首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study of subtle changes in motor and cognitive function after exposure to MPTP might serve as a guide to the very earliest stages of Parkinson's disease. Studies in nonhuman primates and man exposed to MPTP who remained asymptomatic or recovered completely are reviewed. The question of the relationship between the degree and extent of damage to the nigrostriatal dopamine system and changes in motor and cognitive (behavioral) function is addressed. What guidance they provide in the study of subclinical or preclinical Parkinson's disease is discussed.  相似文献   

2.
Exposure to 1-methy1-4-pheny1-1,2,3,6-tetrahydropyridine (MPTP) can cause an acute chemical toxicity resulting in a parkinsonian state in humans and nonhuman primates. We wished to assess whether the toxicity from MPTP is associated with changes on magnetic resonance images of brain structures containing dopamine neuronal processes or with disrupture of the blood-brain barrier. Normal rhesus monkeys and monkeys at various times after being subjected to unilateral intracarotid injection of MPTP (0.4 mg/kg) were studied with magnetic resonance imaging using T1-and T2-weighted spin-echo and gradient-echo sequences. Disrupture of the blood-brain barrier was assessed also with magnetic resonance imaging after administration of gadolinium-diethylenetriamine pentaacetic acid. Parkinsonian symptoms contralateral to the infused carotid usually appeared within 1 day after MPTP exposure, reaching their peak severity by 7 days, when all monkeys showed clear clinical abnormalities. Magnetic resonance imaging changes developed in concomitance with the clinical signs and were characterized by increased signal intensity on T2-weighted images as well as decreased intensity on T1-weighted images of the ipsilateral caudate and putamen. T2 hyperintensity was also present just dorsal to the pars compacta of the substantia nigra, in the region of the proximal nigrostriatal tract. All magnetic resonance imaging changes in the next 2 weeks. There were no abnormalities at any time in the globus pallidus, nucleus accumbens, and other structures innervated by the mesocorticolimbic dopamine system. After MPTP exposure, there was no evidence of blood-brain barrier disrupture, suggesting that vasogenic edema was an unlikely factor in the production of the observed abnormalities. The signal intensity changes on magnetic resonance images are most probably asociated with cytotoxic edema caused by the acute MPTP-induced degeneration of nigrostriatal dopamine nerve terminals and axons. Follow-up by magnetic resonance imaging, to 3 years after MPTP infusion, failed to reveal any residual abnormalities.  相似文献   

3.
The effects of 3-acetylpyridine (3-AP) administration to rats on the mesotelencephalic dopamine system were assessed. A single 3-AP injection resulted in biochemical and immunohistochemical evidence of degeneration of the nigrostriatal dopamine system. Six weeks after 3-AP treatment decreases in both striatal dopamine content and the activity of the catecholamine biosynthetic enzyme tyrosine hydroxylase were observed. Immunohistochemical examination suggested a decreased density of striatal tyrosine hydroxylase-immunoreactive fibers and revealed the emergence of a distinctly patchy organization of the dopamine innervation to the dorsolateral striatum. While 3-AP administration resulted in biochemical and anatomical data consistent with the degeneration of nigrostriatal dopamine fibers, no significant changes in dopamine content or the density or pattern of tyrosine hydroxylase-immunoreactive fibers in the anteromedial prefrontal cortex or nucleus accumbens were seen. These data suggest that 3-AP administration may result in a relatively specific degeneration of the nigrostriatal dopamine system. Since 3-AP causes both a profound loss of the climbing fiber input to the cerebellum derived from the inferior olivary nucleus, and the degeneration of nigrostriatal dopamine neurons, 3-AP administration may provide a useful model of olivopontocerebellar atrophy-associated parkinsonism. Moreover, the differences in the neurotoxicity caused by 3-AP and that elicited by another pyridine which causes striatal dopamine depletion (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, MPTP) may offer important insights into the mechanisms of both species- and site-specific pyridine neurotoxins.  相似文献   

