首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vertebrate nervous systems, different classes of synaptic inputs are often segregated into restricted compartments of target neurons. For example, distinct types of GABAergic interneurons preferentially innervate subcellular domains and have been implicated in the precise temporal regulation of integration within neurons and activity within networks. Recent studies suggest that the subcellular segregation of different classes of GABAergic synapses is largely genetically determined. The localization and signaling of L1 family immunoglobulin proteins recruited by ankyrin-based membrane adaptors might serve as compartmental labels, which contribute to subcellular synapse organization in cerebellar Purkinje neurons.  相似文献   

2.
The olfactory input to the brain is carried out by olfactory nerve axons that terminate in the olfactory bulb glomeruli and make synapses onto dendrites of glutamatergic projection neurons, mitral and tufted cells, and GABAergic interneurons, periglomerular cells. The dendrites are reciprocally connected through asymmetric synapses of mitral/tufted cells with periglomerular cells and symmetric synapses of the opposite direction. Transmission at the first synapse in the olfactory pathway is regulated presynaptically, and this regulation is mediated, in part, by metabotropic GABAB receptors that, when activated, inhibit transmitter release from the olfactory nerve. Functional GABAB receptors are heterodimers composed of the GABAB1 and GABAB2 subunits. Studies using double immunofluorescence have shown colocalization of both subunits in the glomerular neuropil, and ultrastructural studies have localized GABAB1 to extrasynaptic, synaptic, and perisynaptic sites on the plasma membrane of olfactory nerve terminals. We studied the subcellular localization of GABAB2 in the mouse olfactory glomeruli using a subunit-specific antibody and preembedding immunogold labeling. Immunoreactivity for GABAB2 was associated with symmetric dendrodendritic synapses of periglomerular cells with mitral/tufted cells and was localized to the extrasynaptic plasma membrane of presynaptic dendrites, and extrasynaptic, synaptic, and perisynaptic sites on the plasma membrane of postsynaptic dendrites. The results suggest that postsynaptic, and perhaps presynaptic, GABAB receptors may be expressed at GABAergic synapses between dendrites of periglomerular interneurons and projection neurons. Immunolabeling was observed at junctions of the olfactory nerve with mitral/tufted cell dendrites, providing ultrastructural evidence for the expression of the GABAB2 subunit at the primary olfactory synapse.  相似文献   

3.
4.
Classical cadherins are cell adhesion molecules that are thought to contribute to the control of synapse formation, synaptic transmission, and synaptic plasticity. This is largely based on studies investigating the functions of N-cadherin at glutamatergic synapses, whereas other classical cadherins have hardly been examined at central synapses. We have now used a conditional knockout approach in cultured cortical neurons to address the role of E-cadherin mainly at inhibitory, GABAergic synapses. Cortical neurons were cultured from mouse fetuses carrying floxed E-cadherin alleles in homozygous configuration. E-cadherin knockout was induced in individual neurons by expression of an EGFP-Cre fusion protein. Immunocytochemical stainings for the vesicular GABA (VGAT) and glutamate (VGLUT1) transporters revealed a reduced density of dendritic GABAergic synapses in E-cadherin knockout neurons, whereas glutamatergic synapses were unaffected. Electrophysiological recordings of miniature and action potential-evoked, GABAA receptor-mediated postsynaptic currents confirmed an impairment of GABAergic synapses at the functional level. In summary, our immunocytochemical and electrophysiological analysis of E-cadherin knockout neurons suggested that E-cadherin signaling importantly contributes to the regulation of GABAergic synapses in cortical neurons.  相似文献   

5.
Neural activity regulates the number and properties of GABAergic synapses in the brain, but the mechanisms underlying these changes are unclear. We found that blocking spike activity globally in developing hippocampal neurons from rats reduced the density of GABAergic terminals as well as the frequency and amplitude of miniature inhibitory postsynaptic currents (mIPSCs). Chronic inactivity later in development led to a reduction in the mIPSC amplitude, without any change in GABAergic synapse density. By contrast, hyperpolarizing or abolishing spike activity in single neurons did not alter GABAergic synaptic inputs. Suppressing activity in individual presynaptic GABAergic neurons also failed to decrease synaptic output. Our results indicate that GABAergic synapses are regulated by the level of activity in surrounding neurons. Notably, we found that the expression of GABAergic plasticity involves changes in the amount of neurotransmitter in individual vesicles.  相似文献   

