首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bone cements with biodegradable poly(lactic-co-glycolic acid) (PLGA) microspheres have already been proven to provide a macroporous calcium phosphate cement (CPC) during in situ microsphere degradation. Furthermore, in vitro/in vivo release studies with these PLGA microsphere/CPC composites (PLGA/CPCs) showed a sustained release of osteo-inductive growth factor when drug was distributed inside/onto the microspheres. The goal of this study was to elucidate the mechanism behind drug release from PLGA/CPC. For this, in vitro release and degradation characteristics of a low-molecular-weight PLGA/CPC (M(w) = 5 kg/mol) were determined using bovine serum albumin (BSA) as a model protein. Two loading mechanisms were applied; BSA was either adsorbed onto the microspheres or incorporated inside the microspheres during double-emulsion. BSA release from PLGA microspheres and CPC was also measured and used as reference. Results show fast degrading polymer microspheres which produced a macroporous scaffold within 4 weeks, but also showed a concomitant release of acidic degradation products. BSA release from the PLGA/CPC was similar to the CPC samples and showed a pattern consisting of a small initial release, followed by a period of almost no sustained release. Separate PLGA microspheres exhibited a high burst release and release efficiency that was higher with the adsorbed samples. Combining degradation and release data we can conclude that for the PLGA/CPC samples BSA re-adsorbed to the cement surface after being released from the microspheres, which was mediated by the pH decrease during microsphere degradation.  相似文献   

2.
For tissue engineered bone constructs, calcium phosphate cement (CPC) has a high potential as scaffold material because of its biocompatibility and osteoconductivity. However, in vivo resorption and tissue ingrowth is slow. To address these issues, microspheres can be incorporated into the cement, which will create macroporosity after in situ degradation. The goal of this study was to investigate the handling properties and degradation characteristics of CPC containing gelatin microspheres. Setting time and injectability were determined and an in vitro degradation study was performed. Samples were assayed on mass, compression strength, E-modulus, and morphology. A supplementary degradation test with gelatin microspheres was performed to investigate the influence of physical conditions inside the cement on microsphere stability. The gelatin microsphere CPCs were easy to inject and showed initial setting times of less than 3 min. After 12-weeks in vitro degradation no increase in macroporosity was observed, which was supported by the small mass loss and stabilizing mechanical strength. Even a clear densification of the composite was observed. Explanations for the lack of macroporosity were recrystallization of the cement onto or inside the gelatin spheres and a delayed degradation of gelatin microspheres inside the scaffold. The supplementary degradation test showed that the pH is a factor in the delayed gelatin microsphere degradation. Also differences in degradation rate between types of gelatin were observed. Overall, the introduction of gelatin microspheres into CPC renders composites with good handling properties, though the degradation characteristics should be further investigated to generate a macroporous scaffold.  相似文献   

3.
Controlled release of growth factors allows the efficient, localized, and temporally-optimized delivery of bioactive molecules to potentiate natural physiological processes. This concept has been applied to treatments for pathological states, including chronic degeneration, wound healing, and tissue regeneration. Peptide microspheres are particularly suited for this application because of their low cost, ease of manufacture, and interaction with natural remodeling processes active during healing. The present study characterizes gelatin microspheres for the entrapment and delivery of growth factors, with a focus on tailored protein affinity, loading capacity, and degradation-mediated release. Genipin crosslinking in PBS and CHES buffers produced average microsphere sizes ranging from 15 to 30 microns with population distributions ranging from about 15 to 60 microns. Microsphere formulations were chosen based on properties important for controlled transient and spatial delivery, including size, consistency, and stability. The microsphere charge affinity was found to be dependent on gelatin type, with type A (GelA) carriers consistently having a lower negative charge than equivalent type B (GelB) carriers. A higher degree of crosslinking, representative of primary amine consumption, resulted in a greater negative net charge. Gelatin type was found to be the strongest determinant of degradation, with GelA carriers degrading at higher rates versus similarly crosslinked GelB carriers. Growth factor release was shown to depend upon microsphere degradation by proteolytic enzymes, while microspheres in inert buffers showed long-term retention of growth factors. These studies illuminate fabrication and processing parameters that can be used to control spatial and temporal release of growth factors from gelatin-based microspheres.  相似文献   

