首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypersensitivity of the flexor reflex pathways to input from force-sensitive muscle afferents may contribute to the prevalence and severity of muscle spasms in patients with spinal cord injury (SCI). In this study, we triggered flexor reflexes with constant velocity knee movements in 15 subjects with SCI. Ramp and hold knee extension perturbations were imposed on one leg while the hip and ankle were held in an isometric position using an instrumented leg brace. Knee, ankle and hip torque responses and electromyograms from six muscles of the leg were recorded following controlled knee extension at four different velocities. Tests were conducted with the hip in both flexed and extended positions. During the movement into knee extension, a velocity-dependent stretch reflex, represented by a progressively increasing knee flexion torque, was observed. In addition, another type of reflex that resembled a flexor reflex (flexion of the hip and ankle) was also triggered by the imposed knee extension. The magnitude of the ankle dorsiflexion torque responses was significantly correlated to the stretch reflex torque at the knee in 9 of the 15 subjects. We concluded that stretch reflexes initiate a muscle contraction that then can contribute to a flexor reflex response, possibly through muscle group III/IV afferent pathways. These results suggest that spasticity in SCI consists of a myriad of complex reflex responses that extend beyond stretch reflexes.  相似文献   

2.
Age-related differences in postural control in response to a relatively large deceleration resulting from postural disturbance were investigated in eight normal elderly men (age range 67–72 years) and eight young men as controls (age range 19–22 years) using a moving platform. Data were obtained for the hip, knee and ankle angles, position of the centre of foot pressure (CFP), head acceleration, and muscle activity of the leg muscles. The elderly subjects had slower and larger ankle and hip joint movements, and CFP displacement in response to the disturbance compared to the young controls. The elderly subjects also had a delayed occurrence, and greater magnitude of peak acceleration of head rotation than did the young subjects. For the elderly subjects, the CFP was closely related to angular changes in the hip joint movement, but not to those of the ankle and knee joint movements. For the young subjects, on the other hand, the CFP was significantly correlated with angular change in the ankle joint. Co-contraction of the tibialis anterior and gastrocnemius muscles was observed in the elderly subjects. The results indicated that a movement pattern for postural correction in the elderly adults was different from that of the young adults. The elderly relied more on hip movements while the young controls relied on ankle movements to control postural stability. Electronic Publication  相似文献   

3.
4.
This study tested the hypothesis that the modulation of cutaneous reflexes during human cycling would be dependent on muscle biomechanical function and phase of leg movement. The coupling between neuromuscular (electromyographic, EMG), kinetic and kinematic responses to brief innocuous (75% of the pain threshold PnT) and noxious (125% PnT) sural nerve stimulation were studied. Stimuli were delivered pseudorandomly at eight equidistant (45°) positions of the crank cycle. Peak ipsilateral middle latency EMG reflex responses were calculated between 70 and 130 ms post stimulus in Biceps Femoris (BF), Rectus Femoris (RF), Tibialis Anterior (TA) and Soleus (SOL). Peak torque, knee and ankle joint angle changes were calculated between 140 and 220 ms post stimulus to quantify net kinetic and kinematic reflex modulation. Reflex responses were predominately suppressive during early activation of all muscles and facilitatory during BF and TA muscle inactivation. EMG reflex responses in monoarticular lower leg muscles TA and SOL were well correlated with ankle angle in dorsi/plantaflexion, whereas the correlation between reflex modulation in biarticular upper leg muscles (BF and RF) and knee angle changes in flexion/extension was weaker. Stimulation provoked significant ankle eversion over the whole crank cycle for both stimulus intensities, which was correlated with TA and BF EMG reflex responses. Torque modulation followed EMG and kinematic changes in a movement phase-dependent manner. Reflex magnitude was stimulation intensity-dependent. Supplementary nociceptive activation may contribute for this increase. We conclude that sural nerve stimulation during human cycling evokes distinct reflex responses in muscles operating around the knee (BF and RF) and the ankle (TA and SOL). These reflexes are modulated in a phase-dependent manner depending on muscle biomechanical function to generate energy for limb and crank propulsion during a specific region in the cycle. This modulation contributed to a specific adaptation of joint motion and force production in order to maintain task performance.  相似文献   

