首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chronic renal failure (CRF) is associated with oxidative stress that promotes production of reactive oxygen species (ROS). Melatonin, the chief secretory product of the pineal gland, was recently found to be a potent free radical scavenger and antioxidant. The aim of this study was to examine the role of melatonin in protecting the aorta, heart, corpus cavernosum, lung, diaphragm, and kidney tissues against oxidative damage in a rat model of CRF, which was induced by five of six nephrectomy. Male Wistar albino rats were randomly assigned to either the CRF group or the sham-operated control group, which had received saline or melatonin (10 mg/kg, i.p.) for 4 wk. CRF was evaluated by serum blood urea nitrogen (BUN) level and creatinine measurements. Aorta and corporeal tissues were used for contractility studies, or stored along with heart, lung, diaphragm, and kidney tissues for the measurement of malondialdehyde (MDA, an index of lipid peroxidation), protein carbonylation (PC, an index for protein oxidation), and glutathione (GSH) levels (a key antioxidant). Plasma MDA, PC, and GSH levels and erythrocytic superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities were studied to evaluate the changes of antioxidant status in CRF. In the CRF group, the contraction and the relaxation of aorta and corpus cavernosum samples decreased significantly compared with controls (P < 0.05-0.001). Melatonin treatment of the CRF group restored these responses. In the CRF group, there were significant increases in tissue MDA and PC levels in all tissues with marked reductions in GSH levels compared with controls (P < 0.05-0.001). In the plasma, while MDA and PC levels increased, GSH, SOD, CAT, and GSH-Px activities were reduced. Melatonin treatment reversed these effects as well. In this study, the increase in MDA and PC levels and the concomitant decrease in GSH levels of tissues and plasma and also SOD, CAT, GSH-Px activities of plasma demonstrate the role of oxidative mechanisms in CRF-induced tissue damage, and melatonin, via its free radical scavenging and antioxidant properties, ameliorates oxidative organ injury. CRF-induced dysfunction of the aorta and corpus cavernosum of rats was reversed by melatonin treatment. Thus, supplementing CRF patients with adjuvant therapy of melatonin may have some benefit.  相似文献   

2.
Abstract: Previous research has shown that antioxidant (butylated hydroxyanisole) treatment ameliorates respiratory syncytial virus (RSV)‐induced disease and lung inflammation. Melatonin has been reported to exhibit a wide varieties of biological effects, including antioxidant and anti‐inflammation, and has no evident toxicity and side effect. But it is not known whether melatonin would modify RSV‐induced lung disease and oxidative stress. The present study was to establish the involvement of oxidative stress in the pathogenesis of RSV‐induced lung inflammation, and to investigate the protective effect of administration of melatonin in mice with RSV‐induced oxidative pulmonary injury for 4 days. Malondialdehyde (MDA), an end product of lipid peroxidation, and glutathione (GSH) and superoxide dismutase (SOD) and nitric oxide (NO) levels were evaluated in lung tissue homogenates by spectrophotometry. Hydroxyl radical (˙OH), one of the indicators of free radical formation, was also detected in lung homogenates by Fenton reaction. Tumor necrosis factor‐a (TNF‐a) concentrations in mouse serum were measured with ELISA assay. The results demonstrated that the mice intranasally inoculated with RSV resulted in oxidative stress changes by increasing NO, MDA and ˙OH levels, and decreasing GSH and SOD activities, whereas administration of melatonin significantly reversed all these effects. Furthermore, melatonin inhibited production of proinflammatory cytokines such as TNF‐a in serum of RSV‐infected mice. These results suggest that melatonin ameliorates RSV‐induced lung inflammatory injury in mice via inhibition of oxidative stress and proinflammatory cytokine production and may be as a novel therapeutic agent in virus‐induced pulmonary infection.  相似文献   

