首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dimeric acetylcholinesterase (AChE) inhibitors containing a single 9-amino-1,2,3,4-tetrahydroacridine (tacrine) unit were constructed in an effort to further delineate structural requirements for optimal binding to the AChE peripheral site. Basic amines of differing hydrophobicity were selected as peripheral site ligands, and in each case, improvements in inhibitory potency and selectivity were seen relative to tacrine itself. AChE IC(50) values of the optimum dimers decrease significantly as the peripheral site ligand was permuted in the series ammonia > dimethylamine > 4-aminopyridine > 4-aminoquinoline > tacrine. Calculated desolvation free energies of the optimum dimers match the trend in IC(50) values, suggesting the importance of ligand hydrophobicity for effective cation-pi interaction with the peripheral site.  相似文献   

2.
Biotransformation of the anticholinesterasic agent 9-amino-7-methoxy-1,2,3,4-tetrahydroacridine was studied in the laboratory rat. In the animal urine, the main identified metabolites were 9-amino-7-hydroxy-1,2,3,4-tetrahydroacridine and its conjugate with glucuronic acid, or sulfuric acid, as well as 9-amino-1-hydroxy-7-methoxy-1,2,3,4-tetrahydroacridine and 9-amino-2-hydroxy-7-methoxy-1,2,3,4-tetrahydroacridine. A part of the drug was excreted in an unchanged form.  相似文献   

3.
Histamine-N-methyltransferase (HNMT), the major enzyme for the metabolism of histamine in rat brain, is potently inhibited by 9-amino-1,2,3,4-tetrahydroacridine (tacrine). Structural fragments of tacrine were less potent inhibitors of rat brain HNMT than was tacrine itself. Harmaline and a number of other beta-carbolines inhibited HNMT with IC50 values in the range of 1-10 microM. HNMT inhibition by harmaline was competitive with respect to both substrates, S-adenosylmethionine and histamine (Ki = 1.4 microM). These findings are discussed in the context of mechanisms for HNMT inhibition.  相似文献   

4.
The effects of oral administration of the centrally acting acetylcholinesterase (AChE) inhibitors, donepezil hydrochloride (donepezil: E2020: (±)-2-[(1-benzylpiperidin-4-yl)methyl]-5,6-dimethoxy-indan-1-one monohydrochloride), tacrine (9-amino-1,2,3,4-tetrahydroacridine hydrochloride) and ENA-713 (rivastigmine: (S)-N-ethyl-3-[(1-dimethyl-amino)ethyl]-N-methyl-phenylcarbamate hydrogentartrate), which have been developed for the treatment of Alzheimer's disease, on the extracellular acetylcholine concentration in the hippocampus of rats were evaluated by using a microdialysis technique without adding cholinesterase inhibitor to the perfusion solution. We also compared the inhibition of brain AChE and the brain concentrations of these drugs. Donepezil at 2.5 mg/kg and tacrine at 5 mg/kg showed significant effects for more than 6 h. At these doses, the maximum increases were observed at about 1.5 h after administration of donepezil, and at about 2 h with tacrine, and were 499% and 422% of the pre-level, respectively. ENA-713 produced significant effects at doses of 0.625, 1.25 and 2.5 mg/kg, which lasted for about 1, 2 and 4 h, respectively. The maximum increases produced by these doses at about 0.5 h after administration were 190, 346 and 458% of the pre-level, respectively. The time courses of brain AChE inhibition with donepezil at 2.5 mg/kg, tacrine at 10 mg/kg and ENA-713 at 2.5 mg/kg were mirror images of the extracellular acetylcholine-increasing action at the same doses. The time courses of the brain concentrations of drugs after oral administration of donepezil at 2.5 mg/kg and tacrine at 10 mg/kg were consistent with those of brain AChE inhibition at the same doses, and there was a linear relation between these parameters. Brain concentration of ENA-713 at 2.5 mg/kg was below the limit of quantification at all time points measured. These results suggest that oral administration of donepezil, tacrine and ENA-713 increases acetylcholine concentration in the synaptic cleft of the hippocampus mostly through AChE inhibition, and that donepezil has a more potent activity than tacrine and a longer-lasting effect than ENA-713 on the central cholinergic system.  相似文献   