6.
Summary Individually labelled sensory neurons from the femoral chordotonal organ, a proprioceptor at the femoro-tibial joint of a locust hindleg, were analysed by intracellular recording, and by electron microscopical immunocytochemistry to reveal the arrangement of their input and output synapses and to determine whether the input synapses were GABAergic. Intracellular recordings from these sensory neurons show spikes superimposed on a barrage of synaptic potentials during movements of the femoro-tibial joint. These synaptic inputs can be mimicked by GABA. Input synapses are made onto the vesicle-containing terminals of afferents and are often closely associated with the output synapses. By contrast, the axons of the afferents in the neuropil have no vesicles and neither make nor receive synapses. The input synapses to the afferent terminals are made from processes typically a few microns in diameter, whereas the output synapses are made onto much smaller processes of only 0.1–0.2 m. Input synapses at which an afferent terminal is the only postsynaptic element are common. Where the synapse is dyadic the second postsynaptic element does not usually appear to be a chordotonal afferent. The output synapses from the afferent terminals are usually dyadic. At 78% of the input synapses, the presynaptic neurite showed immunoreactivity to a GABA antibody, supporting the physiological evidence that the presynaptic effects can be mediated by the release of GABA. The remaining (22%) immunonegative synapses are intermingled with those showing GABA immunoreactivity, but their putative transmitter is unknown. These morphological observations suggest that the presynaptic control of the chordotonal afferents is largely mediated by GABAergic neurons, but because other types of neuron also appear to be involved, presynaptic modulation may be more complex than has yet been revealed by the physiology.  相似文献   

7.
杏仁体中的多巴胺(DA)和γ -氨基丁酸(GABA)递质系统均参与精神分裂症的病理过程,临床上一般用多巴胺II型受体(D2)阻断剂予以治疗。然而,目前尚不清楚GABA与D2受体是否共存,也不清楚DA能神经末梢与GABA能神经元之间的联系方式。本实验用共聚焦激光扫描显微镜(CLSM)和免疫电镜(IEM)研究了杏仁体关键性核团基底外侧核中GABA与D2受体的共存关系以及DA神经能末梢与GABA能神经元之间的突触关系。CLSM显示由谷氨酸脱羧酶(GAD)标记的GABA能神经元全部对D2受体呈免疫阳性反应,表明GABA能神经元含有D2受体。IEM显示,在 980个DA能神经末梢形成的突触中,45%的突触是由DA免疫反应阳性神经末梢直接(36% )或间接(9% )与GAD免疫反应阳性神经元的树突形成,另 55%是由DA免疫反应阳性神经末梢与未标记的神经元成分形成。DA GABA的直接性突触进而可区分为单突触 (16% )、汇聚突触 (14% )及轴 轴突触(6% )。而DA- GABA的间接性突触是个突触复合体。在该复合体中,DA免疫反应阳性末梢在一个未标记的末梢上形成对称性突触,而该未标记末梢又与GAD免疫反应阳性树突形成非对称性突触。在DA与未标记神经元成分之间的突触中,AD免疫反应阳性末梢分别与未标记胞体(4% )、树突(42% )及轴突末梢(9% )形成突触。所有DA突触无一例外均为?  相似文献   

8.
The thalamic reticular nucleus is strategically located in the axonal pathways between thalamus and cortex, and reticular cells exert strong, topographic inhibition on thalamic relay cells. Although evidence exists that reticular neurons are interconnected through conventional and electrical synapses, the spatial extent and relative strength of these synapses are unclear. To address these issues, we used uncaging of glutamate by laser-scanning photostimulation to provide precisely localized and consistent activation of reticular cell bodies and dendrites in an in vitro slice preparation from the rat as a means to study reticulo-reticular connections. Among the 47 recorded reticular neurons, 29 (62%) received GABAergic axodendritic input from an area immediately surrounding each of the recorded cell bodies, and 8 (17%) responded with depolarizing spikelets, suggesting inputs through electrical synapses. We also found that TTX completely blocked all evoked IPSCs, implying that any dendrodendritic synapses between reticular cells either are relatively weak, have no nearby glutamatergic receptors, or are dependent on back-propagation of action potentials. Finally, we showed that the GABAergic connections between reticular cells are weaker than those from reticular cells to relay cells. Our results suggest that the GABAergic axodendritic synapse is the dominant form of reticulo-reticular connectivity, and because they are much weaker than the reticulo-relay cell synapses, their functional purpose may be to regulate the spatial extent of the reticular inhibition on relay cells.  相似文献   

