首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Human myeloma cells were highly purified from bone marrow aspirates of 21 patients with advanced immunoglobulin G (IgG)-type multiple myeloma. B-cell stimulatory factor 2 (BSF-2)/interleukin-6 (IL-6) was originally characterized as a cytokine that can enhance immunoglobulin secretion from activated normal B cells and increase the expression of secretory-type Ig mRNA in these B cells, but that does not augment proliferation of activated B cells. However, recombinant IL-6 (rIL-6) could not enhance M-protein (IgG) secretion in freshly isolated myeloma cells in vitro but could augment proliferation of myeloma cells, although myeloma cells constitutively expressed IL-6 receptors. Furthermore, expression of secretory-type IgG (gamma-chain) mRNA in myeloma cells was not changed in the presence of IL-6. These results show that IL-6 is not an enhancing factor in Ig secretion from myeloma cells, and thus signal transduction through IL-6 in myeloma cells may be altered as opposed to activated B cells.  相似文献   

2.
3.
4.
5.
To explore the mechanisms involved in the pathogenesis of human multiple myeloma (MM), we investigated the potential role of interleukin-6 (IL-6), a B-cell differentiation factor in humans, and a growth factor for rat/mouse heterohybridomas and murine plasmacytomas. Using a heterohybridoma assay, we found that two well-documented human myeloma cell lines, RPMI 8226 and U266, did not secrete IL-6 and did not express RNA messengers for IL-6. Neutralizing antibodies to IL-6 did not inhibit their proliferation, and recombinant IL-6 did not stimulate it. Taken together, these data show that IL-6 is not the autocrine growth factor of these human myeloma cell lines. A high production of IL-6 was found in the bone marrows of patients with fulminating MM, compared with patients with inactive or slightly active MM, or to healthy donors. This IL-6 production was assigned to adherent cells of the bone-marrow environment but not to myeloma cells. A spontaneous proliferation of myeloma cells freshly isolated from patients was observed in short-term cultures. Recombinant IL-6 was able to amplify it two- to threefold. The spontaneous proliferation of the myeloma cells was inhibited by anti-IL-6 antibodies and reinduced by recombinant IL-6. After 2 to 3 weeks of culture, the myeloma-cell proliferation progressively declined and no IL-6-dependent myeloma cell lines could be obtained despite repeated additions of fresh IL-6 and costimulation with other cytokines such as tumor necrosis factor (TNF)beta, or IL-1 beta. These data demonstrated a paracrine but not autocrine regulation of the growth and differentiation of myeloma cells by IL-6.  相似文献   

6.
OBJECTIVES: Several studies including ours have suggested that lack of CD56 in multiple myeloma (MM) defines a unique patient subset with poorer prognosis. However, the mechanism underlying this aggressive behavior of CD56(-) MM has not been well elucidated. Interleukin-6 (IL-6) or insulin-like growth factor I (IGF-I) induce proliferation of MM cells. In this study, we report about the relationship between CD56 expression and responsiveness to these cytokines. METHODS: We sorted out both CD56(-) and CD56(+) fractions from MM cell lines such as KMS-21-BM and U-266, and investigated their different responsiveness to IL-6 or IGF-I. Furthermore, we compared the effects of these cytokines on the regulation of cell-cycle distribution between CD56(-) and CD56(+) cells. RESULTS: Although CD56(-) cells in both KMS-21-BM and U-266 cells responded significantly to IL-6, CD56(+) cells did not. Ki-67(+) cells in the CD56(-) cells were significantly increased by IL-6. Western blotting showed that IL-6 phosphorylated Akt, and upregulated and downregulated the level of cyclin D1 and p27 protein in the CD56(-) KMS-21-BM cells, respectively. LY-294002 completely blocked these effects of IL-6. On the other hand, Ki-67(+) cells in the CD56(+) cells did not respond to IL-6. Anti-IGF-I mAb significantly reduced Ki-67(+) cells only in the CD56(+) cells. IGF-I phosphorylated Akt and upregulated cyclin D1 in the CD56(+) KMS-21-BM cells, which was completely blocked by LY294002. CONCLUSIONS: These results suggest that CD56(-) and CD56(+) MM cells could be stimulated by IL-6 and IGF-I, respectively, via PI3-K/Akt pathway, and provide useful information for anticytokine therapies.  相似文献   