5.
目的 研究他克林的双体衍生物双(7)-他克林对东莨菪碱引起的大鼠记忆障碍的影响。方法 采用大鼠Morris水迷宫固定平台的程序研究空间记忆,以他克林为对照药。结果;东莨菪碱(0.3mg.kg^-1,ip)使大鼠到达平台的潜伏期明显长于生理盐水对照组,双(7)-他克林(0.35μmol.kg^-1,ig或ip)和他克林(8.52μmol.kg^-1ig,4.26μmol.kg^-1ip)和他克林(8  相似文献   

6.
1. The effects of tacrine (9-amino-1,2,3,4-tetrahydroacridine), velnacrine (HP029, 9-amino-1,2,3,4-tetrahydroacridin-1-ol maleate), suronacrine (HP128, 9-benzylamino-1,2,3,4-tetrahydroacridin-1-ol maleate), and 3,4-diaminopyridine on neuromuscular transmission were compared on isolated nerve-muscle preparations. 2. Tacrine, HP029, and 3,4-diaminopyridine augmented responses of chick biventer cervicis preparations to nerve stimulation, with tacrine and HP029 increasing responses to exogenously applied acetylcholine. HP128 blocked responses to nerve stimulation and to carbachol, but increased responses to acetylcholine. 3. In mouse diaphragm preparations that were partially paralysed by tubocurarine or low calcium solutions, tacrine, HP029, and 3,4-diaminopyridine reversed the twitch block. HP128 deepened the block. 4. In mouse triangularis sterni preparations, tacrine and HP029 prolonged the decay phase of endplate potentials and miniature endplate potentials, but had no effect on quantal content at 36 degrees C; above 10 microM, they reduced endplate potential amplitude. 3,4-Diaminopyridine increased quantal content without affecting the time course of the endplate potentials. HP128 (1-10 microM) had no effect on amplitude or time course of endplate potentials, but reduced their amplitude at higher concentrations. 5. Extracellular recording of nerve terminal currents from triangularis sterni preparations revealed that 3,4-diaminopyridine and HP128 had a selective blocking action on the waveform associated with K+ currents, tacrine reduced and prolonged the K(+)-related waveform, and HP029 had nonselective blocking actions only seen at high concentrations. 6. Tacrine and HP029 behave predominantly as anticholinesterase agents, while HP128 has weaker anticholinesterase actions that are masked by cholinoceptor blockade. Tacrine and HP128, but not HP029, have some blocking actions on K+ currents of mouse motor nerve terminals.  相似文献   

7.
The effects of 9-amino-1,2,3,4-tetrahydroacridine (tacrine), an active acetylcholinesterase inhibitor, on cycloheximide- and basal forebrain (BF) lesion-induced memory deficit in the water maze and passive avoidance task were investigated. While cycloheximide (1.5 mg/kg, s.c.) produced amnesia in the passive avoidance task, chronic administration of tacrine (1, 3 and 10 mg/kg, once a day for 1 week) improved the amnesia. BF lesion produced amnesia in both the water maze and passive avoidance tasks. Chronic tacrine (0.1-3 mg/kg, passive avoidance task, or 0.3 mg/kg, water maze task, once a day for 1 week) improved BF lesion-induced amnesia in the passive avoidance and water maze tasks. These results suggest that tacrine may be useful for senile dementia.  相似文献   

