首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
We have asked whether exonucleolytic proofreading occurs during simian virus 40 origin-dependent, bidirectional DNA replication in extracts of human HeLa cells. In addition, we have compared the fidelity of leading and lagging strand DNA synthesis. In a fidelity assay that scores single-base substitution errors that revert a TGA codon in the lacZ alpha gene in an M13mp vector, providing an excess of a single dNTP substrate over the other three dNTP substrates in a replication reaction generates defined, strand-specific errors. Fidelity measurements with two vectors having the origin of replication on opposite sides of the opal codon demonstrate that error rates for two different A.dCTP and T.dGTP mispairs increase when deoxyguanosine monophosphate is added to replication reaction mixtures or when the concentration of deoxynucleoside triphosphates is increased. The data suggest that exonucleolytic proofreading occurs on both strands during bidirectional replication. Measurements using the two simian virus 40 origin-containing vectors suggest that base substitution error rates are similar for replication of the leading and lagging strands.  相似文献   

2.
At an early purification stage, DNA polymerase alpha holoenzyme from calf thymus can be separated into four different forms by chromatography on DEAE-cellulose. All four enzyme forms (termed A, B, C, and D) are capable of replicating long single-stranded DNA templates, such as parvoviral DNA or primed M13 DNA. Peak A possesses, in addition to the DNA polymerase alpha, a double-stranded DNA-dependent ATPase, as well as DNA topoisomerase type II, 3'-5' exonuclease, and RNase H activity. Peaks B, C, and D all contain, together with DNA polymerase alpha, activities of primase and DNA topoisomerase type II. Furthermore, peak B is enriched in an RNase H, and peaks C and D are enriched in a 3'-5' exonuclease. DNA methylase (DNA methyltransferase) was preferentially identified in peaks C and D. Velocity sedimentation analyses of the four peaks gave evidence of unexpectedly large forms of DNA polymerase alpha (greater than 11.3 s), indicating that copurification of the above putative replication enzymes is not fortuitous. With moderate and high concentrations of salt, enzyme activities cosedimented with DNA polymerase alpha. Peak C is more resistant to inhibition by salt and spermidine than the other three enzyme forms. These results suggest the existence of a leading strand replicase (peak A) and several lagging strand replicase forms (peaks B, C, and D). Finally, the salt-resistant C form might represent a functional DNA polymerase alpha holoenzyme, possibly fitting in a higher-order structure, such as the replisome or even the chromatin.  相似文献   

3.
The first step in conversion of varphiX174 singlestranded DNA to the duplex replicative form in vitro is the synthesis of a nucleoprotein intermediate [Weiner, J. H., McMacken, R. & Kornberg, A. (1976) Proc. Natl. Acad. Sci. USA 73, 752-756]. We now demonstrate that dnaB protein (approximately one molecule per DNA circle) is an essential component of the intermediate and retains its ATPase activity. Synthesis of RNA primers, dependent on dnaG protein (primase), occurred only on DNA that had been converted to the intermediate form. In a coupled RNA priming-DNA replication reaction the first primer synthesized was extended by DNA polymerase III holoenzyme into full-length complementary strand DNA. In RNA priming uncoupled from replication, multiple RNA primers were initiated on a varphiX174 circle. The single dnaB protein molecule present on each DNA circle participated in initiation of each of the RNA primers, which appear to be aligned at regular intervals along the template strand. We propose that dnaB protein, once bound to the template, migrates in a processive fashion along the DNA strand, perhaps utilizing energy released by hydrolysis of ATP for propulsion; in this scheme the actively moving dnaB protein acts as a "mobile promoter" signal for dnaG protein (primase) to produce many RNA primers. Schemes are proposed for participation of dnaB protein both in the initiation of replication at the origin of the Escherichia coli chromosome and in the initiation of primers for nascent (Okazaki) fragments at a replication fork.  相似文献   

4.
A 38 kilobase pair region of the Escherichia coli K12 chromosome containing the replication origin has been physically mapped with restriction endonucleases EcoRI and HindIII. Replication starts within or very near a 1.3 kilobase pair HindIII fragment in the middle of this region and proceeds outward in both directions with apparently equal speed. This pattern was observed in both dnaA and dnaC temperature-sensitive (ts) initiation mutants at the start of the synchronous round of replication which occurs after downshift from the nonpermissive to the permissive temperature.  相似文献   