4.
The present studies were undertaken to determine if MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) treatment in mice alters catecholamine or serotonin systems of the brain in addition to reported effects on the dopaminergic nigrostriatal system. Male Swiss-Webster mice were injected with 30 mg/kg MPTP daily for three days. Treated and control animals were sacrificed 10 and 24 days after the last injection, and brains were prepared for serotonin immunocytochemistry and catecholamine histofluorescence. MPTP treatment resulted in a reduced number of neurons and a reduced intensity of the fluorescence in the remaining cell bodies of substantia nigra pars compacta. A reduced presence of catecholamine varicosities in the medullary raphe nuclei and the ventromedial reticular formation of the medulla was observed. Immunocytochemical studies revealed no alteration in the number of serotonin positive cell bodies in the dorsal and median raphe nuclei. We suggest that MPTP treatment selectively alters some non-nigrostriatal catecholamine systems of the brain stem in addition to its toxic effects on the dopaminergic nigrostriatal system, while leaving other non-nigrostriatal catecholamine systems intact.  相似文献   

5.
Presynaptic denervation is likely to play an important role in the pathophysiology of dyskinesias that develop after levodopa administration to patients with Parkinson's disease. In this study, the thresholds of nigrostriatal damage necessary for the occurrence of parkinsonism and levodopa-induced involuntary movements were compared in squirrel monkeys lesioned with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Animals treated with a regimen of MPTP that caused parkinsonism displayed > or =95% striatal dopamine depletion, 90% reduction of striatal dopamine uptake sites, and 70% nigral neuronal loss. Levodopa administration ameliorated the parkinsonian signs of these monkeys but also induced dyskinesias. A separate group of animals was treated with a milder MPTP regimen that caused 60%-70% striatal dopamine depletion, a 50% decrease in dopamine transporter, and 40% loss of dopaminergic nigral neurons. While these monkeys displayed no behavioral signs of parkinsonism, they all became dyskinetic after levodopa administration. The priming effect of levodopa, that is, the recurrence of dyskinesias in animals previously exposed to the drug, was compared in severely versus mildly lesioned monkeys. When severely injured parkinsonian animals underwent a second cycle of levodopa treatment, they immediately and consistently developed involuntary movements. In contrast, the recurrence of dyskinesias in primed monkeys with a partial nigrostriatal lesion required several levodopa administrations and remained relatively sporadic. The data indicate that moderate nigrostriatal damage which does not induce clinical parkinsonism predisposes to levodopa-induced dyskinesias. Once dyskinesias have been induced, the severity of denervation may enhance the sensitivity to subsequent levodopa exposures.  相似文献   

6.
Acute doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) elicited degenerative and apparently compensatory changes in the nigrostriatum of injected animals within 1 day of treatment. In the substantia nigra pars compacta (SNc), low-dose (20 mg/kg) administration elicited early degeneration of mitochondria in the absence of other effects. In the striatum, a low MPTP dose resulted in myelin unwinding, demyelination, cytoplasmic shrinkage, and disturbance of synaptic communication, as evinced by a profound reduction in synaptic vesicle production. High-dose (40 mg/kg) administration generated more drastic axonal degeneration leading to cell elimination in the striatum. At neither dose was mitochondrial disturbance evident in the striatum. Evidence is presented that darkened synaptic boutons, visible at this level of MPTP administration, were part of healthy enlarged axons with an elevated number of synaptic contacts. These spared neuronal processes, therefore, were hypothesized to compensate for the MPTP-induced death of dopaminergic neurons by adaptive structural modifications that would serve to enhance their functional capability.  相似文献   

