximately 5-fold). Taken together, our data suggest that in androgen-dependent cell lines, addition of gefitinib in combination with bicalutamide results in concurrent dual inhibition of AR and EGFR/HER2 pathways. This causes a significant delay in the onset of EGFR-driven androgen independence.  相似文献   

16.
Two human breast cancer cell lines, BT-20 and ZR-75-1, were examined with the aim of the elucidating the pathological roles of human transforming growth factor (TGF)-alpha in breast cancers. The TGF-alpha receptor was found to be present in both cell lines. A clonogenic assay revealed that concentrations of TGF-alpha greater than 10(10) M induced a significant increase in colony formation, indicating TGF-alpha to be a breast cancer cell growth factor. Northern blot analysis revealed, moreover, that both cell lines expressed TGF-alpha mRNA. Taking these observations together, it is reasonably possible to assume that TGF-alpha is an autocrine growth factor for breast cancer cells. Although it has been proposed that TGF-alpha could be an epidermal growth factor (EGF) superagonist with regard to its colony formation stimulating activity, the present study demonstrated the colony formation stimulating activities of TGF-alpha and EGF not to be all that much different in the two breast cancer cell lines.  相似文献   

17.
The present study was undertaken to test the effects of prostate cancer cell lines (LNCaP, DU145, PC3, and MDA PCa 2b) on osteoclastogenesis. Crude conditioned medium (CM) from all four prostate cancer cell lines enhanced expression of the mRNA for receptor activator of NF-kappaB ligand (RANKL) in a mouse osteoblast cell line, MC3T3-E1; however, CM had no effect on expression of osteoprotegerin (OPG) mRNA. Coculture of MC3T3-E1 with prostate cancer cells yielded similar results. The number of mature osteoclasts induced by soluble RANKL increased significantly when osteoclast precursor cells were cultured with CM from LNCaP and DU145 cells. CM from LNCaP and DU145 cells also induced maturation from precursor in the absence of soluble RANKL, and this effect was not blocked by OPG. Addition of CM from DU145 cells increased expression of MMP-9 mRNA by osteoclast precursors. Our findings indicate that prostate cancer mediates osteoclastogenesis through induction of RANKL expression by osteoblasts and through direct actions on osteoclast precursors mediated by some factors other than RANKL.  相似文献   

18.
Prostate cancer metastasis to bone may be mediated by preferential proliferation of these cells in the bone's microenvironment. We hypothesize that this preferential proliferation is mediated by bone-associated growth factors (GFs) and cytokines. To test our hypothesis, human prostate cancer cells, derived from both soft tissue (LNCaP, DuCaP, DU145) and bone metastases (PC-3, VCaP, MDA-2a, MDA-2b), were treated with bone-associated GFs and cytokines (PDGF, IGF-1, TGF-beta, EGF, bFGF, TNF-alpha, IL-1, and IL-6) for 48 h, and their growth responses were compared. The responses of soft tissue-derived prostate cancer cell lines to bone GFs and cytokines were variable. LNCaP cell growth was stimulated by IGF-1 but was inhibited by TNF-alpha. DU145 cell growth was stimulated with EGF. Prostate cancer cell lines derived from bone metastases also responded variably to bone GFs and cytokines. IL-1 stimulated the growth of MDA-2a and 2b cell lines in a dose-dependent manner. PDGF and bFGF both demonstrated variable effects on bone-derived prostate cancer cell lines. TNF-alpha inhibited proliferation of the VCaP cells. These findings demonstrate that human prostate cancer cell lines derived from bone metastases may not respond preferentially to bone-associated GFs and cytokines.  相似文献   

19.
Gery S  Sawyers CL  Agus DB  Said JW  Koeffler HP 《Oncogene》2002,21(31):4739-4746
We have identified a gene that is highly expressed in the androgen-dependent prostate cancer cell line, LNCaP. Sequence analysis revealed that it was identical to a recently cloned gene designated TMEFF2, which encodes a transmembrane protein containing an epidermal growth factor (EGF)-like motif and two follistatin domains. This gene was highly expressed only in primary samples of normal prostate and prostate cancer as well as normal brain. Expression of the gene was controlled by androgen as shown by dihydrotestosterone markedly increasing TMEFF2 expression in LNCaP cells. Also, androgen-dependent human prostate cancer xenografts (CWR22) expressed high levels of TMEFF2 and these levels markedly decreased by day 10 after castration of the mice. Furthermore, a large number of androgen-dependent xenografts (CWR22, LuCaP-35, LAPC-4AD, LAPC-9AD) exhibited higher levels of TMEFF2 mRNA than androgen-independent xenografts (CWR22R, LAPC-3AI, LAPC-4AI, LAPC-9AI). Ectopic expression of TMEFF2 in DU145 and PC3 cells resulted in their prominent inhibition of growth. Taken together, the results demonstrate that TMEFF2 is a androgen-regulated gene, which can suppress growth of prostate cancer cells and our xenograft data show that escape of prostate cancer cells from androgen modulation causes them to decrease their expression of this gene, which may result in their more malignant behavior.  相似文献   

20.
HER3 (ERBB3) is a catalytically inactive pseudokinase of the HER receptor tyrosine kinase family, frequently overexpressed in prostate and other cancers. Aberrant expression and mutations of 2 other members of the family, EGFR and HER2, are key carcinogenic events in several types of tumors, and both are well‐ validated therapeutic targets. In this study, we show that HER3 is required to maintain the motile and invasive phenotypes of prostate (DU‐145) and breast (MCF‐7) cancer cells in response to the HER3 ligand neuregulin‐1 (NRG‐1), epidermal growth factor (EGF) and fetal bovine serum. Although MCF‐7 breast cancer cells appeared to require HER3 as part of an autocrine response induced by EGF and FBS, the response of DU‐145 prostate cancer cells to these stimuli, while requiring HER3, did not appear to involve autocrine stimulation of the receptor. DU‐145 cells required the expression of HER3 for efficient clonogenicity in vitro in standard growth medium and for tumorigenicity in immunodeficient mice. These observations suggest that prostate cancer cells derived from tumors that overexpress HER3 are dependent on its expression for the maintenance of major attributes of neoplastic aggressiveness, with or without cognate ligand stimulation. © 2009 UICC  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号