3.
Nonalcoholic fatty liver disease (NAFLD) is an increasingly recognized condition that may progress to end-stage liver disease, which ranges from simple steatosis to steatohepatitis, advanced fibrosis, and cirrhosis. Oxidative stress and lipid peroxidation are key pathophysiological mechanisms in NAFLD. We investigate the preventive effects of intraperitoneal administration of melatonin (2.5, 5, 10 mg/kg, daily, respectively) in NAFLD rats induced by high-fat diets for 12 wk. Liver damage was evaluated by serological analysis, serum and hepatic lipid assay as well as hematoxylin-eosin staining in liver sections. Oxidative stress and lipid peroxidation were assessed by measuring malondialdehyde (MDA) levels and superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in liver. The results showed that high-fat diet induced oxidative stress with extensive liver steatosis in rats. Melatonin (5 or 10 mg/kg) was effective in reducing hepatic steatosis and inflammation with lowering serum alanine aminotransferase, aspartate aminotransferase, and levels liver total cholesterol and triglycerides in high-fat diet rats. Moreover, melatonin (2.5, 5, 10 mg/kg) increased SOD and GSH-Px activities and the 10 mg/kg dose of melatonin reduced MDA levels in liver. This study shows that melatonin exerts protective effects against fatty liver in rats induced by high-fat diet possibly through its antioxidant actions.  相似文献   

4.
Beneficial effects of melatonin on reperfusion injury in rat sciatic nerve   总被引:2,自引:0,他引:2  
Studies have shown that ischemia-reperfusion (I/R) produces free radicals leading to lipid peroxidation and to damage of the nervous tissue. Melatonin, a main secretory product of the pineal gland, has free radical scavenging and antioxidant properties and has been shown to diminish I/R injury in many tissues. There are a limited number of studies related to the effects of melatonin on I/R injury in the peripheral nervous system. Therefore, in the present study, the protective effect of melatonin was investigated in rats subjected to 2 hr of sciatic nerve ischemia followed by 3 hr of reperfusion. Following reperfusion, nerve tissue samples were collected for quantitative assessment of malondialdehyde (MDA), an oxidative stress marker, and superoxide dismutase (SOD), a principal antioxidant enzyme. Samples were further evaluated at electron microscopic level to examine the neuropathological changes. I/R elevated the concentration of MDA significantly while there was a reduction at SOD levels. Melatonin treatment reversed the I/R-induced increase and decrease in MDA and SOD levels, respectively. Furthermore, melatonin salvaged the nerve fibers from ischemic degeneration. Histopathologic findings in the samples of melatonin-treated animals indicated less edema and less damage to the myelin sheaths and axons than those observed in the control samples. Our results suggest that administration of melatonin protects the sciatic nerve from I/R injury, which may be attributed to its antioxidant property.  相似文献   

5.
There is a clearly documented link between diabetic complications and lipid peroxidation. Hyperglycemia causes a reduction in levels of protective endogenous antioxidants and increases generation of free radicals. The present study was carried out to compare the protective effects of melatonin and vitamin E against streptozocin (STZ)-induced diabetes in rats. Melatonin was administered s.c. (100 microg/kg) whereas vitamin E was given i.p. (100 mg/kg) after induction of diabetes with STZ (60 mg/kg). Plasma total cholesterol, triglyceride and low density lipoprotein (LDL) levels were increased in STZ group while both melatonin and vitamin E injection caused a significant decrease in the levels of all these parameters. The lipid lowering effect of melatonin was greater than that of vitamin E. Melatonin caused a significant decrease in brain, liver and kidney tissue malondialdehyde (MDA) levels which were increased because of STZ-induced diabetes. Vitamin E also reduced elevated MDA concentrations in diabetic rat tissues, but the effect of melatonin was more potent than that of vitamin E. Furthermore, treatment of diabetic rats with melatonin increased brain and kidney glutathione peroxidase (GSH-Px) activity to the levels below that of control rats. Vitamin E was found to be less effective on GSH-Px activity levels in brain and kidney than melatonin whereas it was more potent than melatonin in liver. In summary, melatonin prevents many diabetic complications by reducing oxidative stress and protects organisms from oxidative damage and dyslipidemia. Considering the much lower molar concentration of melatonin compared with vitamin E, melatonin seems to be a more potent antioxidant, especially in the brain and kidney.  相似文献   