5.
The mechanism by which cells recognize and complete replicated regions at their precise doubling point must be remarkably efficient, occurring thousands of times per cell division along the chromosomes of humans. However, this process remains poorly understood. Here we show that, in Escherichia coli, the completion of replication involves an enzymatic system that effectively counts pairs and limits cellular replication to its doubling point by allowing converging replication forks to transiently continue through the doubling point before the excess, over-replicated regions are incised, resected, and joined. Completion requires RecBCD and involves several proteins associated with repairing double-strand breaks including, ExoI, SbcDC, and RecG. However, unlike double-strand break repair, completion occurs independently of homologous recombination and RecA. In some bacterial viruses, the completion mechanism is specifically targeted for inactivation to allow over-replication to occur during lytic replication. The results suggest that a primary cause of genomic instabilities in many double-strand-break-repair mutants arises from an impaired ability to complete replication, independent from DNA damage.During chromosomal replication, cells tightly regulate the processes of initiation, elongation, and completion to ensure that each daughter cell inherits an identical copy of the genetic information. Although the mechanisms regulating initiation and elongation have been well characterized (reviewed in refs. 1, 2), the process of how cells recognize replicated regions and complete replication at the precise doubling point remains a fundamental question yet to be addressed. Whether this event occurs once per generation as in Escherichia coli or thousands of times per generation as in human cells, the failure to efficiently carry out this function would be expected to result in a loss of genomic stability. Considering the large number of proteins that cells devote to ensuring the fidelity of replication initiation and elongation, it seems highly probable that the final critical step in this process will be also be tightly regulated and controlled enzymatically.In some aspects, one could argue that the efficiency of completion is likely to be more critical to the faithful duplication of the genome than that of initiation. When replication origins fail to initiate efficiently, elongation of replication forks from neighboring origins is often able to compensate (3, 4), and both prokaryotic and eukaryotic cells are able to tolerate variations in their origin number without severe phenotypic consequences (57). However, a failure to accurately limit or join any event where forks converge would be expected to result in duplications, deletions, rearrangements, or a loss of viability depending upon how the DNA ends are resolved at segregation.A number of studies suggest that an ability to sense when all sequences in the genome have doubled is critical to genomic replication. In vitro, converging replisomes continue through their meeting point as one replisome displaces the other, resulting in over-replication, or a third copy, of the region where the forks meet (8). Complicating the process of genomic doubling even further, several studies have suggested that illegitimate initiations of replication frequently occur at single-strand nicks, gaps, D-loops, and R-loops throughout the genomes of both prokaryotes and eukaryotes (914). Similar to when replication forks continue through a previously replicated template, each of these events would generate a third copy of the chromosomal region where the event occurs. Thus, over-replication may be inherent and promiscuous during the duplication of genomes. If true, then to ensure that each sequence of the genome replicates once, and only once, per generation, cells must encode an enzymatic system that is essentially able to count in pairs and efficiently degrade odd or over-replicated regions until the two nascent end pairs of replication events can be joined.The model organism E. coli is particularly well-suited to dissect how this fundamental process occurs. In E. coli, the completion of replication occurs at a defined region on the genome, opposite to the bidirectional origin of replication (15). Most completion events can be further localized to one of six termination (ter) sequences within the 400-kb terminus region due to the action of Tus, which binds to ter and inhibits replication fork progression in an orientation-dependent manner, in effect stalling the replication fork at this site until the second arrives (16, 17). Although Tus confines converging replication forks to a specific region, it does not appear to be directly involved in the completion reaction because tus mutants have no phenotype and complete replication normally (18). Furthermore, plasmids and bacteriophage lacking ter sequences are maintained stably (19).Many mutants impaired for either replication initiation or elongation were initially isolated based on their growth defects or an impaired ability to maintain plasmids (2022). We reasoned that mutants impaired for the ability to complete replication might be expected to exhibit similar phenotypes and initially focused our attention on the properties of recBC and recD mutants. RecB-C-D forms a helicase–nuclease complex that is required for homologous repair of double-strand breaks in E. coli (23, 24). The enzyme uses specific DNA sequences, termed “Chi sites,” to initiate recombination between pairs of molecules. Loss of RecB or C inactivates the enzyme complex, whereas loss of RecD inactivates the nuclease and Chi recognition, but retains helicase activity (23, 24). Here, we show that inactivation of RecBCD leads to a failure to recognize and join replicating molecules at their doubling point. Although the completion process requires RecBCD, it is distinct from double-strand break repair and does not involve a double-strand break intermediate, homologous recombination, or RecA.  相似文献   