8.
The acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activities of a series of pyrano[2,3-b]quinolines (2, 3), [1,8]naphthyridines (5, 6), 4-amino-2,3-diaryl-5,6,7,8-tetrahydrofuro[2,3-b]quinolines (11-13)/ 4-amino-6,7,8,9-tetrahydro-2,3-diphenyl-5H-cyclohepta[e]furo[2,3-b]pyridine (14), 4-amino-5,6,7,8-tetrahydro-2,3-diphenylthieno[2,3-b]quinoline (15)/ 4-amino-6,7,8,9-tetrahydro-2,3-diphenyl-5H-cyclohepta[e]thieno[2,3-b]pyridine (16) are described. These compounds are tacrine analogues that have been prepared from readily available polyfunctionalized ethyl [6-amino-5-cyano-4H-pyran]-3-carboxylates (9, 10), ethyl [6-amino-5-cyanopyridine]-3-carboxylates (7, 8), 2-amino-3-cyano-4,5-diarylfurans (17-19) and 2-amino-3-cyano-4,5-diphenylthiophene (20) via Friedl?nder condensation with selected ketones. These compounds are competitive and, in a few cases, non-competitive inhibitors for AChE, the most potent being compound (14), though three-fold less active than tacrine. The BuChE inhibitory activity is only significant in compounds 11 and 14, ten-fold less active than tacrine. Furthermore, the products 12 and 13 are selective and moderate AChE inhibitors.  相似文献   

9.
The acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibition activities of a series of 4-amino-2, 3-diaryl-5, 6, 7, 8-tetrahydrofuro[2, 3-b]quinolines (10-12)/4-amino-5, 6, 7, 8-tetrahydro-2, 3-diphenylthieno[2, 3-b]quinoline (14) and 4-amino-5, 6, 7, 8, 9-pentahydro-2, 3-diphenylcyclohepta[e]furo[2, 3-b]pyridine (13)/4-amino-5, 6, 7, 8, 9-pentahydro-2, 3-phenylcyclohepta[e]thieno[2, 3-b]pyridine (15) are described. These compounds are tacrine (THA) analogues which have been prepared either from readily available 2-amino-3-cyano-4, 5-diarylfurans (16-18) or from 2-amino-3-cyano-4, 5-diphenylthiophene (19), via Friedl?nder condensation with cyclohexanone or cycloheptanone. These compounds are competitive inhibitors for acetylcholinesterase, the more potent being compound (13) which is three-fold less active than tacrine. The butyrylcholinesterase inhibition activity is significant only in compounds 10 and133, which are ten-fold less active than tacrine. It is found that the products 11 and 12 strongly inhibit acetylcholinesterase, and show excellent selectivity regarding butyrylcholinesterase.  相似文献   

10.
The effects of T-82 (2-[2-(1-benzylpiperidin-4-yl)ethyl]-2,3-dihydro-9-methoxy-1H-pyrrolo [3,4-b]quinolin-1-one hemifumarate), a new quinoline derivative, on acetylcholinesterase (AChE) activity and acetylcholine (ACh) release were compared with those of the well-known cholinesterase inhibitors tacrine and E2020. T-82, tacrine and E2020 all concentration-dependently inhibited AChE in rat brain homogenate (IC50 = 109.4, 84.2 and 11.8 nM, respectively). In addition, although tacrine strongly inhibited butyrylcholinesterase (BuChE), T-82 and E2020 showed only weak activity on BuChE in human plasma. In ex vivo experiments, intraperitoneal administration of T-82 at a dose of 30 mg/kg inhibited AChE activity in the hippocampus, frontal cortex and parietal cortex of rats. The effect of T-82 on the extracellular ACh concentration in rat brain was measured using in vivo microdialysis. T-82 at doses of 10 and 30 mg/kg, i.p. increased the extracellular ACh concentration in the hippocampus and striatum in a dose-dependent manner. These findings suggest that T-82 activates the central cholinergic system by selectively inhibiting AChE activity, while weakly affecting peripheral BuChE activity, and that T-82 increases the extracellular ACh concentration in the brain, which is followed by inhibited AChE activity.  相似文献   