6.
Regarding the mechanisms of renal scarring in pyelonephritis, several hypotheses have been put forward, among which oxidative stress is prominent. The present study investigated the possible protective effect of melatonin treatment against Escherichia coli-induced oxidative injury and scarring in renal tissue. For this purpose, 0.1 mL E. coli (ATCC 25922; 10(10) colony-forming units/mL) or saline was injected directly into the renal parenchyma of Wistar rats. Pyelonephritic rats were treated with either saline or melatonin (10 mg/kg) intraperitoneally. Twenty-four hours or 1 wk after E. Coli injection, rats were decapitated and trunk blood samples were collected for BUN, creatinine, tumor necrosis factor-alpha (TNF-alpha) and lactate dehydrogenase (LDH) determination. In kidney samples, histological analysis was performed, and malondialdehyde (MDA), glutathione (GSH) levels, myeloperoxidase (MPO) activity and collagen contents were measured. Formation of reactive oxygen species was monitored using a chemiluminescence (CL) technique. Escherichia Coli inoculation caused a significant reduction in renal GSH levels, which was accompanied by significant increases in MDA levels, MPO activity, CL levels and collagen content of the renal tissues (P < 0.05-0.001). Similarly, serum TNF-alpha and, LDH, BUN and creatinine levels were elevated in the pyelonephritic rats when compared with control animals. Melatonin treatment reversed all these biochemical indices, as well as histopathological alterations induced by acute pyelonephritis. The protective effects of melatonin can be ascribed to its ability to inhibit neutrophil infiltration, to balance the oxidant-antioxidant status, and to regulate the generation of inflammatory mediators, suggesting a future role for melatonin in the treatment of acute pyelonephritis.  相似文献   

7.
This experimental study was designed to determine the effects of melatonin on the levels of malondialdehyde (MDA), reduced glutathione (GSH), xanthine oxidase (XO) after adnexial torsion/detorsion (ischemia/reperfusion, I/R) of the ovaries of in rats. Forty adult albino rats were divided into five groups: sham operation, torsion, I/R plus saline, I/R plus melatonin and torsion plus melatonin. Rats in the sham-operated group underwent a surgical procedure similar to the other groups but the adnexa was not occluded. Rats in the torsion group were killed after adnexal torsion for 3 hr. Melatonin and saline were injected intraperitoneally (10 mg/kg) 30 min before detorsion to the I/R plus melatonin group and I/R plus saline group respectively. After 3 hr of ovarian detorsion, the rats were killed and ovaries were removed. Melatonin was injected intraperitoneally (10 mg/kg) 30 min before torsion to the torsion plus melatonin group. After 3 hr of ovarian torsion, the rats were killed and ovaries were harvested. The tissue levels of MDA, GSH and XO were measured. MDA and XO levels in the I/R plus saline group increased significantly when compared with torsion and sham-operated groups (P < 0.001). MDA and XO levels in the I/R plus melatonin group were lower than I/R plus saline and differences between the two groups were statistically significant (P < 0.001). GSH levels in the I/R plus saline group decreased significantly when compared with ischemia and sham-operated groups (P < 0.001). GSH levels in the I/R plus melatonin treated rats were significantly higher than I/R plus saline and ischemia groups (P < 0.001). The tissue levels of XO, MDA and GSH were similar between ischemia and ischemia plus melatonin groups. Morphologically, polymorphonuclear neutrophil infiltration and vascular dilatation were obvious in the I/R-damaged ovaries, and the changes also partially reversed by melatonin. This study demonstrates that melatonin protects the ovaries against oxidative damage associated with reperfusion following an ischemic insult.  相似文献   