7.
Sleep complaints are an early clinical symptom of neurodegenerative disorders. Patients with Parkinson's disease (PD) experience sleep disruption (SD). The objective of this study was to determine if preexisting, chronic SD leads to a greater loss of tyrosine hydroxylase (TH) within the striatum and the substantia nigra following chronic/progressive exposure with the neurotoxin, 1-methyl-2-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Male mice underwent chronic SD for 4 weeks, then injected with vehicle (VEH) or increasing doses of MPTP for 4 weeks. There was a significant decrease in the plasma corticosterone levels in the MPTP group, an increase in the SD group, and a return to the VEH levels in the SD+MPTP group. Protein expression levels for TH in the striatum (terminals) and substantia nigra pars compacta (dopamine [DA] cell counts) revealed up to a 78% and 38% decrease, respectively, in the MPTP and SD+MPTP groups compared to their relevant VEH and SD groups. DA transporter protein expression increased in the striatum in the MPTP versus VEH group and in the SN/midbrain between the SD+MPTP and the VEH group. There was a main effect of MPTP on various gait measures (e.g., braking) relative to the SD or VEH groups. In the SD+MPTP group, there were no differences compared to the VEH group. Thus, SD, prior to administration of MPTP, has effects on serum corticosterone and gait but more importantly does not potentiate greater loss of TH within the nigrostriatal pathway compared to the MPTP group, suggesting that in PD patients with SD, there is no exacerbation of the DA cell loss.  相似文献   

8.
Cortico-limbic brain activity associated with anger may be susceptible to nicotine and, thus, may contribute to smoking initiation and nicotine addiction. The purpose of the study was to identify the brain regions that are most reactive to nicotine and show the greatest association with anger task performance. Twenty adult nonsmokers (9 women, 11 men) participated in two laboratory sessions to assess brain metabolism with fluoro deoxy-glucose Positron Emission Topography (FDG-PET) in response to nicotine and placebo patches during an anger provocation task. Outcome variables for the anger provocation task were reaction time, intensity and length of retaliation. Reaction time was associated with nicotine-induced changes in the left thalamus. Length of retaliation was associated with a functionally linked set of cortical and subcortical structures such as right frontal lobe, right anterior cingulate (BA 24), right uncus, left parietal lobe, left BA 11, left cingulate, left BA 25, left amygdala, left BA 30, left BA 38 and BA 9. These findings reveal the underlying brain circuitry targeted by nicotine during anger provocation.  相似文献   

9.
Levodopa remains the most effective treatment for Parkinson's disease (PD). However, the drug is complicated by a wide range of adverse effects, most notably motor fluctuations and dyskinesias. Long-acting dopamine agonists are associated with a reduced incidence of these complications and modern surgical approaches and pharmacological methods of providing more continuous dopaminergic stimulation have a substantial ameliorative effect on these problems. Despite these advances, disease progression remains unaffected. For this reason there has been much enthusiasm for cellular therapies designed to replace degenerating nigrostriatal dopaminergic neurons. However, recent fetal transplant trials have failed to show expected benefit and have been complicated by medication dyskinesias". Even if successful, such treatment may be predestined to provide no better outcome than available treatments given current medical and surgical experience that emphasises the increasingly critical role of "non-dopaminergic" symptoms to quality of life in late-stage PD. Knowledge of the widespread, multisystem nature of the neurodegeneration that accounts for these problems suggests that restoration of the nigrostriatal dopamine system should not be the ultimate goal of future research.  相似文献   

10.
The central nervous system is known to have limited regenerative capacity. Not only does this halt the human body's reparative processes after central nervous system lesions, but it also impedes the establishment of effective and safe therapeutic options for such patients. Despite the high prevalence of stroke and spinal cord injury in the general population, these conditions remain incurable and place a heavy burden on patients' families and on society more broadly. Neuroregeneration and neural engineering are diverse biomedical fields that attempt reparative treatments, utilizing stem cells-based strategies, biologically active molecules, nanotechnology, exosomes and highly tunable biodegradable systems(e.g., certain hydrogels). Although there are studies demonstrating promising preclinical results, safe clinical translation has not yet been accomplished. A key gap in clinical translation is the absence of an ideal animal or ex vivo model that can perfectly simulate the human microenvironment, and also correspond to all the complex pathophysiological and neuroanatomical factors that affect functional outcomes in humans after central nervous system injury. Such an ideal model does not currently exist, but it seems that the nonhuman primate model is uniquely qualified for this role, given its close resemblance to humans. This review considers some regenerative therapies for central nervous system repair that hold promise for future clinical translation. In addition, it attempts to uncover some of the main reasons why clinical translation might fail without the implementation of nonhuman primate models in the research pipeline.  相似文献   