5.
The aim of this study was to investigate the effect of single joint displacement on the pattern of leg muscle electromyographic (EMG) activity during locomotion. For the first time, unilateral rotational hip or knee joint displacements were applied by a driven orthotic device at three phases of swing during locomotion on a treadmill. The response pattern of bilateral leg muscle activation with respect to the timing and selection of muscles was almost identical for displacements of upper (hip joint) or lower (knee joint) leg. The leg muscle EMG responses were much stronger when the displacement was directed against the physiological movement trajectory, compared with when the displacement was reinforcing, especially during mid swing. It is suggested that these response patterns are designed to restore physiological movement trajectory rather than to correct a single joint position. Displacements released at initial or terminal swing, assisting or resisting the physiological movement trajectory, were followed by similar and rather unspecific response patterns. This was interpreted as being directed to stabilise body equilibrium.  相似文献   

6.
The purpose of this study was to examine the reflex effects of electrical stimulation applied to the thigh using skin electrodes, targeting the sensory fibers of the rectus femoris and sartorius, in people with spinal cord injury (SCI). Thirteen individuals with SCI were recruited to participate in experiments using prolonged electrical stimuli on the right medial thigh over the regions of the sartorius and rectus femoris muscles. Three stimuli, spaced 20 s apart, were applied at 30 Hz for 1 s at four different intensities (15–60 mA) while subjects rested in a seated position. Isometric joint torques of the hip, knee and ankle, and electromyograms (EMGs) from six muscles of the leg were recorded during the stimulation. Early in the stimulation, a flexion response was observed at the hip and ankle, analogous to a flexor reflex; however, this response was usually followed by a “rebound” response consisting of hip extension, knee flexion and ankle plantarflexion, occurring in 10/13 subjects. Stimuli applied in a more lateral (mid thigh) electrode position (i.e. over the rectus femoris) were less effective in producing the response than medial placement, despite vigorous quadriceps activation. This complex reflex response is consistent with activation of a coordinating spinal circuit that could play a role in motor function. The reversal of the reflex pattern emphasizes the potential connection between skin/muscle afferents of the thigh, possibly including sartorius muscle afferents and locomotor reflex centers. This knowledge may be helpful in identifying rehabilitation strategies for enhancing gait training in human SCI.  相似文献   

7.
Imposed static hip stretches substantially modulate the soleus H-reflex in people with an intact or injured spinal cord while stretch of the hip flexors affect the walking pattern in lower vertebrates and humans. The aim of this study was to assess the effects of dynamic hip stretches on the soleus H-reflex in supine spinal cord injured (SCI) subjects. Sinusoidal movements were imposed on the right hip joint at 0.2 Hz by a Biodex system. H-reflexes from the soleus muscle were recorded as the leg moved in flexion or extension. Stimuli were sent only once in every hip movement cycle that each lasted 5 s. Torque responses were recorded at the hip, knee, and ankle joints. A hip phase-dependent soleus H-reflex modulation was present in all subjects. The reflex was facilitated during hip extension and suppressed during hip flexion. There were no significant differences in pre- or post-stimulus soleus background activity between the two conditions. Oscillatory responses were present as the hip was maximally flexed. Sinusoidal hip stretches modulated the soleus H-reflex in a manner similar to that previously observed following static hip stretches. The amount of reflex facilitation depended on the angle of hip extension. Further research is needed on the afferent control of spinal reflex pathways in health and disease in order to better understand the neural control of movement in humans. This will aid in the development of rehabilitation strategies to restore motor function in these patients.  相似文献   

8.
Neuromuscular reflexes contribute to knee stiffness during valgus loading   总被引:1,自引:0,他引:1  
We have previously shown that abduction angular perturbations applied to the knee consistently elicit reflex responses in knee joint musculature. Although a stabilizing role for such reflexes is widely proposed, there are as of yet no studies quantifying the contribution of these reflex responses to joint stiffness. In this study, we estimate the mechanical contributions of muscle contractions elicited by mechanical excitation of periarticular tissue receptors to medial-lateral knee joint stiffness. We hypothesize that these reflex muscle contractions will significantly increase knee joint stiffness in the adduction/abduction direction and enhance the overall stability of the knee. To assess medial-lateral joint stiffness, we applied an abducting positional deflection to the fully extended knee using a servomotor and recorded the torque response using a six degree-of-freedom load-cell. EMG activity was also recorded in both relaxed and preactivated quadriceps and hamstrings muscles with surface electrodes. A simple, linear, second-order, delayed model was used to describe the knee joint dynamics in the medial/lateral direction. Our data indicate that excitation of reflexes from periarticular tissue afferents results in a significant increase of the joint's adduction-abduction stiffness. Similar to muscle stretch reflex action, which is modulated with background activation, these reflexes also show dependence on muscle activation. The potential significance of this reflex stiffness during functional tasks was also discussed. We conclude that reflex activation of knee muscles is sufficient to enhance joint stabilization in the adduction/abduction direction, where knee medial-lateral loading arises frequently during many activities.  相似文献   