8.
The role of oxidative stress has been evaluated in experimental models of acute pancreatitis (AP). The aim of this study is to investigate the effect of melatonin on the ultrastructural changes in cerulein-induced AP in rats. Acute pancreatitis was induced by two i.p. injections of cerulein at 2-hr intervals (50 microg/kg BW). One group received additionally melatonin (20 mg/kg BW) i.p. before each injection of cerulein. The rats were sacrificed 12 hr after the last injection. Pancreatic oxidative stress markers were evaluated by changes in the amount of lipid peroxides and changes in the antioxidant enzyme levels, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and total glutathione (GSH) levels. Ultrastructural examination was performed using a transmission electron microscope. Formation of numerous, large autophagosomes, mitochondrial damage, dilatation of rough endoplasmic reticulum (RER) and Golgi apparatus, margination and clumping of nuclear chromatin were the major ultrastructural alterations observed in the AP group. Melatonin administration prevented mitochondrial and nuclear changes and dilatation of RER and Golgi apparatus. Rare, small autophagosomes were present within the cytoplasm of some of the acinar cells. Pancreatic damage was accompanied by a significant increase in tissue MDA levels (P < 0.05) and a significant decrease in CAT, SOD, GPx activities and GSH levels (P < 0.005). Melatonin administration significantly reduced MDA levels but increased CAT, SOD, GPx activities and GSH levels (P < 0.005). Melatonin also reduced serum amylase and lipase activities, which were significantly elevated in AP (P < 0.05 and P < 0.005 respectively). These results suggest that oxidative injury is important in the pathogenesis of AP. Melatonin is potentially capable of limiting pancreatic damage produced during AP by protecting the fine structure of acinar cells and tissue antioxidant enzyme activities.  相似文献   

9.
Melatonin reduces uranium-induced nephrotoxicity in rats   总被引:2,自引:0,他引:2  
The protective role of exogenous melatonin on U-induced nephrotoxicity was investigated in rats. Animals were given single doses of uranyl acetate dihydrate (UAD) at 5 mg/kg (subcutaneous), melatonin at 10 or 20 mg/kg (intraperitoneal), and UAD (5 mg/kg) plus melatonin (10 or 20 mg/kg), or vehicle (control group). In comparison with the UAD-treated group only, significant beneficial changes were noted in some urinary and serum parameters of rats concurrently exposed to UAD and melatonin. The increase of U excretion after UAD administration was accompanied by a significant reduction in the renal content of U when melatonin was given at a dose of 20 mg/kg. Melatonin also reduced the severity of the U-induced histological alterations in kidney. In renal tissue, the activity of the superoxide dismutase (SOD) and the thiobarbituric acid reactive substances (TBARS) levels increased significantly as a result of UAD exposure. Following UAD administration, oxidative stress markers in erythrocytes showed a reduction in SOD activity and an increase in TBARS levels, which were significantly restored by melatonin administration. In plasma, reduced glutathione (GSH) and its oxidized form (GSSG) were also altered in UAD-exposed rats. However, only the GSSG/GSH ratio was restored to control levels after melatonin treatment. Oxidative damage was observed in kidneys. Melatonin administration partially restored these adverse effects. It is concluded that melatonin offers some benefit as a potential agent to treat acute U-induced nephrotoxicity.  相似文献   

10.
Maternal cholestasis is usually a benign condition for the mother but induces profound placental damage and may be lethal for the fetus. The aim of this study was to investigate the protective effects in rat maternal and fetal livers as also the placenta of melatonin or silymarin against the oxidative stress and apoptosis induced by maternal obstructive cholestasis during the last third of pregnancy (OCP). Melatonin or silymarin administration (i.e. 5 mg/100 g bw/day after ligation of the maternal common bile duct on day 14 of pregnancy) reduced OCP-induced lipid peroxidation, and prevented decreases in total glutathione levels. However, the protective effect on OCP-induced impairment in the GSH/GSSG ratio was mild in the placenta and fetal liver, while absent in maternal liver. Melatonin or silymarin also reduced OCP-induced signs of apoptosis (increased caspase-3 activity and Bax-alpha upregulation) in all the organs assayed. Moreover, melatonin (but not silymarin) upregulated several proteins involved in the cellular protection against the oxidative stress in rats with OCP. These included, biliverdin-IX alpha reductase and the sodium-dependent vitamin C transport proteins SVCT1 and SVCT2, whose expression levels were enhanced in maternal and fetal liver by melatonin treatment. In contrast, in placenta only biliverdin-IX alpha reductase and SVCT2 were upregulated. These results indicate that whereas the treatment of cholestatic pregnant rats with melatonin or silymarin affords a direct protective antioxidant activity, only melatonin has dual beneficial effects against OCP-induced oxidative challenge in that it stimulates the expression of some components of the endogenous cellular antioxidant defense.  相似文献   