4.
Biodegradable microspheres were prepared through glutaraldehyde cross-linking of gelatin without using any surfactants as a carrier matrix of basic fibroblast growth factor (bFGF). In the in vitro system, bFGF was sorbed to microspheres of acidic gelatin with an isoelectric point (IEP) of 5.0, but not to those of basic gelatin with an IEP of 9.0. The rate of bFGF sorption to the acidic gelatin microsphere in phosphate-buffered saline solution (pH 7.4) was smaller than that in water. Following incorporation of bFGF into the microspheres at 4 degrees C for 12 h, bFGF release from the bFGF-incorporating microspheres was studied. Approximately 30% of incorporated bFGF was released from the acidic gelatin microsphere within the initial 3 h, followed by no substantial release, whereas the basic gelatin microsphere released almost completely the incorporated bFGF within 1 day. It is likely that when basic bFGF molecules were immobilized to the acidic gelatin constituting microspheres through polyion complexation, they were not readily released under the in vitro nondegradation condition of gelatin. Incorporation of anionic carboxylmethyl cellulose (CMC) into the acidic gelatin microspheres reduced the amount of bFGF desorbed initially. This indicates that the initial burst is ascribed to free bFGF which is not ionically interacted with the acidic gelatin. CMC will function as a bFGF sorbent to suppress the initial leakage from the microspheres. When injected subcutaneously into the mouse back, bFGF-incorporating acidic gelatin microspheres were degraded over time and induced neovascularization around the injection site, in marked contrast to bFGF in the solution form. CMC incorporation slowed down the biodegradation and vascularization effect of bFGF-incorporating gelatin microspheres. It was concluded that the gelatin microsphere was a promising carrier matrix of bFGF to enhance the vascularization effect.  相似文献   

5.
The objective of this study was to evaluate the effect of incorporation of basic fibroblast growth factor (bFGF)-impregnated gelatin microspheres into an artificial dermis on the regeneration of dermis-like tissues. When used in the free form in vivo, bFGF cannot induce sufficient wound healing activity, because of its short half-life. Therefore, sustained release of bFGF was achieved by impregnation into biodegradable gelatin microspheres. A radioisotope study revealed that incorporation of bFGF-impregnated gelatin microspheres significantly prolonged in vivo retention of bFGF in the artificial dermis. Artificial dermis with incorporated bFGF-impregnated gelatin microspheres or bFGF in solution was implanted into full-thickness skin defects on the back of guinea pigs (1.5 cm x 1.5 cm) (n = 4). Incorporation of bFGF into the artificial dermis accelerated fibroblast proliferation and capillary formation in a dose-dependent manner. However, the accelerated effects were more significant with the incorporation of bFGF-impregnated gelatin microspheres than with free bFGF at doses of 50 microg or higher. We conclude that the gelatin microsphere is a promising tool to accelerate bFGF-induced tissue regeneration in artificial dermis.  相似文献   

6.
In this study, we investigated the in vivo degradation properties and tissue response towards injectable calcium phosphate cement (CPC) with no further addition, or calcium phosphate composite cement containing approximately 50 vol.% of microspheres. Three types of spheres were assessed, i.e. poly(lactic-co-glycolic acid) (PLGA), gelatin (GEL) and poly(trimethylene carbonate) (PTMC). The cements were injected into 4.6 mm diameter and 6mm deep cylindrical defects in the femoral condyle of New Zealand white rabbits, hardened in situ and, after wound closure, left to heal for 4, 8 and 12 weeks (n=6 for each composition and time period). After retrieval, specimens were analyzed using histological and histomorphometrical methods. Results showed that non-modified CPCs showed excellent bone contact but only very limited erosion at the surface. The CPC/PLGA implant degraded almost completely, while tissue response significantly improved at each time period. CPC/PTMC showed slower degradation characteristics compared to CPC/PLGA. Finally, at all time periods, there was an evident inflammatory response to the CPC/GEL composite cement. In conclusion, the degradation properties of the CPC/PLGA microspheres composite and its bone response when implanted into the femoral condyles of rabbits were significantly better than those of CPC/gelatin and CPC/PTMC microspheres composites.  相似文献   