9.
Dopaminergic neurons of the substantia nigra pars compacta (SNc) exhibit functional heterogeneity that likely underpins their diverse roles in behavior. We examined how the functional diversity of identified dopaminergic neurons in vivo correlates with differences in somato-dendritic architecture and afferent synaptic organization. Stereological analysis of individually recorded and labeled dopaminergic neurons of rat SNc revealed that they received approximately 8,000 synaptic inputs, at least 30% of which were glutamatergic and 40-70% were GABAergic. The latter synapses were proportionally greater in number and denser on dendrites located in the substantia nigra pars reticulata (SNr) than on those located in SNc, revealing the existence of two synaptically distinct and region-specific subcellular domains. We also found that the relative extension of SNc neuron dendrites into the SNr dictated overall GABAergic innervation and predicted inhibition responses to aversive stimuli. We conclude that diverse wiring patterns determine the heterogeneous activities of midbrain dopaminergic neurons in vivo.  相似文献   

10.
Synapse formation in CNS neurons requires appropriate sorting and clustering of neurotransmitter receptors and associated proteins at postsynaptic sites. In GABAergic synapses, clustering of GABA(A) receptors requires gephyrin, but it is not known whether presynaptic signals are also involved in this process. To investigate this issue, we analyzed the subcellular distribution of GABA(A) receptors and gephyrin in primary cultures of cerebellar granule cells, by comparing cells receiving GABAergic input with cells devoid of such afferents. Using immunofluorescence staining, we show that the GABA(A) receptor alpha1 and gamma2 subunit, but not alpha6 or delta subunit, form clusters co-localized with gephyrin in granule cell neurites, irrespective of the presence of GABAergic axons. GABAergic terminals typically were surrounded by groups of gephyrin clusters, pointing to the presence of multiple synaptic sites. In contrast, in neurites devoid of GABAergic input, gephyrin clusters were distributed at random and apposed to glutamatergic terminals, suggesting the formation of mismatched synapses. Both populations of gephyrin clusters were co-localized with GABA(A) receptor subunits, indicating that these proteins are associated also in non-GABAergic synapses. To determine whether signaling mediated by GABA(A) receptors is required for the formation of appropriately matched gephyrin clusters, cultures were treated chronically with bicuculline, or with either muscimol or 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol. All these treatments failed to influence the distribution of gephyrin clusters. We conclude that although GABAergic presynaptic terminals have a preponderant influence on the distribution of gephyrin clusters in dendrites of cerebellar granule cells, GABA transmission is dispensable for postsynaptic clustering of gephyrin and GABA(A) receptors and for the formation of appropriately matched GABAergic synapses.  相似文献   

11.
Inhibitory synapses in the developing auditory system are glutamatergic   总被引:3,自引:0,他引:3  
Activity-dependent synapse refinement is crucial for the formation of precise excitatory and inhibitory neuronal circuits. Whereas the mechanisms that guide refinement of excitatory circuits are becoming increasingly clear, the mechanisms guiding inhibitory circuits have remained obscure. In the lateral superior olive (LSO), a nucleus in the mammalian sound localization system that receives inhibitory input from the medial nucleus of the trapezoid body (MNTB), specific elimination and strengthening of synapses that are both GABAergic and glycinergic (GABA/glycinergic synapses) is essential for the formation of a precise tonotopic map. We provide evidence that immature GABA/glycinergic synapses in the rat LSO also release the excitatory neurotransmitter glutamate, which activates postsynaptic NMDA receptors (NMDARs). Immunohistochemical studies demonstrate synaptic colocalization of the vesicular glutamate transporter 3 with the vesicular GABA transporter, indicating that GABA, glycine and glutamate are released from single MNTB terminals. Glutamatergic transmission at MNTB-LSO synapses is most prominent during the period of synapse elimination. Synapse-specific activation of NMDARs by glutamate release at GABAergic and glycinergic synapses could be important in activity-dependent refinement of inhibitory circuits.  相似文献   