9.
Long-latency electromyographic (EMG) responses can be evoked in the first dorsal interosseous muscle (FDI) by unexpected slips of an object (skin stretch) held between the index and thumb, or by forcible adduction of the metacarpophalangeal joint (muscle stretch). The former type of response is due to stimulation of tactile afferents in the skin of the digits, whereas the latter also activates muscle receptors. Previous studies have provided good evidence that long-latency reflex responses to stretch of distal muscles involve activity in a transcortical reflex pathway. The present experiments examined whether cutaneous reflexes also utilise a transcortical route. Transcranial magnetic or electrical stimuli were given over the motor cortex to evoke EMG activity during the period of the long-latency reflex response. When evoked by muscle stretch the responses to magnetic stimulation were facilitated more than those to electric stimulation. In contrast, facilitation was equal during the long-latency reflex elicited by cutaneous stimulation. Because of the different ways in which electrical and magnetic stimuli are believed to activate the motor cortex, we interpret these results to mean that the long-latency response to skin stretch is not mediated by a transcortical mechanism in the majority of subjects, whereas that following muscle stretch is. However, these are average data. In a few individual subjects, the opposite results were obtained. We suggest that there may be differences between subjects in the transcortical contribution to long-latency reflex responses. The implication is that, under normal circumstances, several pathways may contribute to these responses. If so, the relative roles of the pathways may change during different tasks, and in pathological states lesions in one system may well be accompanied by compensatory changes in other systems.  相似文献   

10.
The classical stretch shortening cycle (SSC) describes sagittal joint flexion–extensions in motions like running or hopping. However, lateral movements are integral components of team sports and are associated with frontal plane joint displacements. The purpose of this study is to identify neuromuscular and kinematical mechanisms determining motor control and performance of reactive laterally conducted SSCs. Lateral jumps were performed from four distances in order to investigate the influence of lateral stretch loads on the lower extremity. Electromyographic (EMG) data of nine lower extremity muscles were collected. Foot, ankle, knee, and hip kinematics were recorded by 3-D motion analysis. High stretch loads were characterized by a greater foot exorotation during the initial phase of contact. In the sagittal plane knee and hip joint, displacements increased, whereas in the frontal plane only the hip joint displacement was significantly raised. In particular, frontal peak joint moments increased with stretch load. Thigh muscles’ mean pre-activity amplitude was enhanced. It was possible to detect stretch reflexes in the thigh muscles, whereas in particular the short-latency reflex (SLR) was stretch load-dependently modulated. The results of the present study suggest that the foot exorotation seems to play a decisive role in the movement control of lateral jumps. The association between exorotation and increased sagittal joint displacements may be seen as a compensation strategy to shift load from the frontal to the sagittal plane. Lateral load compensation seems to strongly depend on upper leg’s kinematic and neuromuscular adjustments, rather than on the ankle joint complex.  相似文献   

11.
The rapid decrease in firing of load-sensitive group Ib muscle afferents during unloading may be particularly important in triggering the swing phase of gait. However, it still remains unclear whether load-sensitive muscle afferents modulate reflex activity in human spinal cord injury (SCI), as suggested by studies in the cat. The right hip of 12 individuals with chronic SCI was subjected to ramp (60 degrees /s) and hold (10 s) movements over a range from 40 degrees flexion to 0-10 degrees extension using a custom servomotor system. An ankle dorsiflexion load was imposed and released after the hip reached a targeted position using a custom-designed pneumatic motor system. Isometric joint torques of the hip and knee, reaction torque of the ankle, and surface electromyograms (EMGs) from eight muscles of the leg were recorded following the imposed hip movement and ankle load release. Reflexes, characterized by hip flexion torque, knee extension, and coactivation of ankle flexors and extensors, were triggered by ankle load release when the hip was in an extended position. The ankle load release was observed to enhance the reflexes triggered by hip extension itself, suggesting that ankle load afferents play an important role in spastic reflexes in human SCI and that the reflex pathways associated with ankle load afferents have important implications in the spinal reflex regulation of human movement. Such muscle behaviors emphasize the role of ankle load afferents and hip proprioceptors on locomotion. This knowledge may be especially helpful in the treatment of spasms and in identifying rehabilitation strategies for producing functional movements in human SCI.  相似文献   