7.
OBJECTIVE: The development of megakaryocytes is regulated by thrombopoietin (TPO), which binds to the c-mpl receptor, and by several other cytokines such as interleukin (IL)-6, IL-11, leukemia inhibitory factor (LIF), cilliary neurotropic factor (CNTF), and oncostatin (OSM), which bind to gp130 protein-coupled receptors. We attempted to identify signal transduction pathways activated by these factors in normal human megakaryocytes. MATERIALS AND METHODS: To better understand the role of these factors in normal human megakaryopoiesis we studied their effect on 1) purified human bone marrow-derived CD34+ cells, 2) human alpha(IIb)beta3+ cells (shown by immunophenotypical and morphological criteria to be megakaryoblasts), which had been expanded ex vivo from CD34+ cells in chemically defined artificial serum, and 3) gel-filtered human peripheral blood platelets. Further, in an attempt to correlate the influence of these factors on cell proliferation and survival with activation of signal transduction pathways, we evaluated their effect on the phosphorylation of MAPK p42/44 and activation of PI-3K-AKT and JAK-STAT proteins in these various cell types. RESULTS: Using serum-free liquid cultures, we found that only TPO and IL-6 protected CD34+ cells and megakaryocytes from undergoing apoptosis (decrease in annexin-V binding, PARP cleavage, and activation of caspase-3). Moreover, only TPO when used alone and IL-6 only when used in combination with TPO, stimulated the growth of human colony-forming unit-megakaryocytes (CFU-Meg) in semisolid serum-free medium. We also observed that while TPO efficiently activated various signaling pathways in CD34+ cells, megakaryocytes, and platelets (MAPK p42/44, PI-3K-AKT, STAT proteins), IL-6 stimulated phosphorylation of STAT-1, -3, and -5 proteins only in CD34+ cells and megakaryoblasts. To our surprise, none of the other gp130 protein-related cytokines tested (IL-11, LIF, CNTF, and OSM) activated these signaling pathways in CD34+ cells, megakaryoblasts, or platelets. CONCLUSIONS: Our signal transduction studies explain why TPO, by simultaneously activating several signaling pathways, is the most potent megakaryopoietic regulator and why of all five gp130 protein-related cytokines tested, only IL-6, through activation of STAT proteins, plays a role in normal human megakaryopoiesis.  相似文献   

8.
BACKGROUND: The intensive interactions of myeloma cells (multiple myeloma, MM) with microenvironmental components of the bone marrow contribute significantly to their proliferation and survival. It has been shown that these signals confer drug resistance, delineating their circumvention as a primary objective in disease treatment. This study was designed to assess the effect of some major extracellular factors on the previously established anti-neoplastic response of myeloma cells to simvastatin (Sim). STUDY DESIGN: RPMI8226, U266, and ARH77 seeded in culture plates precoated with fibronectin (FN)/agarose/none were treated with Sim, insulin-like growth factor-I (IGF-I), interleukin-6 (IL-6) or combinations for 5 d. Then we assessed cell morphology, viability (WST1), cell cycle (propidium iodide, PI, staining and flow cytometric analysis), total cell count, and cell death (trypan blue exclusion), and DNA fragmentation. RESULTS AND CONCLUSIONS: Reduced viability was demonstrated with Sim in all treated cell lines with and without co-administration of IGF-I or IL-6 (P < 0.05). The extent of inhibition did not vary between Sim only and combinations (NS). FN did not influence cell response to Sim alone or combined with IL-6/IGF-I (NS). We conclude that IL-6, IGF-I, and FN do not afford myeloma cell lines protection from Sim modulation.  相似文献   