6.
Enzymatic replication of the origin of the Escherichia coli chromosome.   总被引:67,自引:29,他引:67       下载免费PDF全文
An enzyme system that replicates plasmids bearing the origin of the Escherichia coli chromosomes (oriC) has the following physiologically relevant features. The system (i) depends completely on low levels of exogenously furnished supercoiled oriC plasmids, (ii) uses only those plasmids that contain the intact oriC region of about 245 base pairs, (iii) initiates replication within or near the oriC sequence and proceeds bidirectionally, (iv) proceeds linearly, after a 5-min lag, for 30-40 min to produce as much as a 40% increase over the input DNA, (v) depends on RNA polymerase and gyrase as indicated by total inhibition by rifampicin and nalidixate, (vi) depends on replication proteins (e.g., dnaB protein and single-stranded DNA binding protein) as judged by specific antibody inhibitions, (vii) operates independently from protein synthesis, and (viii) depends on dnaA activity, as suggested by the inactivity of enzyme fraction from each of two dnaA temperature-sensitive mutant strains, and complementation (with a 15-fold overproduction of complementing activity) by a fraction from a strain containing the dnaA gene cloned in a multicopy plasmid. Resolution and analysis of factors that control the initiation of a chromosome cycle should become accessible through its enzyme system.  相似文献   

7.
Uracil is incorporated into newly synthesized DNA by mutants of Escherichia coli with reduced levels of dUTPase (dUTP nucleotidohydrolase; EC 3.6.1.23). Excision-repair of the incorporated uracil results in the generation of labeled DNA fragments that appear after brief pulses with [(3)H]thymidine [Tye, B-K., Nyman, P.-D., Lehman, I. R., Hochhauser, S. & Weiss, B. (1977) Proc. Natl. Acad. Sci. USA 74, 154-157]. Uracil is also incorporated into the newly synthesized DNA of strains of E. coli that contain normal levels of dUTPase. DNA fragments generated by the postreplication excision-repair of uracil may therefore contribute to the pool of nascent DNA (Okazaki) fragments that normally appear in wild-type strains. Discontinuous DNA replication has been examined in the absence of uracil excision by comparing Okazaki fragments in strains that are defective in DNA polymerase I (polA(-)) and polA(-) strains that are also defective in uracil N-glycosidase, an enzyme required for the excision-repair of uracil in DNA (polA(-)ung(-)). Little or no difference was detected in the level of Okazaki fragments in the polA(-) strain as compared with the polA(-)ung(-) strain. Thus, the uracil-induced cleavage of DNA cannot be the sole mechanism for the generation of Okazaki fragments. Mutants that are defective both in dUTPase and in uracil N-glycosidase incorporate uracil into their DNA with a high frequency (up to 1 per 100 nucleotides). These uracil residues, once incorporated, persist in the DNA without an adverse affect on the growth of the cells.  相似文献   

8.
Modification of damaged replication forks is emerging as a crucial factor for efficient chromosomal duplication and the avoidance of genetic instability. The RecG helicase of Escherichia coli, which is involved in recombination and DNA repair, has been postulated to act on stalled replication forks to promote replication restart via the formation of a four-stranded (Holliday) junction. Here we show that RecG can actively unwind the leading and lagging strand arms of model replication fork structures in vitro. Unwinding is achieved in each case by simultaneous interaction with and translocation along both the leading and lagging strand templates at a fork. Disruption of either of these interactions dramatically inhibits unwinding of the opposing duplex arm. Thus, RecG translocates simultaneously along two DNA strands, one with 5'-3' and the other with 3'-5' polarity. The unwinding of both nascent strands at a damaged fork, and their subsequent annealing to form a Holliday junction, may explain the ability of RecG to promote replication restart. Moreover, the preferential binding of partial forks lacking a leading strand suggests that RecG may have the ability to target stalled replication intermediates in vivo in which lagging strand synthesis has continued beyond the leading strand.  相似文献   

9.
Initiation of DNA replication in eukaryotes, archea, and eubacteria requires interaction of structurally conserved ATP-binding initiator proteins and origin DNA to mediate assembly of replisomes. However, the specific requirement for ATP in the early steps of initiation remains unclear. This is true even for the well studied Escherichia coli replication origin, oriC, where the ATP form of initiator DnaA is necessary and sufficient for initial DNA strand separation, but the five DnaA-binding sites (R boxes) with consensus sequence 5'TGTGNAT/AAA bind both active ATP-DnaA and inactive ADP-DnaA with equal affinity. By using dimethyl sulfate footprinting, we recently identified two initiator-binding sites, I2 and I3, with sequence 5'TG/TGGATCAG/A. We now show that sites I2 and I3 preferentially bind DnaA-ATP and are required for origin unwinding. Guanine at position 3 determines DnaA-ATP preference, and changing this base to thymine at both I sites allows DnaA-ADP to bind and open oriC, although DNA strand separation is not precisely localized in the AT-rich region. These observations indicate that specific initiator binding sites within a replication origin can be important determinants of an ATP-dependent molecular switch regulating DNA strand separation.  相似文献   