12.
It is now well recognized that muscle activity can be induced even in the paralyzed lower limb muscles of persons with spinal cord injury (SCI) by imposing locomotion-like movements on both of their legs. Although the significant role of the afferent input related to hip joint movement and body load has been emphasized considerably in previous studies, the contribution of the "alternate" leg movement pattern has not been fully investigated. This study was designed to investigate to what extent the alternate leg movement influenced this "locomotor-like" muscle activity. The knee-locked leg swing movement was imposed on 10 complete SCI subjects using a gait training apparatus. The following three different experimental conditions were adopted: 1) bilateral alternate leg movement, 2) unilateral leg movement, and 3) bilateral synchronous (in-phase) leg movement. In all experimental conditions, the passive leg movement induced EMG activity in the soleus and medial head of the gastrocnemius muscles in all SCI subjects and in the biceps femoris muscle in 8 of 10 SCI subjects. On the other hand, the EMG activity was not observed in the tibialis anterior and rectus femoris muscles. The EMG level of these activated muscles, as quantified by integrating the rectified EMG activity recorded from the right leg, was significantly larger for bilateral alternate leg movement than for unilateral and bilateral synchronous movements, although the right hip and ankle joint movements were identical in all experimental conditions. In addition, the difference in the pattern of the load applied to the leg among conditions was unable to explain the enhancement of EMG activity in the bilateral alternate leg movement condition. These results suggest that the sensory information generated by alternate leg movements plays a substantial role in amplifying the induced locomotor-like muscle activity in the lower limbs.  相似文献   

13.
Reflex responses to unexpected stretches are well documented for selected muscles in both animal and human. Moreover, investigations of their possible functional significance have revealed that stretch reflexes can contribute substantially to the overall stiffness of a joint. In the lower extremity only the muscles spanning the human ankle joint have been investigated in the past. This study implemented a unique hydraulic actuator to study the contributions of the knee extensor stretch reflex to the overall knee joint torque. The quadriceps muscles were stretched at various background torques, produced either voluntarily or by electrical stimulation, and thus the purely reflex mediated torque could be calculated. The stretch had a velocity of 67°/s and an amplitude of 20°. A reflex response as measured by electromyography (EMG) was observed in all knee extensors at latencies of 26 – 36 ms. Both phasic and tonic EMG stretch responses increased with increasing background torques. Lines of best fit produced correlation coefficients of 0.59 – 0.78. This study is the first to examine the reflex contribution of the knee extensors to the total torque at background torques of 0 – 90% MVC. The contribution of the reflex mediated torque is initially low and peaked at background torques of 20 – 40% MVC. In terms of the total torque the reflex contributed 16 – 52% across all levels of background torque. It is concluded that during medium background torque levels such as those obtained during walking, the stretch reflex of the quadriceps muscle group contributes substantially to the total torque around the knee joint.  相似文献   

14.
Individuals with hemiparetic stroke often exhibit an abnormal coupling between the frontal plane of the hip and saggital plane of the knee during gait. The purpose of this study was to determine if stretch sensitive reflexes, which are known to be altered following stroke, exhibit similar coupling between the muscles of the hip and knee in the post-stroke population. Eighteen subjects were recruited for this study including ten with hemiparesis resulting from stroke and eight unimpaired, age-matched controls. A servomotor was used to apply ramp and hold perturbations to both the hip and knee joints in separate sessions and electromyographic activity was recorded in eight muscles of the lower limb. Hip abduction perturbations elicited abnormal activation in rectus femoris (RF) in seven of ten stroke subjects with amplitudes ranging from 3.2 to 12.5% of the maximum voluntary contraction (MVC). Only two of eight control subjects exhibited any activity in RF and these responses were only 2.1 and 2.7% of MVC. To determine if the responses in the stroke group were a result of muscle stretch, a musculoskeletal model was used to simulate the experimental abduction perturbations and estimate muscle length changes. The simulation revealed that RF should be shortened by the perturbations and this suggests that the response was not likely due to direct stretch. Moreover, knee flexion perturbations elicited responses in the hip adductors (AL) with a mean amplitude of 5.1 ± 3.8% of MVC across all stroke subjects while no significant responses were recorded in controls. The presence of a reciprocal, reflex-mediated coupling between RF and AL following stroke suggests that changes in the excitability of spinal networks may contribute to the development of abnormal inter-joint coordination patterns observed during hemiparetic gait.  相似文献   