9.
Interleukin 6 (IL-6) influences the growth and survival of multiple myeloma (MM) cells via the activation of multiple signalling cascades. Although sphingosine kinase (SPHK) signalling is known to play important roles in the regulation of cell proliferation and apoptosis, the role of SPHK activation in IL-6 signalling and in the pathology of MM remains unclear. This study found that IL-6 activated SPHK in MM cells, which mediates the suppressive effects of IL-6 on MM cell apoptosis. Both MM cell lines and primary MM cells constitutively expressed SPHK, and treatment of MM cells with IL-6 resulted in activation of SPHK in a concentration-dependent manner. Specific inhibitors of the phosphatidylinositol-3 kinase and extracellular signal-regulated kinase/mitogen-activated protein kinase pathways blocked the IL-6-induced activation of SPHK. It was further demonstrated that IL-6-induced activation of SPHK inhibited dexamethasone-induced apoptosis of MM cells. IL-6 stimulation or retroviral-mediated overexpression of SPHK1 in MM cells resulted in increased intracellular SPHK activity and upregulation of myeloid cell leukaemia-1 (Mcl-1), leading to increased cell proliferation and survival. Conversely, inhibition of SPHK1 by small interfering RNA reduced IL-6-induced upregulation of Mcl-1 and blocked the suppressive effect of IL-6 on MM cell apoptosis. Taken together, these results delineate a key role for SPHK activation in IL-6-induced proliferation and survival of MM cells, and suggest that SPHK may be a potential new therapeutic target in MM.  相似文献   

10.
Regulatory effects of glucocorticoids (dexamethasone) on myeloma cells as well as bone resorption in multiple myeloma were investigated. Glucocorticoids significantly inhibited proliferation of myeloma cells, and decreased the messenger RNA (mRNA) expressions of interleukin-6 (IL-6) and secretory type immunoglobulin G (IgG). The inhibitory effects of glucocorticoids on myeloma cell proliferation could be due to the decreased expression of IL-6 mRNA, decreased IL-6 production, and thus suppression of autocrine growth by IL-6, which is an autocrine growth factor for myeloma cells as reported previously (Nature 332:83, 1988). Glucocorticoids also inhibited M-protein secretion by decreasing the levels of secretory type Ig mRNA. On the other hand, because IL-1 beta rather than lymphotoxin is considered to be a major osteoclast activating factor (OAF) produced by myeloma cells, and glucocorticoids decreased the expression of IL-1 beta mRNA and markedly suppressed the bone resorbing activity induced by IL-1 beta OAF in 45Ca-release bone resorption assay, it is suggestive that glucocorticoids could inhibit bone resorption induced by IL-1 beta OAF in multiple myeloma. Therefore, from these data it is concluded that glucocorticoids could be more effective chemotherapeutic agents in multiple myeloma than we expected, especially with regards to the inhibitory effects on proliferation and M-protein secretion from myeloma cells, as well as bone resorption by myeloma cells.  相似文献   

11.
Interleukin-21 is a growth and survival factor for human myeloma cells   总被引:20,自引:3,他引:17       下载免费PDF全文
Brenne AT  Ro TB  Waage A  Sundan A  Borset M  Hjorth-Hansen H 《Blood》2002,99(10):3756-3762
Interleukin-21 (IL-21) is a recently cloned cytokine with homology to IL-2, IL-4, and IL-15. In this study we examined the effects of IL-21 on human myeloma cells. We found that IL-21 induced proliferation and inhibited apoptosis of the IL-6-dependent human myeloma cell lines ANBL-6, IH-1, and OH-2. The potency of IL-21 was close to that of IL-6 in the OH-2 cell line. Neutralizing antibodies to IL-6 or the IL-6 receptor transducer chain (gp130) did not affect IL-21-induced DNA synthesis, indicating that IL-21-induced proliferation was not mediated through these proteins. Tumor necrosis factor (TNF), another stimulator of myeloma cell growth, up-regulated the expression level of IL-21 receptor (IL-21R), and combinations of TNF and IL-21 gave synergistic effects on myeloma cell proliferation. Furthermore, 4 of 9 purified samples of primary myeloma cells showed a significant increase in DNA synthesis on stimulation of the cells by IL-21. By Western blot analysis, we demonstrated that the intracellular signaling pathways of IL-21 in myeloma cells involved phosphorylation of Jak1, Stat3, and Erk1/2 (p44/42 mitogen-activated protein kinase). IL-21 is a novel growth and survival factor in multiple myeloma and may represent a target for future therapy.  相似文献   

12.
Abstract: A novel human myeloma cell line, OH-2, was established from pleural fluid of a myeloma patient in end stage of the disease. Effects of cytokines on proliferation were analyzed by measuring uptake of 3H-thymidine. Cell surface antigens were detected by flow cytometry. The cell line is dependent on IL-6 for growth and proliferates in response to TNF. There is synergy between the stimulatory response of TNF and IL-6. The cells express both the p55 and p75 TNF receptors. Neutralizing anti-IL-6 did not inhibit TNF-mediated proliferation, showing that TNF acts through a pathway that is independent of IL-6. TNF was more potent than IL-6 in stimulating the growth of primary myeloma cultures (>99% pure) from the same patient (OH-2-PC), indicating that TNF in selected myeloma patients has a growth-promoting effect equal to IL-6. OH-2 cells produce and secrete monoclonal IgG-kappa.  相似文献   