7.
In this study we have investigated the influence of the mechanism of microsphere degradation or erosion on the in vivo degradation of microsphere/calcium phosphate cement composites (microsphere CPCs) used in tissue engineering. Microspheres composed of poly(lactic-co-glycolic acid) (PLGA), gelatin and poly(trimethylene carbonate) (PTMC) were used as the model and the resulting microsphere CPCs were implanted subcutaneously for 4, 8 or 12 weeks in the back of New Zealand white rabbits. Besides degradation, the soft tissue response to these formulations was evaluated. After retrieval, specimens were analyzed by physicochemical characterization and histological analysis. The results showed that all microsphere CPCs exhibited microsphere degradation after 12 weeks of subcutaneous implantation, which was accompanied by decreasing compression strength. The PLGA microspheres exhibited bulk erosion simultaneously throughout the whole composite, whereas the gelatin type B microspheres were degradated from the outside to the center of the composite. High molecular weight PTMC microspheres exhibited surface erosion resulting in decreasing microsphere size. Furthermore, all composites showed a similar tissue response, with decreasing capsule thickness over time and a persistent moderate inflammatory response at the implant interface. In conclusion, microsphere CPCs can be used to generate porous scaffolds in an in vivo environment after degradation of microspheres by various degradation/erosion mechanisms.  相似文献   

8.
Gelatin was anionized to increase the carboxylic acid groups through succinylation. Succinylation of gelatin was performed using varying amounts of succinic anhydride. This gave various percentages of substitution. Lysozyme, a cationic antibacterial enzyme, which has important applications in the reduction of prosthetic valve endocarditis, was chosen as a model protein drug. Microspheres were prepared using unmodified gelatin and succinylated gelatin (SG) and lysozyme was incorporated into them. The percentage loading and release profiles of lysozyme for gelatin and SG microspheres were evaluated and compared. It was found that the SG microspheres exhibited higher loading efficiency for lysozyme (50%) than the unmodified gelatin microspheres. The in vitro release of lysozyme from SG microspheres occurred up to 122 h, compared to 96 h for gelatin microspheres, for the release of most of the lysozyme incorporated. This prolonged release of lysozyme from SG microspheres was attributed to the electrostatic interaction between the cationic lysozyme and the anionic SG microsphere carrier.  相似文献   

9.
Gelatin was anionized to increase the carboxylic acid groups through succinylation. Succinylation of gelatin was performed using varying amounts of succinic anhydride. This gave various percentages of substitution. Lysozyme, a cationic antibacterial enzyme, which has important applications in the reduction of prosthetic valve endocarditis, was chosen as a model protein drug. Microspheres were prepared using unmodified gelatin and succinylated gelatin (SG) and lysozyme was incorporated into them. The percentage loading and release profiles of lysozyme for gelatin and SG microspheres were evaluated and compared. It was found that the SG microspheres exhibited higher loading efficiency for lysozyme (50%) than the unmodified gelatin microspheres. The in vitro release of lysozyme from SG microspheres occurred up to 122 h, compared to 96 h for gelatin microspheres, for the release of most of the lysozyme incorporated. This prolonged release of lysozyme from SG microspheres was attributed to the electrostatic interaction between the cationic lysozyme and the anionic SG microsphere carrier.  相似文献   

10.
In this study, we investigated the in vitro and in vivo biological activities of bone morphogenetic protein 2 (BMP-2) released from four sustained delivery vehicles for bone regeneration. BMP-2 was incorporated into (1) a gelatin hydrogel, (2) poly(lactic-co-glycolic acid) (PLGA) microspheres embedded in a gelatin hydrogel, (3) microspheres embedded in a poly(propylene fumarate) (PPF) scaffold and (4) microspheres embedded in a PPF scaffold surrounded by a gelatin hydrogel. A fraction of the incorporated BMP-2 was radiolabeled with (125)I to determine its in vitro and in vivo release profiles. The release and bioactivity of BMP-2 were tested weekly over a period of 12 weeks in preosteoblast W20-17 cell line culture and in a rat subcutaneous implantation model. Outcome parameters for in vitro and in vivo bioactivities of the released BMP-2 were alkaline phosphatase (AP) induction and bone formation, respectively. The four implant types showed different in vitro release profiles over the 12-week period, which changed significantly upon implantation. The AP induction by BMP-2 released from gelatin implants showed a loss in bioactivity after 6 weeks in culture, while the BMP-2 released from the other implants continued to show bioactivity over the full 12-week period. Micro-CT and histological analysis of the delivery vehicles after 6 weeks of implantation showed significantly more bone in the microsphere/PPF scaffold composites (Implant 3, p<0.02). After 12 weeks, the amount of newly formed bone in the microsphere/PPF scaffolds remained significantly higher than that in the gelatin and microsphere/gelatin hydrogels (p<0.001), however, there was no statistical difference compared to the microsphere/PPF/gelatin composite. Overall, the results from this study show that BMP-2 could be incorporated into various bone tissue engineering composites for sustained release over a prolonged period of time with retention of bioactivity.  相似文献   