15.
The purpose of this investigation was to investigate whether reduction in impulses arising from stretch of the quadriceps by restricting rapid knee flexion in early swing would affect inhibition of the H-reflex during swing. The contribution of afferent input arising from knee angular velocity to phase-dependent modulation of short-latency responses in the soleus was studied by simultaneously measuring joint velocity and soleus H-reflex responses at midstance and midswing phases of treadmill walking in 15 normal subjects. Stimulus strength was varied so that both maximal M and H waves were identified in each subject at midswing and midstance with the knee unrestricted (UK) and with knee movement restricted (RK), using a full leg bivalved cast to immobilize the knee joint. All subjects exhibited short-latency reflex responses in the soleus muscle. The H/M ratio at midswing was significantly reduced compared with midstance under both UK and RK walking conditions (P < 0.0001). When compared with UK walking, knee joint angular velocity during RK walking was significantly reduced at midswing (P < 0.001) and midstance (P < 0.005) compared with UK. There were, however, no significant differences in H/M ratios at midswing and midstance between UK and RK walking tests. Inhibition of the H-reflex in the soleus muscle during swing was not affected by significant reduction in knee angular velocity. These results indicate that the sensory input from changes in angular velocity at the knee does not lay the inhibitory foundation of phase-related reflex modulation in the ankle extensors during walking as suggested by Brooke and colleagues.  相似文献   

16.
A test device is developed to measure ankle joint compliance and muscle activity when the ankle is subjected to perturbations in angular position (or torque) from bias positions achieved volitionally or via electrical stimulation. The ankle measurement system uses a pivoting footplate and is operable with the subject sitting or supine. A companion platform for the knee is developed that uses a rotary arm and attached leg brace and is operable with the subject’s leg in the horizontal or vertical plane. The knee fixture’s pivoting arm can slide to account for the cam-like movement of the knee during rotation. The devices use similar hardware and share common instrumentation and control. Precise torque or position perturbations are delivered by a computer-controlled torque motor to the ankle or knee. Angular displacement, torque, acceleration, knee fixture moment arm and electromyographic data are collected on analogue tape and simultaneously digitised and stored. A special stimulator/recording amplifier permits the recording of electromyographic signals from the stimulated muscle. Experimental data indicate that the ankle and knee devices, operated horizontally, are purely inertial systems. Sample ankle and knee joint responses to perturbations are presented.  相似文献   

17.
Reflex pathways connect all four limbs in humans. Presently, we tested the hypothesis that reflexes also link sensory receptors in the lower leg with muscles of the lower back (erector spinae; ES). Taps were applied to the right Achilles’ tendon and electromyographic activity was recorded from the right soleus and bilaterally from ES. Reflexes were compared between sitting and standing and between standing with the eyes open versus closed. Reflexes were evoked bilaterally in ES and consisted of an early latency excitation, a medium latency inhibition, and a longer latency excitation. During sitting but not standing, the early excitation was larger in the ES muscle ipsilateral to the stimulation (iES) than in the contralateral ES (cES). During standing but not sitting, the longer latency excitation in cES was larger than in iES. This response in cES was also larger during standing compared to sitting. Responses were not significantly different between the eyes open and eyes closed conditions. Taps applied to the lateral calcaneus (heel taps) evoked responses in ES that were not significantly different in amplitude or latency than those evoked by tendon taps, despite a 75–94% reduction in the amplitude of the soleus stretch reflex evoked by the heel taps. Electrical stimulation of the sural nerve, a purely cutaneous nerve at the ankle, evoked ES reflexes that were not significantly different in amplitude but had significantly longer latencies than those evoked by the tendon and heel taps. These results support the hypothesis that reflex pathways connect receptors in the lower leg with muscles of the lower back and show that that the amplitude of these reflexes is modulated by task. Responses evoked by stimulation of the sural nerve establish that reflex pathways connect the ES muscles with cutaneous receptors of the foot. In contrast, the large volley in muscle spindle afferents induced by the tendon taps compared to the heel taps did not alter the ES responses, suggesting that the reflex connection between triceps surae muscle spindles and the ES muscles may be relatively weak. These heteronymous reflexes may play a role in stabilizing the trunk for maintaining posture and balance.  相似文献   