11.
Naja haje envenomation is one of the leading causes of death due to snakebite. Antiserum therapy sometimes fails to provide enough protection against venom toxicity. In this study, we investigated the protective effects of melatonin against N. haje venom in rats. The animals were injected with venom (0.25 mg/kg) and/or melatonin (10 mg/kg) and compared with vehicle-treated rats. There was oxidative/nitrosative damage and apoptosis in the liver, heart, and kidneys of venom-injected rats. Melatonin counteracted the increased lipoperoxidation and nitric oxide, prevented decreased glutathione peroxidase and reductase activity, reduced the glutathione disulfide/glutathione (GSSG/GSH) ratio, and maintained the GSH pool. Furthermore, melatonin administration was associated with a reduction of apoptosis, which was increased in venom-injected rats. Overall, these results suggest that melatonin mitigates oxidative/nitrosative stress in venom-induced cardio-hepato-renal injury in rats. Our results suggest that melatonin treatment may ameliorate some of the effects of N. haje envenomation.  相似文献   

12.
目的 探讨褪黑素对糖尿病患者氧化应激的抑制作用及糖脂代谢的影响。 方法 1998-12~2003-04东南大学附属中大医院采用随机、单盲、安慰剂平行对照的方法,观察褪黑素及安慰剂对91例糖尿病患者血清丙二醛(MDA)及超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)的影响,并分析上述影响与糖脂代谢变化之间的关系。 结果 治疗前糖尿病患者血清SOD、GSH-Px水平下降,MDA水平上升。褪黑素组8周处理后血清SOD和GSH-Px水平上升,而MDA水平明显下降,与处理前相比差异有显著;安慰剂组处理前后患者血清SOD、GSH-Px及MDA水平无明显变化。褪  相似文献   

13.
The aims of the present study were first to compare the effects of melatonin and vitamin E on the cholestasis syndrome and their protective effect on liver injury, and second, to evaluate the activity of antioxidant enzymes after treatment with these antioxidant drugs. Cholestasis was achieved in adult male Wistar rats by double ligature and section of the extra-hepatic biliary duct. Hepatic and plasma oxidative stress markers were evaluated by changes in the amount of lipid peroxides, measured as malondialdehyde (MDA) and reduced glutathione (GSH) in plasma and homogenates of hepatic tissue. Serum bilirubin, alkaline phosphatase (AP), and gamma-glutamyl-transpeptidase (GGT) were used to evaluate the severity of cholestasis, and serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were used to evaluate the hepatic injury. Both vitamin E and melatonin were administrated 1 day before and 7 days after bile duct ligation. Acute ligation of the bile duct was accompanied by a significant increased in MDA and a decrease in GSH levels in both plasma and liver, as well as a significant reduction in antioxidant enzymes activities. The overall analysis of both treatments showed that melatonin (500 microg/kg daily) offered significantly better protection against cholestasis and a superior protective effect on hepatic injury than did vitamin E (15 mg/kg daily). Although vitamin E treatment resulted in a reduction of parameters of oxidative stress, the results were significantly better after a much lower daily dose of melatonin. Moreover, melatonin treatment was associated with a significant recovery of antioxidative enzymes. In conclusion, the present paper demonstrates a correlation between the intensity of biliary tract obstruction and increased free radical generation, as well as a direct correlation between the level of oxidative stress and the biochemical markers of liver injury. Melatonin (at a much lower dose than vitamin E) was much more efficient than vitamin E in reducing the negative parameters of cholestasis, the degree of oxidative stress and provided a significantly greater hepatoprotective effect against the liver injury secondary to the acute ligation of the biliary duct.  相似文献   