11.
Vascularization into a poly(vinyl alcohol) (PVA) sponge was investigated using basic fibroblast growth factor (bFGF). This growth factor was impregnated into biodegradable gelatin microspheres for its sustained release and then the bFGF-containing microspheres or free bFGF were incorporated into PVA sponges. Following subcutaneous implantation into the back of mice, the bFGF-containing gelatin microspheres induced vascularization in and around the sponge to a significantly greater extent than that of free bFGF from 3 days after implantation. Significant ingrowth of fibrous tissue into the sponge was also observed when bFGF-containing microspheres were added to the sponge in contrast to free bFGF. Tissue ingrowth occurred into the deeper portion of the sponge over time while it accompanied formation of new capillaries. Empty gelatin microspheres had no effect on vascularization and the level of fibrous tissue ingrowth into the sponge was similar to that of the control group. It was concluded that incorporation of gelatin microspheres containing bFGF into the PVA sponge was effective in prevascularization of the sponge pores.  相似文献   

12.
Vascularization into a poly(vinyl alcohol) (PVA) sponge was investigated using basic fibroblast growth factor (bFGF). This growth factor was impregnated into biodegradable gelatin microspheres for its sustained release and then the bFGF-containing microspheres or free bFGF were incorporated into PVA sponges. Following subcutaneous implantation into the back of mice, the bFGF-containing gelatin microspheres induced vascularization in and around the sponge to a significantly greater extent than that of free bFGF from 3 days after implantation. Significant ingrowth of fibrous tissue into the sponge was also observed when bFGF-containing microspheres were added to the sponge in contrast to free bFGF. Tissue ingrowth occurred into the deeper portion of the sponge over time while it accompanied formation of new capillaries. Empty gelatin microspheres had no effect on vascularization and the level of fibrous tissue ingrowth into the sponge was similar to that of the control group. It was concluded that incorporation of gelatin microspheres containing bFGF into the PVA sponge was effective in prevascularization of the sponge pores.  相似文献   

13.
This study focused on the degradation properties of gelatin microparticles incorporated in calcium phosphate (CaP) cement and the subsequent effect of these composites on bone formation. Positively charged alkaline gelatin (type A) microparticles or negatively charged acidic gelatin (type B) microparticles were incorporated in CaP cement, which was implanted in critical-sized cranial defect in rats and left in place for 2, 4, and 8 weeks. The degradation of the gelatin was monitored using radioiodinated microparticles. After 4 and 8 weeks of implantation, a significantly faster degradation of type A gelatin over type B gelatin was found. Light microscopic analysis of the specimens showed similar bone response concerning implants containing either type A or B gelatin microparticles. At 2 weeks of implantation, a minimal amount of bone formation was observed from the cranial bone toward the implant, while after 8 weeks of implantation an entire layer of newly formed bone was present from the cranial bone toward the implant periphery. Bone ingrowth into the implant was observed at sites of gelatin microparticle degradation, predominantly at the implant periphery. Histomorphometrical evaluation did not reveal significant differences in bone formation between CaP cement incorporated with either type A or B gelatin microparticles during implantation periods up to 8 weeks. In conclusion, this study demonstrates that gelatin type influences the degradation of gelatin microparticles incorporated in CaP cements. However, this difference in degradation and the concomitant subsequent macroporosity did not induce differences in the biological response.  相似文献   