11.
The pathophysiology of parkinsonian tremor remains a matter of debate with two opposing hypotheses proposing a peripheral and a central origin, respectively. A central origin of tremor could arise either from a rhythmic activity of the internal segment of the globus pallidus (GPi) or from a structure such as the thalamus, outside the basal ganglia. In this study, single-unit recordings were performed in three 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkeys within the GPi and within three territories of the motor thalamus (delimited by their afferent inputs from the GPi, the substantia nigra and the cerebellum, respectively). For each recorded neuron, we compared the variations in firing rate and pattern in tremor and no tremor periods. Tremor either occurred spontaneously or was induced by external stimulation. When the animals entered into a tremor period we observed: (i) an increase in the mean firing rate in about half of the recorded neurons of the motor thalamus; and (ii), a change from an irregular to a rhythmic discharge within the range of tremor frequency (5-7 Hz) in about 10% of the recorded neurons of the motor thalamus (pallidal and cerebellar territories) and the GPi. Most of the thalamic neurons that exhibited a rhythmic discharge during tremor were found to be sensitive to external stimulation. Because the changes in firing rate occurred predominantly in the motor thalamus and not in the GPi, and because a fast rhythmic discharge of 10-15 Hz was frequently observed in the GPi and not in the motor thalamus, we conclude that thalamic activity is not a simple reproduction of basal ganglia output. Moreover, we suggest that thalamic processing of basal ganglia outputs could participate in the genesis of tremor, and that this thalamic processing could be influenced by sensory inputs and/or changes in attentional level elicited by external stimulation.  相似文献   

12.
We administered 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to adult, male cats to model Parkinson's disease (PD), and utilized proton magnetic resonance imaging (MRI) and spectroscopy (MRS) at a field strength of 1.5 T to identify metabolic degenerative changes in the striatum in vivo. Neurologic status and somatosensory-evoked potentials in vivo, as well as postmortem striatal histopathological and immunohistochemical parameters, were examined. Nine cats were equally divided into three groups and treated daily for 10 days as follows: saline, MPTP, and pargyline (a monoamine oxidase inhibitor) plus MPTP. The MPTP-treated cats displayed bradykinesia, head tremor, and reduced oculovestibular reflex activity. MRI showed a diffuse increase of the T2-weighted signal in the striatum of two MPTP-treated cats. Analysis of the MRS spectra indicated significantly lower N-acetylaspartate/creatine (CR) and glutamine-glutamate complex/CR ratios than the control baseline. Two MPTP-treated cats had low choline-containing compounds/CR ratio, whereas a lactate peak was present in all MPTP-treated cats. In the striatum of the MPTP-treated cats, there was a significant decline of tyrosine hydroxylase immunoreactivity and histological evidence for a diffuse cytotoxic reaction. Pretreatment with pargyline attenuated the MPTP-induced clinical signs, MRI and MRS changes, and the histopathological and immunoreactivity alterations. We conclude that proton MRI/MRS is a sensitive, noninvasive measure of neural toxicity and biochemical alteration of the striatum in a feline model of PD.  相似文献   

13.
Dynorphins, endogenous neuropeptides found in striatonigral neurons, have been observed to exhibit dopamine-inhibitory actions and under some circumstances possess intrinsic neurotoxic activity. To test the hypothesis that dynorphin suppression mitigates effects of aging on the striatal dopaminergic system, HPLC quantitation of dopamine and related amines was performed on striatal homogenates of wild-type (WT) mice and mice lacking the prodynorphin (Pdyn) gene at varying ages. Pdyn knockout (KO) mice at 10 and 20 months show significant elevations in striatal dopamine compared to 3-month mice. Differences in tyrosine hydroxylase (TH) immunoreactivity could not account for these findings, but phosphorylation of TH at Ser40, but not Ser31, was enhanced in aged Pdyn KO mice. Systemic administration of MPTP produced significant dopamine depletion in an age-dependent manner, but Pdyn deletion conferred no protection against MPTP-induced dopamine loss, arguing against a mechanism by which Pdyn deletion enhances dopaminergic neuron survival. The above findings demonstrate an age-dependent inhibitory effect of dynorphins on striatal dopamine synthesis via modulation of TH activity.  相似文献   