14.
It has been suggested that oxidative stress is a feature of aging. The goal of the present study was to assess the oxidant effects related to aging and the protective role of exogenous melatonin in senescence-accelerated mice (SAMP8). Two groups of SAMP8 mice (males and females) were compared with their respective control groups of SAMR1 mice (senescence-resistant inbred strain) to determine their oxidative status without melatonin treatment. Four other groups of the same characteristics were treated with melatonin (10 mg/kg/day) in their drinking water. The melatonin concentration in the feeding bottles was titrated according to water consumption and body weight (i.e. 0.06 mg/mL for 30 g of body weight and 5 mL/day of water consumption). The treatment began when animals were 1-month old and continued for 9 months. When mice were 10-month old, they were anesthetized and blood was obtained. Plasma and erythrocytes were processed to examine oxidative stress markers: reduced glutathione (GSH), oxidized glutathione (GSSG), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR), glutathione S-transferase (GST), thiobarbituric acid reactive substances (TBARS), and hemolysis. The results showed greater oxidative stress in SAMP8 than in SAMR1, largely because of a decrease in GSH levels and to an increase in GSSG and TBARS with the subsequent induction of the antioxidant enzymes GPX and GR. Melatonin, as an antioxidant molecule, improved the glutathione-related parameters, prevented the induction of GPX in senescent groups, and promoted a decrease in SOD and TBARS in almost all the groups.  相似文献   

15.
Oxidative stress is an important factor for aging. The antioxidative enzymes glutathione peroxidase (GPx), glutathione reductase (GRd) and superoxide dismutase (SOD) play a crucial role protecting the organism against the age-dependent oxidative stress. Glutathione (GSH) is present in nearly all living cells. GSH is one of the main antioxidants in the cell and it serves several physiological functions. Our purpose was to evaluate the age-related changes in mitochondrial GPx, GRd and SOD activities, and mitochondrial GSH pool in the brains of young (3months) and aged rats (24months). We also investigated whether melatonin administration influences these brain mitochondrial enzyme activities and GSH levels in young and aged rats. The results showed that GPx activity increased with age, whereas melatonin treatment decreased GPx activity in the aged rats at levels similar to those in young and young+melatonin groups. The activities of GRd and SOD, however, did not change with age. But, melatonin treatment increased SOD activity in the aged rats. GSH levels, which also increased with age, were not modified by melatonin treatment. The reduction in the SOD/GPx and GR/GPx ratios with age was prevented by melatonin administration. Together, our results suggest that the age-related oxidative stress in rat brain mitochondria is more apparent when the antioxidant enzyme ratios are analyzed instead of their absolute values. The antioxidative effects of melatonin were also supported by the recovery of the enzyme ratios during aging.  相似文献   