11.
The impact of species-dependent differences between human and rat MAO B on inhibitor screening was evidenced for two classes of compounds, coumarin and 5H-indeno[1,2-c]pyridazin-5-one derivatives. All examined compounds have shown a greater inhibitor potency toward human MAO B than toward rat MAO B. Moreover, no correlation was found between human and rat pIC(50) values. These divergences have important implications for the design and development of drugs involved in the MAO B metabolic pathway, suggesting that results obtained using rat enzyme cannot be extrapolated to human CNS, a priori. Indeed, the selection of a hit compound for lead generation could be different using human rather than rat enzyme. Moreover, the influence of substituents on the in vitro inhibition of human MAO B was markedly different between homogeneous series of coumarin and 5H-indeno[1,2-c]pyridazin-5-one derivatives, suggesting different binding modes, a hypothesis clearly supported by molecular docking simulations of inhibitors into the active site of human MAO B.  相似文献   

12.
Inhibitors of the enzyme acetylcholinesterase (AChE) slow and sometimes reverse the cognitive decline experienced by individuals with Alzheimer's disease. Huperzine A, a natural product used in traditional Chinese herbal medicine, and tacrine (Cognex) are among the potent AChE inhibitors used in this treatment, but the search for more selective inhibitors continues. We report herein the synthesis and characterization of (-)-12-amino-3-chloro-9-ethyl-6,7, 10,11-tetrahydro-7,11-methanocycloocta[b]quinoline hydrochloride (huprine X), a hybrid that combines the carbobicyclic substructure of huperzine A with the 4-aminoquinoline substructure of tacrine. Huprine X inhibited human AChE with an inhibition constant K(I) of 26 pM, indicating that it binds to this enzyme with one of the highest affinities yet reported. Under equivalent assay conditions, this affinity was 180 times that of huperzine A, 1200 times that of tacrine, and 40 times that of E2020 (donepezil, Aricept), the most selective AChE inhibitor currently approved for therapeutic use. The association and dissociation rate constants for huprine X with AChE were determined, and the location of its binding site on the enzyme was probed in competition studies with the peripheral site inhibitor propidium and the acylation site inhibitor edrophonium. Huprine X showed no detectable affinity for the edrophonium-AChE complex. In contrast, huprine X did form a ternary complex with propidium and AChE, although its affinity for the free enzyme was found to be 17 times its affinity for the propidium-AChE complex. These data indicated that huprine X binds to the enzyme acylation site in the active site gorge but interferes slightly with the binding of peripheral site ligands.  相似文献   

13.
Molecular modelling and QSAR of reversible acetylcholines-terase inhibitors   总被引:1,自引:0,他引:1  
Acetylcholinesterase (AChE) inhibitors are an important class of medicinal agents useful for the treatment of Alzheimer s disease, glaucoma, myasthenia gravis and for the recovery of neuromuscular block in surgery. To rationalize the structural requirements of AChE inhibitors we attempt to derive a coherent AChE-inhibitor recognition pattern based on literature data of molecular modelling and quantitative structure-activity relationship (QSAR) analyses. These data are summarised from nearly all therapeutically important chemical classes of reversible AChE inhibitors, e.g., derivatives of physostigmine, tacrine, donepezil and huperzine A. Interactions observed from X-ray crystallography between these inhibitors and AChE have also been incorporated and compared with modelling and QSAR results. It is concluded that hydrophobicity and the presence of an ionizable nitrogen are the pre-requisites for the inhibitors to interact with AChE. However the mode of interaction i.e., the 3-dimensional (3D) positioning of the inhibitor in the active site of the enzyme varies among different chemical classes. It is also recognised that water molecules play crucial roles in defining these different 3D positioning. The information on AChE-inhibitor interactions provided should be useful for future discovery of new chemical classes of AChE inhibitors, especially from De Novo design and hybrid construction.  相似文献   