10.
Based on extensive genetic and biochemical studies, the multisubunit DNA polymerase III holoenzyme is considered responsible for the chain-elongation stage in replication of the genome of Escherichia coli and is thus expected to be the major determinant of fidelity as well. Previous experiments have shown that two mutations conferring a very high mutation rate on E. coli, mutD5 and dnaQ49, decrease severely the 3' leads to 5' exonucleolytic editing activity of the polymerase III holoenzyme. To identify more precisely the nature of these mutations, we have carried out genetic mapping and complementation experiments. From these studies and experiments by others, we conclude that the most potent general mutator mutations in E. coli occur in a single gene, dnaQ. To define further the role of the dnaQ gene, we have used two-dimensional gel electrophoresis to compare the labeled dnaQ gene product with purified polymerase III holoenzyme. The dnaQ product comigrates with the epsilon-subunit, a 25-kilodalton protein of the polymerase III "core" enzyme. We conclude that the epsilon-subunit of polymerase III holoenzyme has a special role in defining the accuracy of DNA replication, probably through control of the 3' leads to 5' exonuclease activity.  相似文献   

11.
Induction of prophage P2sig5 at 42 degrees caused replication of the bacterial chromosome in a dnaA mutant of Escherichia coli. The P2sig5 is integrated in this strain near the metG locus, which is at min 47 on the genetic map. The regions of the chromosome replicated after prophage induction have been determined by means of DNA-DNA hybridization with various DNAs obtained from Proteus mirabilis/E. coli F' merogenotes and from lambda specialized transducing phage. The replication was initiated at the prophage site and was bidirectional. Most of the replication occurred in a counterclockwise direction on the genetic map, and the replication quickly proceeded to the aroD locus (min 37). The replication forks were retarded between aroD and rac (min 31) loci, although the rac locus was finally replicated. A more severe inhibition of replication occurred between the rac and trp (min 27) loci. It is proposed that the replication terminus is near the rac locus and that the terminus inhibits replication forks.  相似文献   

12.
Characterized bacteria, unlike eukaryotes and some archaea, initiate replication bidirectionally from a single replication origin contained within a circular or linear chromosome. We constructed Escherichia coli cells with two WT origins separated by 1 Mb in their 4.64-Mb chromosome. Productive bidirectional replication initiated synchronously at both spatially separate origins. Newly replicated DNA from both origins was segregated sequentially as replication progressed, with two temporally and spatially separate replication termination events. Replication initiation occurred at a cell volume identical to that of cells with a single WT origin, showing that initiation control is independent of cellular and chromosomal oriC concentration. Cells containing just the ectopic origin initiated bidirectional replication at the expected cell mass and at the normal cellular location of that region. In all strains, spatial separation of sister loci adjacent to active origins occurred shortly after their replication, independently of whether replication initiated at the normal origin, the ectopic origin, or both origins.  相似文献   

13.
Plasmids containing the replication origin of the Escherichia coli chromosome (oriC plasmids) are unstable in certain recA strains of E. coli. However, they can be maintained more stably in other recA strains. This stable maintenance has allowed us to study the incompatibility properties of oriC plasmids. We have found that two oriC plasmids are incompatible: they cannot be stably coinherited in individual dividing cells. An oriC plasmid is excluded from growing bacteria at a much faster rate in the presence of a hybrid plasmid made from an oriC plasmid and a high-copy-number vector plasmid than in the presence of another oriC plasmid. By inserting various segments around the oriC region into high-copy-number vectors, we have shown that two different regions in the vicinity of the oriC region determine incompatibility. One region, which we named incA, includes the region essential for autonomous replication of the oriC plasmid. The other, incB, is adjacent to incA but is not required for autonomous replication.  相似文献   

14.
15.
Single-molecule techniques are developed to examine mechanistic features of individual E. coli replisomes during synthesis of long DNA molecules. We find that single replisomes exhibit constant rates of fork movement, but the rates of different replisomes vary over a surprisingly wide range. Interestingly, lagging strand synthesis decreases the rate of the leading strand, suggesting that lagging strand operations exert a drag on replication fork progression. The opposite is true for processivity. The lagging strand significantly increases the processivity of the replisome, possibly reflecting the increased grip to DNA provided by 2 DNA polymerases anchored to sliding clamps on both the leading and lagging strands.  相似文献   