18.
The purpose of this study was to investigate the effects of hip proprioceptors on soleus stretch reflex excitability in standing humans. A custom-made device to stretch the ankle extensors was mounted on the lower leg portion of a gait orthosis and was used to elicit stretch reflex responses while standing. Six subjects with motor complete spinal cord injury (SCI) and six spinal intact subjects were placed in the orthosis, and stretch reflex responses were elicited when static and/or dynamic hip joint angle changes were imposed. We found that static hip extension significantly enhanced the stretch reflex responses as compared to the neutral position and the hip flexion position only in the SCI group. The EMG magnitude induced by hip extension was 142 ± 16.6% greater than that induced by the neutral position. When the leg was dynamically swung, the reflex responses also changed with the phase of the hip angle in the SCI group; in particular, the reflex amplitude was enhanced with hip extension and in the transition phase from flexion to extension. Although the magnitude of the changes was less than that in the SCI group, a similar type of modulation was found in the normal group. Given the fact that the persons with SCI had lost the neural connection between higher nervous center and the paralyzed lower limb muscles, the mechanism underlying the present results can be attributed to the peripheral afferent input due to the hip angle changes. We concluded that hip mediated afferent input has a significant influence on the excitability modulation of the soleus stretch reflex pathway. Such neural modulation may play a role in the mechanism responsible for the phase-dependent modulation of the stretch reflex while walking.  相似文献   

19.
After spinal cord injury (SCI), alterations in intrinsic motoneuron properties have been shown to be partly responsible for spastic reflex behaviors in human SCI. In particular, a dysregulation of voltage-dependent depolarizing persistent inward currents (PICs) may permit sustained muscle contraction after the removal of a brief excitatory stimulus. Windup, in which the motor response increases with repeated activation, is an indicator of PICs. Although windup of homonymous stretch reflexes has been shown, multijoint muscle activity is often observed following imposed limb movements and may exhibit a similar windup phenomenon. The purpose of this study was to identify and quantify windup of multijoint reflex responses to repeated imposed hip oscillations. Ten chronic SCI subjects participated in this study. A custom-built servomotor apparatus was used to oscillate the legs about the hip joint bilaterally and unilaterally from 10° of extension to 40° flexion for 10 consecutive cycles. Surface electromyograms (EMGs) and joint torques were recorded from both legs. Consistent with a windup response, hip and knee flexion/extension and ankle plantarflexion torque and EMG responses varied according to movement cycle number. The temporal patterns of windup depended on the muscle groups that were activated, which may suggest a difference in the response of neurons in different spinal pathways. Furthermore, because windup was seen in muscles that were not being stretched, these results imply that changes in interneuronal properties are also likely to be associated with windup of spastic reflexes in human SCI.  相似文献   

20.
We have reported earlier that externally imposed ankle movements trigger ankle and hip flexion reflexes in individuals with spinal cord injury (SCI). In order to examine the afferent mechanisms underlying these movement-triggered reflexes, controlled ankle movements were imposed in 17 SCI subjects. In 13 of these subjects, reflex torques were recorded at the hip, knee and ankle in response to 5 ankle movement ranges, and 4 movement speeds. Subjects were tested using both ankle plantarflexion and dorsiflexion movements. The principal outcome measure, peak hip flexion torque of the induced reflexes, was used for comparing the effects of movement range and speed on the reflex response. We found that movement-triggered reflexes were sensitive to the angular range of ankle deflection, but insensitive to the velocity of the movement. Movement amplitudes sufficient to trigger hip and ankle flexion were routinely associated with increases in ankle passive force, suggesting that force-sensitive receptors participated in the reflex response. However, increases in angular range also corresponded to increases in muscle length, making it difficult to distinguish whether the response was triggered by a load-sensitive receptor (e.g., Golgi tendon organ or muscle free nerve ending) or a position-sensitive receptor responsive to absolute ankle angle (e.g., muscle spindle secondary afferent). The absence of velocity dependence of the reflex suggested that spindle Ia afferents were not major contributors. These results suggest movement-triggered reflexes originate in muscle receptors that are sensitive to either absolute muscle length, to muscle force or to both. Although receptors that are sensitive to absolute muscle length cannot be excluded with certainty, the finding that reflex responses require that ankle movements elicit an increase in passive force argues for a prominent role of nonspindle mechanoreceptors, such as group III/IV muscle afferents. These afferents are activated preferentially as muscles are stretched to near maximum length, and they appear to have potent reflex effects in spinal cord injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号