14.
Eleven new 12-amino-6,7,10,11-tetrahydro-7, 11-methanocycloocta[b]quinoline derivatives [tacrine (THA)-huperzine A hybrids, rac-21-31] have been synthesized as racemic mixtures and tested as acetylcholinesterase (AChE) inhibitors. For derivatives unsubstituted at the benzene ring, the highest activity was obtained for the 9-ethyl derivative rac-20, previously prepared by our group. More bulky substituents at position 9 led to less active compounds, although some of them [9-isopropyl (rac-22), 9-allyl (rac-23), and 9-phenyl (rac-26)] show activities similar to that of THA. Substitution at position 1 or 3 with methyl or fluorine atoms always led to more active compounds. Among them, the highest activity was observed for the 3-fluoro-9-methyl derivative rac-28 [about 15-fold more active than THA and about 9-fold more active than (-)-huperzine A]. The activity of some THA-huperzine A hybrids (rac-19, rac-20, rac-28, and rac-30), which were separated into their enantiomers by chiral medium-pressure liquid chromatography (chiral MPLC), using microcrystalline cellulose triacetate as the chiral stationary phase, showed the eutomer to be always the levorotatory enantiomer, their activity being roughly double that of the corresponding racemic mixture, the distomer being much less active. Also, the activity of some of these compounds inhibiting butyrylcholinesterase (BChE) was tested. Most of them [rac-27-31, (-)-28, and (-)-30], which are more active than (-)-huperzine A as AChE inhibitors, turned out to be quite selective for AChE, although not so selective as (-)-huperzine A. Most of the tested compounds 19-31 proved to be much more active than THA in reversing the neuromuscular blockade induced by d-tubocurarine. Molecular modeling of the interaction of these compounds with AChE from Torpedo californica showed them to interact as truly THA-huperzine A hybrids: the 4-aminoquinoline subunit of (-)-19 occupies the same position of the corresponding subunit in THA, while its bicyclo[3.3.1]nonadiene substructure roughly occupies the same position of the corresponding substructure in (-)-huperzine A, in agreement with the absolute configurations of (-)-19 and (-)-huperzine A.  相似文献   

15.
Tacrine (1,2,3,4-tetrahydro-9-aminoacridine) showed an apparent noncompetitive inhibition of Torpedo acetylcholinesterase (AChE) with a dissociation constant, Ki, of 8.5 nM. It altered the CD bands of AChE in the near-UV region, which monitor the local conformation of aromatic side groups, but not those in the far-UV region, which measure the secondary structure. An extrinsic CD band was induced at 348 nm, with a molar ellipticity of 35,000 deg cm2 dmol-1 (bases on tacrine), when each AChE subunit (Mr = 67,000) was saturated with one tacrine (mol/mol). With this band as a probe, the bound tacrine could be displaced by edrophonium or decamethonium, both of which are known to bind to the anionic site at the active center of AChE, but not by propidium, which binds to the peripheral site of the enzyme. Tacrine protected AChE from inactivation by diisopropylfluorophosphate (DFP). AChE completely lost its enzymatic activity when 1 mol of DFP was bound per mol of subunit upon incubation of 7 microM AChE (subunit) with 100 microM DFP for 40 min, but tacrine-treated AChE retained 60% of its activity and bound only 0.2 mol of DFP per mol of subunit under similar conditions. The corresponding CD, at 348 nm, of the AChE-tacrine-DFP complex increased or decreased gradually, depending on the order of addition of tacrine and DFP, and reached an equilibrium value (80% of its original) after 2 days. The difference absorption spectrum of the AChE-tacrine-DFP complex was the same as that of the AChE-tacrine complex. These results suggest that the protective effect of tacrine may be due to steric hindrance at the esteratic site of the enzyme.  相似文献   