14.
15.
Parkinson's disease (PD) is diagnosed when striatal dopamine (DA) loss exceeds a certain threshold and the cardinal motor features become apparent. The presymptomatic compensatory mechanisms underlying the lack of motor manifestations despite progressive striatal depletion are not well understood. Most animal models of PD involve the induction of a severe dopaminergic deficit in an acute manner, which departs from the typical, chronic evolution of PD in humans. We have used 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administered to monkeys via a slow intoxication protocol to produce a more gradual development of nigral lesion. Twelve control and 38 MPTP-intoxicated monkeys were divided into four groups. The latter included monkeys who were always asymptomatic, monkeys who recovered after showing mild parkinsonian signs, and monkeys with stable, moderate and severe parkinsonism. We found a close correlation between cell loss in the substantia nigra pars compacta (SNc) and striatal dopaminergic depletion and the four motor states. There was an overall negative correlation between the degree of parkinsonism (Kurlan scale) and in vivo PET ((18)F-DOPA K(i) and (11)C-DTBZ binding potential), as well as with TH-immunoreactive cell counts in SNc, striatal dopaminergic markers (TH, DAT and VMAT2) and striatal DA concentration. This intoxication protocol permits to establish a critical threshold of SNc cell loss and dopaminergic innervation distinguishing between the asymptomatic and symptomatic parkinsonian stages. Compensatory changes in nigrostriatal dopaminergic activity occurred in the recovered and parkinsonian monkeys when DA depletion was at least 88% of control, and accordingly may be considered too late to explain compensatory mechanisms in the early asymptomatic period. Our findings suggest the need for further exploration of the role of non-striatal mechanisms in PD prior to the development of motor features.  相似文献   

16.
Investigations using models of neurologic disease frequently involve quantifying animal motor activity. We developed a simple method for measuring motor activity using a computer-based video system (the Webcam system) consisting of an inexpensive video camera connected to a personal computer running customized software. Images of the animals are captured at half-second intervals and movement is quantified as the number of pixel changes between consecutive images. The Webcam system allows measurement of motor activity of the animals in their home cages, without devices affixed to their bodies. Webcam quantification of movement was validated by correlation with measures simultaneously obtained by two other methods: measurement of locomotion by interruption of infrared beams; and measurement of general motor activity using portable accelerometers. In untreated squirrel monkeys, correlations of Webcam and locomotor activity exceeded 0.79, and correlations with general activity counts exceeded 0.65. Webcam activity decreased after the monkeys were rendered parkinsonian by treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), but the correlations with the other measures of motor activity were maintained. Webcam activity also correlated with clinical ratings of parkinsonism. These results indicate that the Webcam system is reliable under both untreated and experimental conditions and is an excellent method for quantifying motor activity in animals.  相似文献   

17.
Dopamine is actively and specifically eliminated from the extracellular space by astrocytes and neurones through dopamine transporters (DAT) and, afterwards, either recycled into vesicles or metabolised. The availability of dopamine reflects a critical point in the regulation of dopamine activity within the nigrostriatal circuit under normal and pathological conditions. From previous studies, we know that oestrogen regulates the efficacy of dopaminergic neurones at the synaptic level and improves dopamine function during Parkinson's disease. Accordingly, we investigated the contribution of local astroglial for extracellular dopamine elimination and the impact of oestrogen on DAT expression and activity. Using neonatal striatal and midbrain astrocyte cultures, we could demonstrate that astrocytes possess a specific dopamine uptake machinery and express DAT at considerable levels. The application of 17beta-oestradiol decreased the expression of DAT by 80% and 60% in midbrain and striatal astroglia cultures, respectively. The unspecific dopamine transporters (OCT3, VMAT2) were not detected in astroglia. Functionally, oestrogen exposure inhibited the clearance of dopamine from the extracellular space by 45% and 35% compared to controls in midbrain and striatal astroglia, respectively. The effect on DAT expression and activity was completely antagonised by the oestrogen receptor antagonist ICI 182 780. In conclusion, our data suggest that the positive reinforcement of dopamine transmission under physiological conditions and the alleviative impact of oestrogen under pathological conditions may be the result of a decline in DAT expression and therefore delayed dopamine uptake by astroglia.  相似文献   