14.
Apatitic calcium phosphate cements (CPC) are frequently used to fill bone defects due to their favourable clinical handling and excellent bone response, but their lack of degradability inhibits complete bone regeneration. In order to render these injectable CaP cements biodegradable, hollow microspheres made of poly (D,L-lactic-co-glycolic) acid (PLGA) have been previously used as porogen since these microspheres were shown to be able to induce macroporosity upon degradation as well as to accelerate CPC degradation by release of acid degradation products. Recently, the capacity of PLGA microspheres to form porosity in situ in injectable CPCs was optimized by investigating the influence of PLGA characteristics such as microsphere morphology (dense vs. hollow) and end-group functionalization (acid terminated vs. end-capped) on acid production and corresponding porosity formation in vitro. The current study has investigated the in vivo bone response to CPCs containing two types of microspheres (hollow and dense) made of PLGA with two different end-group functionalizations (end capped and acid terminated). Microspheres were embedded in CPC and injected in the distal femoral condyle of New Zealand White Rabbits for 6 and 12 weeks. Histological results confirmed the excellent biocompatibility and osteoconductivity of all tested materials. Composites containing acid terminated PLGA microspheres displayed considerable porosity and concomitant bone ingrowth after 6 weeks, whereas end capped microspheres only revealed open porosity after 12 weeks of implantation. In addition, it was found that dense PLGA microspheres induced significantly more CPC degradation and bone tissue formation compared to hollow PLGA microspheres. In conclusion, it was shown that PLGA microspheres have a strong capacity to induce fast degradation of injectable CPC and concomitant replacement by bone tissue by controlled release of acid polymeric degradation products without compromising the excellent biocompatibility and osteoconductivity of the CPC matrix.  相似文献   

15.
Basic fibroblast growth factor (b-FGF) may have a role in tissue-engineered chondrogenesis. However, when applied in solution, b-FGF rapidly diffuses from the implant site. In another approach for tissue engineering, poly-lactide-based copolymers have shown promise as scaffolds for chondrocytes used to tissue engineer auricular cartilage in the shape of an ear. This study evaluated the effectiveness of b-FGF impregnated in gelatin microspheres to achieve slow growth factor release for augmenting the in vivo chondrogenic response. Whereas 125I-labeled b-FGF injected in solution showed rapid in vivo clearance from the injection site (only 3% residual after 24 h), when incorporated into gelatin microspheres, 44% and 18% of the b-FGF remained at 3 and 14 days, respectively. Canine chondrocytes were isolated and grown in vitro onto ear-shaped poly-lactide/caprolactone copolymers for 1 week, then implanted into the dorsal subcutaneous tissue of nude mice; implants contained b-FGF either in free solution or in gelatin microspheres. A third group underwent preinjection of b-FGF in gelatin microspheres 4 days before chondrocyte-copolymer implantation. The implants with b-FGF-incorporated microspheres showed the greatest chondrogenic characteristics at 5 and 10 weeks postoperatively: good shape and biomechanical trait retention, strong (histologic) metachromasia, rich vascularization of surrounding tissues, and increased gene expression for type II collagen (cartilage marker) and factor VIII-related antigen (vascular marker). In the case of implant site preadministration with b-FGF-impregnated microspheres, the implant architecture was not maintained as well, and reduced vascularization and metachromasia was also apparent. In conclusion, these findings indicate that a sustained release of b-FGF augments neovascularization and chondrogenesis in a tissue-engineered cartilage construct.  相似文献   

16.
目的 探讨异硫氰酸荧光素(FITC)标记的神经生长因子缓释微球的制备,并对其进行体内外评价.方法 采用水-油-水的双乳化技术制备FITC标记的神经生长因子缓释微球.利用扫描电镜和荧光显微镜对其形态特征进行观察,并对其体内外释放情况进行研究.结果 制备的FITC标记的神经生长因子缓释微球包封率和载药量分别为(97.9±8.9)%和(4.90±0.56)%.扫描电镜结果显示所制备的微球呈圆形、形态规整、粒径分布较均匀.荧光显微镜结果显示所包载的蛋白类药物在微球内旱随机分布.缓释微球体外持续释放5周后,有73%的蛋白释放出来;荧光示踪显示在体内能够持续释放达5周以上.结论 采用水-油-水的双乳化技术制备的缓释微球可以将生物大分子药物如神经生长因子成功运载到脑内.  相似文献   