16.
3D-QSAR study of 20 (S)-camptothecin analogs   总被引:1,自引:0,他引:1  
AIM: To build up a quantitative structure-activity relationship (QSAR) model of 20 (S)-camptothecin (CPT) analogs for the prediction of the activity of new CPT analogs for drug design. METHODS: A training set of 43 structurally diverse CPT analogs which were inhibitors of topoisomerase I were used to construct a quantitative structure-activity relationship model with a comparative molecular field analysis (CoMFA). The QSAR model was optimized using partial least squares (PLS) analysis. A test set of 10 compounds was evaluated using the model. RESULTS: The CoMFA model was constructed successfully, and a good cross-validated correlation was obtained in which q(2) was 0.495. Then, the analysis of the non-cross-validated PLS model in which r(2) was 0.935 was built and permitted demonstrations of high predictability for the activities of the 10 CPT analogs in the test set selected in random. CONCLUSION: The CoMFA model indicated that bulky negative-charged group at position 9, 10 and 11 of CPT would increase activity, but excessively increasing bulky group at position 10 is adverse to inhibitory activity; substituents that occupy position 7 with the bulky positive group will enhance the inhibitive activity. The model can be used to design new CPT analogs and understand the mechanism of action.  相似文献   

17.
Acetylcholinesterase (AChE) is an important enzyme in the pathogenesis of Alzheimer’s disease (AD). Comparative quantitative structure-activity relationship (QSAR) analyses on some huprines inhibitors against AChE were carried out using comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), and hologram QSAR (HQSAR) methods. Three highly predictive QSAR models were constructed successfully based on the training set. The CoMFA, CoMSIA, and HQSAR models have values of r 2 = 0.988, q 2 = 0.757, ONC = 6; r 2 = 0.966, q 2 = 0.645, ONC = 5; and r 2 = 0.957, q 2 = 0.736, ONC = 6. The predictabilities were validated using an external test sets, and the predictive r 2 values obtained by the three models were 0.984, 0.973, and 0.783, respectively. The analysis was performed by combining the CoMFA and CoMSIA field distributions with the active sites of the AChE to further understand the vital interactions between huprines and the protease. On the basis of the QSAR study, 14 new potent molecules have been designed and six of them are predicted to be more active than the best active compound 24 described in the literature. The final QSAR models could be helpful in design and development of novel active AChE inhibitors.  相似文献   

18.
Effects of THA on ionic currents in myelinated axons of Xenopus laevis   总被引:1,自引:0,他引:1  
In voltage-clamp experiments with the myelinated nerve fibre of Xenopus laevis, 9-amino-1,2,3,4-tetrahydroacridine (THA) decreased both Na+ and K+ currents and shifted the steady state inactivation potential curve in a negative direction. The effects may be described as (a) a decrease of the permeability constant PNa, (b) a modified potential dependence of the inactivating system and (c) a decrease of PK. The Na+ system was affected more than the K+ system.  相似文献   

19.
New dual binding site acetylcholinesterase (AChE) inhibitors have been designed and synthesized as a new drug candidate for the treatment of Alzheimer’s disease (AD) through the binding to both catalytic and peripheral sites of the enzyme. Therefore, a series of thienopyridine analogs of tacrine were synthesized and investigated for their ability to inhibit the activity of AChE in comparison with tacrine. All the compounds were found to inhibit AChE activity, especially compounds 7b and 11a, which were found to be more potent than tacrine.  相似文献   

20.
The synthesis of a series of 9-amino-1,2,3,4-tetrahydroacridin-1-ols is reported. These compounds are related to 1,2,3,4-tetrahydro-9-acridinamine (THA, tacrine). They inhibit acetylcholinesterase in vitro and are active in a model that may be predictive of activity in Alzheimer's disease--the scopolamine-induced impairment of 24-h memory of a passive dark-avoidance paradigm in mice. Two compounds, (+/-)-9-amino-1,2,3,4-tetrahydroacridin-1-ol maleate (1a, HP-029) and (+/-)-9-(benzylamino)-1,2,3,4-tetrahydroacridin-1-ol maleate (1p, HP-128), were also active in reversing the deficit in 72-h retention of a one-trial dark-avoidance task in rats, induced by ibotenic acid lesions in the nucleus basalis magnocellularis. In addition, compound 1 p showed potent in vitro inhibition of the uptake of radiolabeled noradrenaline and dopamine (IC50 = 0.070 and 0.30 microM, respectively). Compounds 1a and 1p, which showed less acute toxicity in both rats and mice than THA, are in phase II and phase I clinical trials, respectively, for Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号