18.
We used the reversibly binding D2 dopamine receptor radioligand [123I]IBZM (iodobenzamide) to test whether the endogenous neurotransmitter dopamine competes in vivo for radiotracer binding measured with single photon emission computed tomography (SPECT). In a series of nonhuman primate experiments (n = 27), the effects of temperature, amphetamine, haloperidol, and reserpine on brain uptake of [123I]IBZM were measured. Specific brain uptake of [123I]IBZM reached a peak by 100 min postinjection of radioligand and demonstrated a gradual, apparent "steady-state" washout over the next 2 hr. Brain uptake was temperature dependent, with rates of washout of specifically bound radioligand greater under normothermic conditions (26%/hr: core body temperature 35-37 degrees C) than under conditions of controlled hypothermia (11%/hr; 32-34 degrees C). Given the greater retention of radioactivity, low-temperature conditions were used in all other experiments. Administration of haloperidol (0.02 mg/kg IV) during the period of apparent steady state resulted in a dramatic increase in washout (60%/hr; p less than 0.0001), consistent with its potent D2 receptor antagonist properties. d-Amphetamine (1.0 mg/kg IV), which has negligible affinity for the D2 receptor but mediates the release of endogenous stores of dopamine, also enhanced washout (34%/hr; p less than 0.0005). Reserpine pretreatment at doses (1.0 mg/kg) sufficient to cause greater than 90% depletion of striatal dopamine levels blocked this amphetamine-enhanced washout (10%/hr; p less than 0.05). Reserpine did not block the increased washout induced by the direct-acting D2 receptor antagonist haloperidol. These results are consistent with the hypothesis that endogenous dopamine may effectively compete for radioligand binding in vivo in neuroreceptor imaging studies using PET and SPECT.  相似文献   

19.
Procedures to lesion dopamine (DA) neurons innervating the rat caudate-putamen (CP) in a partial, graded fashion are described in this study. The goal is to provide a lesion model that supports intra-animal comparisons of voltammetric recordings used to investigate compensatory adaptation of DA neurotransmission. Lesions exploited the topography of mesostriatal DA neurons, microinjections of the neurotoxin 6-hydroxydopamine (6-OHDA) into the medial and lateral edges of the ventral mesencephalon containing DA cell bodies and microdissection of the CP into six regions. Analysis of tissue DA content in these regions by HPLC-EC demonstrated that 6-OHDA injected into the lateral substantia nigra results in a significantly greater loss of DA in lateral versus medial regions of the CP. The direction of the graded loss of DA was reversed (i.e. a medial to lateral lesion gradient) by the injection of 6-OHDA into the ventral tegmental area near the medial SN. Extracellular concentrations of electrically evoked DA could be measured across the mediolateral axis of the CP in a single animal using the technique of in vivo voltammetry. More importantly, graded decreases in the amplitude of evoked DA levels generally followed the direction of the tissue DA gradient in lesioned animals. These results suggest that the graded loss of DA terminals in the CP, coupled to a spatially and temporally resolved technique for monitoring extracellular DA, is a viable tool for investigating compensatory adaptation in the mesostriatal DA system.  相似文献   

20.
Mild-tail-pinch induces a syndrome of eating, gnawing and licking behavior in rats in the presence of food. Detailed behavioral, pharmacological and biochemical analyses of this phenomenon resulted in the following conclusions. (1) This is an unusually reliable phenomenon, demonstrable in each of more than 200 animals tested. (2) Eating is by far the predominant response to tail-pinch. (3) Tail-pinch behavior is critically dependent on the nigrostriatal dopamine system. (4) There are striking pharmacological parallels between tail-pinch behavior and schizophrenia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号