16.
Initiation of bacteriophage lambda DNA replication at the chromosomal origin depends on the lambda O and P replication proteins. These two viral initiators, together with an Escherichia coli protein fraction, promote the replication in vitro of single-stranded circular DNA chromosomes such as that of bacteriophage M13. This nonspecific strand initiation reaction, which we have termed the "lambda single-strand replication reaction," has now been established with eight purified proteins, each of which is also required for replication of the phage lambda chromosome in vivo. An early rate-limiting step in the overall reaction is the ATP-dependent assembly of an activated nucleoprotein prepriming complex. In this step the lambda O and P initiators cooperate with the E. coli dnaJ and dnaK proteins to transfer the bacterial dnaB protein onto M13 DNA that is coated with the single-stranded DNA-binding protein. Multiple RNA primers are synthesized on each DNA circle when isolated prepriming complex is incubated with primase and rNTPs. In the complete system, DNA polymerase III holoenzyme extends the first primer synthesized into full-length complementary strands. Because the properties of this system are closely analogous to those found for the replication of phi X174 viral DNA by E. coli proteins, we infer that a mobile prepriming or priming complex (primosome) operates in the lambda single-strand replication reaction.  相似文献   

17.
The origin of replication, oriC, of the Escherichia coli chromosome was mapped within a DNA segment of 422 base pairs. The nucleotide sequence of this segment was determined. The source of DNA for the sequence analysis was a minichromosome constructed in vivo, consisting exclusively of chromosomal DNA and a minichromosome constructed by cloning in vitro. The nucleotide sequence of the replication origin is characterized by a high degree of repetitiveness due to both inverted and direct repeats. Sequence homologies were found between portions of the replication origins of E. coli and phages lambda and G4. This suggests similarities in some steps in the initiation of replication of the different replicons.  相似文献   

18.
We have constructed simian virus 40 minireplicons containing uniquely placed cis,syn-thymine dimers (T <> T) for the analysis of leading- and lagging-strand bypass replication. Assaying for replication in a human cell-free extract through the analysis of full-size labeled product molecules and restriction fragments spanning the T <> T site resulted in the following findings: (i) The primary site of synthesis blockage with T <> T in either the leading or lagging strand was one nucleotide before the lesion. (ii) Replicative bypass of T <> T was detected in both leading and lagging strands. The efficiency of synthesis past T <> T was 22% for leading-strand T <> T and 13% for lagging-strand T <> T. (iii) The lagging-strand T <> T resulted in blocked retrograde synthesis with the replication fork proceeding past the lesion, resulting in daughter molecules containing small gaps (form II' DNA). (iv) With T <> T in the leading-strand template, both the leading and lagging strands were blocked, representing a stalled replication fork. Uncoupling of the concerted synthesis of the two strands of the replication fork was observed, resulting in preferential elongation of the undamaged lagging strand. These data support a model of selective reinitiation downstream from the lesion on lagging strands due to Okazaki synthesis, with no reinitiation close to the damage site on leading strands [Meneghini, R. & Hanawalt, P.C. (1976) Biochim. Biophys. Acta 425, 428-437].  相似文献   

19.
We have directly tested the hypothesis that elevated levels of dUTP cause the formation of small DNA fragments at the replication fork of Escherichia coli. Addition of increasing levels of dUTP to lysates on cellophane discs results in an increasing number of strand scissions in the newly replicated DNA. Lysates of strains defective in dUTPase produce many more scissions at the same level of dUTP. The size distribution of Okazaki pieces obtained in vivo can be reconstituted in vitro on cellophane discs if appropriate levels of dUTP are present. Although uracil excision leads to the apparent production of Okazaki pieces from both daughter strands, DNA synthesis is actually asymmetric under these conditions. De novo chain initiation events occur on only one strand. It is suggested that asymmetry of synthesis in vivo may be masked by uracil excision and other postreplication processing mechanisms.  相似文献   

20.
Using yeast forward and reverse two-hybrid analyses, we have discovered that the replication terminator protein Tus of Escherichia coli physically interacts with DnaB helicase in vivo. We have confirmed this protein-protein interaction in vitro. We show further that replication termination involves protein-protein interaction between Tus and DnaB at a critical region of Tus protein, called the L1 loop. Several mutations located in the L1 loop region not only reduced the protein-protein interaction but also eliminated or reduced the ability of the mutant forms of Tus to arrest DnaB at a Ter site. At least one mutation, E49K, significantly reduced Tus-DnaB interaction and almost completely eliminated the contrahelicase activity of Tus protein in vitro without significantly reducing the affinity of the mutant form of Tus for Ter DNA, in comparison with the wild-type protein. The results, considered along with the crystal structure of Tus-Ter complex, not only elucidate further the mechanism of helicase arrest but also explain the molecular basis of polarity of replication fork arrest at Ter sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号