16.
Abstract: We have studied the effect of the administration of two doses of melatonin (melatonin 100 and melatonin 200 μg/kg bw) on diabetes and oxidative stress experimentally induced by the injection of streptozotocin (STZ) in female Wistar rats. STZ was injected as a single dose (60 mg/kg i.p. in buffered citrate solution, pH 4.0) and melatonin (melatonin 100, 100 μg/kg/day i.p.; melatonin 200, 200 μg/kg/day i.p.) beginning 3 days before diabetes induction and continuing until the end of the study (8 weeks). The parameters analysed to evaluate oxidative stress and the diabetic state were a) for oxidative stress, changes of lipoperoxides (i.e., malondialdehyde, MDA) in plasma and erythrocytes and the changes in reduced glutathione (GSH) in erythrocytes and b) for diabetes, changes in glycemia, lipids (triglycerides: TG; total cholesterol: TC; HDL-cholesterol, HDL-c), percentage of glycosylated hemoglobin (Hb%), and plasma fructosamine. The injection of STZ caused significant increases in the levels of glycemia, percentage of glycosylated hemoglobin, fructosamine, cholesterol, triglycerides, and lipoperoxides in plasma and erythrocytes, whereas it decreased the levels of HDL-c and the GSH content in erythrocytes. The melatonin 100 dose reduced significantly all these increases, except the percentage of glycosylated hemoglobin. With regard to the decreases of plasma HDL-c and GSH content in erythrocytes, this melatonin dose returned them to normal levels. The melatonin 200 dose produced similar changes, though the effects were especially noticeable in the decrease of glycemia (55% vs. diabetes), percentage of hemoglobin (P < 0.001 vs diabetes), and fructosamine (31% vs. diabetes). This dose also reversed the decreases of HDL-c and GSH in erythrocytes. Both doses of melatonin caused significant reduction of the percentage of glycosylated hemoglobin in those groups that were non-diabetic. These illustrate the protective effect of melatonin against oxidative stress and the severity of diabetes induced by STZ. In particular, this study confirms two facts: 1) the powerful antioxidant action of this pineal indole and 2) the importance of the severity of oxidative stress to maintain hyperglycemia and protein glycosylation, two pathogenetic cornerstones indicative of diabetic complications. Melatonin reduces remarkably the degree of lipoperoxidation, hyperglycemia, and protein glycosylation, which gives hope to a promising perspective of this product, together with other biological antioxidants, in the treatment of diabetic complications where oxidative stress, either in a high or in a low degree, is present.  相似文献   

17.
Random pattern skin flaps are still widely used in plastic surgery. However, necrosis in the distal portion resulting from ischemia is a serious problem, increasing the cost of treatment and hospitalization. Free oxygen radicals and increased neutrophil accumulation play an important role in tissue injury and may lead to partial or complete flap necrosis. To enhance skin flap viability, a variety of pharmacological agents have been intensively investigated. The aim of this study is to test the effects of melatonin, the chief secretory product of the pineal gland and a highly effective antioxidant, on random pattern skin flap survival in rats. Herein, to investigate the physiological and pharmacological role of melatonin on dorsal skin flap survival. Pharmacological (0.4, 4 and 40 mg/kg) levels of melatonin were given intraperitoneally (i.p.). For this, pinealectomized (Px) and sham operated (non-Px) rats were used. The effects of melatonin on levels of malondialdehyde (MDA), nitric oxide (NO), glutathione (GSH) and the activities of glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) were measured in the skin flap. The ratio of skin flap necrosis was compared among the experimental groups by using planimetry. MDA and NO levels were found to be higher in Px than non-Px rats; while GSH levels and GSH-Px, and SOD activities were reduced. Melatonin administration to Px rats reduced MDA and NO levels and increased GSH, GSH-Px, SOD levels. Melatonin also reduced the ratio of flap necrosis determined by using planimetry and supported through the photography. In conclusion, these results show that both physiological and pharmacological concentrations of melatonin improve skin flap viability.  相似文献   

18.
Melatonin has marked antioxidant properties. The aim of the present study was to evaluate the therapeutic effect of melatonin on acute liver injury induced in rats by carbon tetrachloride (CCl4), allyl alcohol (AA) and their combination. A total of 108 male Wistar rats were divided into 12 experimental groups according to their treatment regimen (n = 5-10 rats in each group). Melatonin (100 mg/kg body weight, BW) was administered 6 hr (a) after a single dose of CCl4 (intragastrically 0. 66 mL/kg BW diluted 1:1 v/v with corn oil); (b) a single dose of AA (intraperitonealy, 0.62 mmol/kg BW 1:50 v/v in 0.9% saline solution); and (c) a combination of the above substances. Rats were sacrificed at 24 and 48 hr post-toxin administration and the therapeutic effect of melatonin was investigated by assessment of histopathological changes and lipid peroxidation alterations determined by measuring tissue malondialdehyde plus 4-hydroxy-nonenal (MDA + 4-HNE), plasma MDA and plasma levels of liver enzymes. The levels of a key antioxidant, glutathione (GSH), were measured in liver tissue homogenates. Hepatic necrosis was significantly reduced in the melatonin-treated rats 48 hr after administration of CCl4, AA and CCl4 + AA. The levels of hepatic enzymes in plasma were found to be significantly reduced at 24 and 48 hr in the CCl4 + AA treated rats after melatonin administration. Additionally, MDA and MDA + 4-HNE concentrations were significantly reduced at 24 and 48 hr time-points in all groups that received melatonin. GSH levels were decreased in liver after the toxic substances administration, whereas melatonin reversed this effect. In conclusion, a single dose of melatonin decreased hepatic injury induced by CCl4, AA and CCl4 + AA. The inhibition of the oxidative stress and therefore lipid peroxidation by melatonin in CCl4 and AA administered animals, may constitute the protective mechanism of melatonin against acute liver injury.  相似文献   