13.
Aurintricarboxylic acid (ATA), an endonuclease inhibitor, prevents the death of a variety of cell types in culture. Previously we have shown that ATA, similar to insulin-like growth factor I (IGF-I), protected MCF-7 cells against apoptotic death induced by the protein synthesis inhibitor cycloheximide. Here we show that ATA and a polysulfonated aromatic compound, Evans blue (EB), similar to IGF-I, promote survival and increase proliferation of MCF-7 cells in serum-free culture medium. This may suggest a common signaling pathway shared by the aromatic polyanions and IGF-I. Therefore, the ability of these aromatic compounds to activate the signal transduction pathway of IGF-I was examined. We found that ATA and EB mimicked the IGF-I effect on tyrosine phosphorylation of the IGF-I receptor (IGF-IR) and its major substrates, insulin receptor substrate-1 (IRS-1) and IRS-2; induced the association of these substrates with phosphatidylinositol 3-kinase and Grb2; and activated Akt kinase and p42/p44 mitogen-activated protein kinases. ATA and EB competed for IGF-I binding to the IGF-IR. ATA was found to be selective for the IGF-IR, whereas EB also activated the insulin receptor. Upon fractionation of commercial ATA by size exclusion chromatography, we found that fractions that enhanced the intensity of tyrosyl-phosphorylated IRS-1/IRS-2 also increased the survival of MCF-7 cells in the presence of cycloheximide, whereas fractions devoid of IRS phosphorylation activity had no survival ability. Taken together, these results suggest that the survival/proliferation-promoting effects of ATA and EB in MCF-7 cells are transduced via the IGF-IR signaling pathway.  相似文献   

14.
Myeloma cells express basic fibroblast growth factor (bFGF), an angiogenic cytokine triggering marrow neovascularization in multiple myeloma (MM). In solid tumors and some lymphohematopoietic malignancies, angiogenic cytokines have also been shown to stimulate tumor growth via paracrine pathways. Since interleukin-6 (IL-6) is a potent growth and survival factor for myeloma cells, we have studied the effects of bFGF on IL-6 secretion by bone marrow stromal cells (BMSCs) and its potential reverse regulation in myeloma cells. Both myeloma-derived cell lines and myeloma cells isolated from the marrow of MM patients were shown to express and secrete bFGF. Cell-sorting studies identified myeloma cells as the predominant source of bFGF in MM marrow. BMSCs from MM patients and control subjects expressed high-affinity FGF receptors R1 through R4. Stimulation of BMSCs with bFGF induced a time- and dose-dependent increase in IL-6 secretion (median, 2-fold; P <.001), which was completely abrogated by anti-bFGF antibodies. Conversely, stimulation with IL-6 enhanced bFGF expression and secretion by myeloma cell lines (2-fold; P =.02) as well as MM patient cells (up to 3.6-fold; median, 1.5-fold; P =.002). This effect was inhibited by anti-IL-6 antibody. When myeloma cells were cocultured with BMSCs in a noncontact transwell system, both IL-6 and bFGF concentrations in coculture supernatants increased 2- to 3-fold over the sum of basal concentrations in the monoculture controls. The IL-6 increase was again partially, but significantly, inhibited by anti-bFGF. The data demonstrate a paracrine interaction between myeloma and marrow stromal cells triggered by mutual stimulation of bFGF and IL-6.  相似文献   