17.
Hydroxyapatite and hybrid gelatine/hydroxyapatite microspheres were obtained through a water in oil emulsion of a calcium phosphate cement (CPC). The setting reaction of the CPC, in this case the hydrolysis of α-tricalcium phosphate, was responsible for the consolidation of the microspheres. After the setting reaction, the microspheres consisted of an entangled network of hydroxyapatite crystals, with a high porosity and pore sizes ranging between 0.5 and 5 μm. The size of the microspheres was tailored by controlling the viscosity of the hydrophobic phase, the rotation speed, and the initial powder size of the CPC. The incorporation of gelatin increased the sphericity of the microspheres, as well as their size and size dispersion. To assess the feasibility of using the microspheres as cell microcarriers, Saos-2 cells were cultured on the microspheres. Fluorescent staining, SEM studies, and LDH quantification showed that the microspheres were able to sustain cell growth. Cell adhesion and proliferation was significantly improved in the hybrid gelatin/hydroxyapatite microspheres as compared to the hydroxyapatite ones.  相似文献   

18.
The purpose of this work was to examine the feasibility of a hybrid scaffold in which fibroblast growth factor-1 (FGF-1)-encapsulated microspheres are embedded within a fibrin gel. Such a tissue-engineered scaffold could be incorporated into surgical procedures to promote healing while simultaneously delivering therapeutic agents that promote angiogenesis. Fibrin has been extensively studied as an adhesive in plastic and reconstructive surgery and the enhancement of wound healing with embedded growth factors is desirable. We report the release of a fluorescently-labeled model protein, bovine serum albumin (BSA-FITC), from poly(D,L-lactic-co-glycolic acid) microspheres embedded in the fibrin scaffold. The protein release was found to be significantly delayed as compared to microspheres alone during the initial 24 h of release. Additionally, FGF-1 was examined for efficient incorporation into these scaffolds as a potential mitogen for fibroblasts. The optimal concentration of FGF-1 in the media that enhanced NIH-3T3 fibroblast proliferation over 48 h was determined to be 0.1 microg/ml. The release of FGF-1 from microspheres embedded in fibrin gels was compared to FGF-1-encapsulated microspheres alone. The release of FGF-1 from the microsphere/scaffolds was delayed as compared to the release of FGF-1 from microspheres alone. This novel hybrid fibrin/microsphere scaffold is a feasible delivery system for growth factors.  相似文献   

19.
The purpose of this work was to examine the feasibility of a hybrid scaffold in which fibroblast growth factor-1 (FGF-1)-encapsulated microspheres are embedded within a fibrin gel. Such a tissue-engineered scaffold could be incorporated into surgical procedures to promote healing while simultaneously delivering therapeutic agents that promote angiogenesis. Fibrin has been extensively studied as an adhesive in plastic and reconstructive surgery and the enhancement of wound healing with embedded growth factors is desirable. We report the release of a fluorescentlylabeled model protein, bovine serum albumin (BSA-FITC), from poly(D, L-lactic-co-glycolic acid) microspheres embedded in the fibrin scaffold. The protein release was found to be significantly delayed as compared to microspheres alone during the initial 24 h of release. Additionally, FGF-1 was examined for efficient incorporation into these scaffolds as a potential mitogen for fibroblasts. The optimal concentration of FGF-1 in the media that enhanced NIH-3T3 fibroblast proliferation over 48 h was determined to be 0.1μg/ml. The release of FGF-1 from microspheres embedded in fibrin gels was compared to FGF-1-encapsulated microspheres alone. The release of FGF-1 from the microsphere/scaffolds was delayed as compared to the release of FGF-1 from microspheres alone. This novel hybrid fibrin/microsphere scaffold is a feasible delivery system for growth factors.  相似文献   

20.
The use of polymeric carriers containing dispersed magnetic nanocrystalline particles for targeted delivery of drugs in clinical practice has attracted the interest of the scientific community. In this paper a system comprised of alginate microparticles with a core of magnetite and carrying nerve growth factor (NGF) is described. The magnetic properties of these microspheres, typical of superparamagnetic materials, allow precise and controlled delivery to the intended tissue environment. Experiments carried out on PC12 cells with magnetic alginate microspheres loaded with NGF have confirmed the induction of cell differentiation which is strongly dependent on the distance from the microsphere cluster. In addition, finite element modelling (FEM) of the release profile from the microspheres in culture, indicated the possibility of creating defined and predictable NGF gradients from the loaded microspheres. These observations on the carriage and release of growth factors by the proposed microparticles open new therapeutic options for both neuronal regeneration and of the development of effective neuronal interfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号