19.
Melatonin ameliorates bladder damage induced by cyclophosphamide in rats   总被引:2,自引:0,他引:2  
Cyclophosphamide (CP), an alkylating antineoplastic agent, has potential urotoxicity including causing hemorrhagic cystitis (HC). HC is now accepted as a non-infectious inflammation and the pathogenesis of HC includes cytokine production which leads to inducible nitric oxide synthase (iNOS) induction. Moreover, overproduction of reactive oxygen species (ROS) during inflammation leads to extensive oxidative stress, cellular injury and apoptosis/necrosis via several mechanisms. Based on these facts, the aim of this study was to evaluate the protective effects of melatonin as an antioxidant, iNOS inhibitor and peroxynitrite scavenger against CP-induced urinary bladder damage. A total of 30 male Sprague-Dawley rats were divided into four groups. Three groups received a single dose of CP (100 mg/kg) intraperitoneally with the same times. Group 2 received CP only, group 3 received 5 mg/kg/day and group 4 received 10 mg/kg/day melatonin before and the day after CP administration. Group 1 served as the control. Increased iNOS induction, bladder malonyldialdehyde (MDA) levels and urinary nitrite-nitrate excretion were encountered in the CP-only group leading to severe cystitis. Melatonin exhibited significant protection against CP-induced cystitis by diminishing bladder oxidative stress and blocking iNOS and peroxynitrite production. Oxidants may have a major role in the pathogenesis of CP-induced cystitis and iNOS is an important mediator leading to peroxynitrite production. Melatonin ameliorates bladder damage induced by CP.  相似文献   

20.
Increased deposition of the extracellular matrix components, particularly collagen, is a central phenomenon in liver fibrosis. Stellate cells, the central mediators in the pathogenesis of fibrosis are activated by free radicals, and synthesize collagen. Melatonin is a potent physiological scavenger of hydroxyl radicals. Melatonin has also been shown to be involved in the inhibitory regulation of collagen content in tissues. At present, no effective treatment of liver fibrosis is available for clinical use. We aimed to test the effects of melatonin on dimethylnitrosamine (DMN)-induced liver damage in rats. Wistar albino rats were injected with DMN intraperitoneally. Following a single dose of 40 mg/kg DMN, either saline (DMN) or 100 mg/kg daily melatonin was administered for 14 days. In other rats, physiologic saline or melatonin were injected for 14 days, following a single injection of saline as control. Hepatic fibrotic changes were evaluated biochemically by measuring tissue hydroxyproline levels and histopathogical examination. Malondialdehyde (MDA), an end product of lipid peroxidation, and glutathione (GSH) and superoxide dismutase (SOD) levels were evaluated in blood and tissue homogenates. DMN caused hepatic fibrotic changes, whereas melatonin suppressed these changes in five of 14 rats (P < 0.05). DMN administration resulted in increased hydroxyproline and MDA levels, and decreased GSH and SOD levels, whereas melatonin reversed these effects. When melatonin was administered alone, no significant changes in biochemical parameters were noted. In conclusion, the present study suggests that melatonin functions as a potent fibrosuppressant and antioxidant, and may be a therapeutic choice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号