15.
OBJECTIVE: To determine if glucocorticoids and proinflammatory cytokines inhibit bone growth through a common mechanism involving impaired IGF-I signalling. DESIGN: IGF-I (100 ng/ml), dexamethasone (dex) (10(-6)M) and IL-1beta (10 ng/ml) with inhibitors of the PI3K (LY294002) and Erk 1/2 (PD98059 and UO126) IGF-I pathways (all 10 microM) were studied using the ATDC5 chondrocyte cell line and murine fetal metatarsal cultures. RESULTS: IGF-I stimulated ATDC5 chondrocyte proliferation (322%; P < 0.001 versus control). Addition of PD or LY individually to IGF-I supplemented ATDC5 cultures partially reduced proliferation by 32% (P < 0.001), and 66% (P < 0.001), respectively. PD and LY in combination blocked all IGF-I stimulated ATDC5 proliferation. LY significantly reversed IGF-I stimulatory effects on metatarsal growth (P < 0.001), whereas PD and UO treatment had no effect. IGF-I induced ATDC5 proliferation was further decreased when Dex (24%; P < 0.01) or IL-1beta (33%; P < 0.001) were added to PD but not LY cultures. Metatarsal growth inhibition by LY was unaltered by Dex or IL-1beta addition. CONCLUSIONS: Both the PI3K and Erk 1/2 pathways contributed independently to IGF-I mediated ATDC5 proliferation. However in metatarsal cultures, the Erk 1/2 pathway was not required for IGF-I stimulated growth. Dex and IL-1beta may primarily inhibit IGF-I induced bone growth through the PI3K pathway.  相似文献   

16.
Human myeloma cells are heterogenous morphologically and phenotypically. Myeloma cells can be classified into at least 5 subpopulations; MPC-1-CD45+CD49e-, MPC-1-CD45-CD49e- immature myeloma cells, MPC-1+CD45-CD49e-, MPC-1+CD45+CD49e- intermediate myeloma cells and MPC-1+CD45+CD49e+ mature myeloma cells. Interleukin-6(IL-6) is a major growth factor for human myeloma cells, but only MPC-1-CD45+CD49e- immature myeloma cells can response directly to IL-6 to proliferate. In the U-266 cell lines, IL-6 can lead to the induction of CD45 expression and CD45+ U-266 cells can proliferate in response to IL-6. In primary myeloma cells, MPC-1-CD45-CD49e- immature myeloma cells sorted from bone marrow samples can be changed to CD45+ cells by addition of IL-6 in vitro. In both CD45- and CD45+ U-266 cells, STAT3 and MAPK(ERK1/2) can be activated in response to IL-6 equally between them, but src family kinases such as Lyn, Fyn can be activated only in CD45+ U-266 cells. Thus, the activation of the src family kinases associated with CD45 expression is a prerequisite for the proliferation of myeloma cells. In the bone marrow of myeloma patients, most myeloma cells do not express CD45, and CD45+ immature myeloma cells are only 1 approximately 2%. In order to clarify the difference of cellular context between CD45- and CD45+ myeloma cells, PCR-based cDNA subtraction was performed from CD45+ U-266 cells to CD45-U-266 cells. The series of this subtraction selected several genes. Furthermore, sensitivity to stress stimuli between CD45+ and CD45- U-266 cells was also compared. CD45-U-266 cells were markedly more resistant to stress conditions such as serum-free condition. Therefore, we can speculate that in the bone marrow of human myelomas IL-6 can induce proliferation of CD45+ immature cells, but the amount of IL-6 is too low to support CD45+ myeloma cells and loss of CD45 results in no direct response to IL-6 to proliferate but confers resistance to stress condition leading to the longer survival at the limited amount of IL-6.  相似文献   

17.
Multifunctional role of Erk5 in multiple myeloma   总被引:2,自引:0,他引:2       下载免费PDF全文
Multiple myeloma is characterized by the accumulation of terminally differentiated B cells in the bone marrow, due to increased proliferation and restricted apoptosis of the myelomatous clone. Here we have studied the participation of a novel mitogen-activated protein kinase (MAPK) route, the extracellular signal-regulated kinase 5 (Erk5) pathway, in the regulation of myeloma cell proliferation and apoptosis. Erk5 was expressed in cells isolated from patients and in myeloma cell lines. The myeloma growth factor interleukin 6 (IL-6) activated Erk5, and this activation was independent of Ras and Src. Expression of a dominant-negative form of Erk5 restricted the proliferation of myeloma cells and inhibited IL-6-dependent cell duplication. This dominant-negative form also sensitized myeloma cells to the proapoptotic action of dexamethasone and PS341. The latter compound caused a profound decrease in the amount of endogenous Erk5 and was less effective in inducing apoptosis when the level of Erk5 was increased by transfection of Erk5. These results place the Erk5 route as a new regulatory signaling pathway that affects multiple myeloma proliferation and apoptosis.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号