12.
Sections of the cat's visual cortex were stained by an antiserum to glutamate decarboxylase using the peroxidase-antiperoxidase method; they were then impregnated by the section Golgi procedure and finally the Golgi deposit was replaced by gold. Neurons containing glutamate decarboxylase immunoreactivity were found in all layers of the visual cortex, without any obvious pattern of distribution. Fifteen immunoreactive neurons were also Golgi-impregnated and gold-toned, which enabled us to study the morphology and synaptic input of identified GABAergic neurons. These neurons were found to be heterogeneous both with respect to the sizes and shapes of their perikarya and the branching patterns of their dendrites. All the immunoreactive, Golgi-impregnated neurons had smooth dendrites, with only occasional protrusions. The synaptic input of glutamate decarboxylase-immunoreactive neurons was studied in the electron microscope. Immunoreactive neurons received immunoreactive boutons forming symmetrical synapses on their cell bodies. The Golgi-impregnation made it possible to study the input along the dendrites of immunoreactive neurons. One of the large neurons in layer III whose soma was immunoreactive was also Golgi-impregnated: it received numerous non-immunoreactive asymmetrical synaptic contacts along its dendrites and occasional ones on its soma. The same neuron also received a few boutons forming symmetrical synaptic contacts along its Golgi-impregnated dendrites; most of these boutons were immunoreactive for glutamate decarboxylase. Glutamate decarboxylase-immunoreactive boutons were also found in symmetrical synaptic contact with non-immunoreactive neurons that were Golgi-impregnated. A small pyramidal cell in layer III was shown to receive several such boutons along its somatic membrane. It is concluded that the combination of immunoperoxidase staining and Golgi impregnation is technically feasible and that it can provide new information. The present study has shown that there are many morphologically distinct kinds of aspiny GABAergic neurons in the visual cortex; that the predominant type of synaptic input to the dendrites of such neurons is from boutons forming asymmetrical synapses, but that some of the GABAergic neurons also receive a dense symmetrical synaptic input on their cell bodies, and occasional synapses along their dendrites, from the boutons of other GABAergic neurons. These findings provide a morphological basis, firstly, for a presumed powerful excitatory input to GABAergic interneurons and, secondly, for the disinhibition which has been postulated from electrophysiological studies to occur in the cat's visual cortex.  相似文献   

13.
Localization of cannabinoid CB 1 receptors on GABAergic interneurons in the rat hippocampal formation was studied by double-labeling immunohistochemistry with confocal microscopy. Virtually all CB1-immunoreactive neurons (95%) are GABAergic. CB 1 fluorescence showed a punctate pattern. In contrast, the GABA fluorescence was distributed homogeneously, suggesting that while CB 1 receptors and GABA exist in the same cells they are not localized in the same subcellular compartments. Although virtually all CB1 neurons were GABAergic, many GABAergic neurons did not contain CB1 receptors. GABAergic interneurons in the hippocampal formation can be further divided into subpopulations with distinct connections and functions, using cell markers such as neuropeptides and calcium binding proteins. CB1 receptors were highly co-localized with cholecystokinin and partially co-localized with calretinin and calbindin, but not with parvalbumin. This suggests that cannabinoids may modulate GABAergic neurotransmission at the synapses on the soma and at synapses on the proximal dendrites of the principal neurons, as well as at synapses on other GABAergic interneurons.  相似文献   

14.
Major histocompatibility complex class I (MHCI) molecules modulate activity-dependent refinement and plasticity. We found that MHCI also negatively regulates the density and function of cortical synapses during their initial establishment both in vitro and in vivo. MHCI molecules are expressed on cortical neurons before and during synaptogenesis. In vitro, decreasing surface MHCI (sMHCI) on neurons increased glutamatergic and GABAergic synapse density, whereas overexpression decreased it. In vivo, synapse density was higher throughout development in β2m(-/-) mice. MHCI also negatively regulated the strength of excitatory, but not inhibitory, synapses and controlled the balance of excitation and inhibition onto cortical neurons. sMHCI levels were modulated by activity and were necessary for activity to negatively regulate glutamatergic synapse density. Finally, acute changes in sMHCI and activity altered synapse density exclusively during early postnatal development. These results identify a previously unknown function for immune proteins in the negative regulation of the initial establishment and function of cortical connections.  相似文献   

15.
The formation of chemical synapses in the mammalian brain involves complex pre- and postsynaptic differentiation processes. Presynaptically, the progressive accumulation of synaptic vesicles is a hallmark of synapse maturation in the neocortex [J Neurocytol 12 (1983b) 697]. In this study, we analyzed the functional consequences of presynaptic vesicle-pool maturation at central glutamatergic and GABAergic synapses. Using (N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl)pyridinium dibromide (FM1-43) staining of recycling synaptic vesicles, we demonstrate a pronounced developmental increase in presynaptic vesicle accumulation during differentiation of neocortical neurons in culture. Using electrophysiological methods to study functional synaptic maturation, we found an improved recovery from hypertonic solution-induced depletion. As supported by the FM1-43 staining results, this change is most likely caused by a developmental increase in the number of reserve-pool vesicles. In addition, assuming a rapid reuse of freshly recycled vesicles, a developmental maturation of the endocytosis process may also contribute. The observed presynaptic maturation process occurred selectively at glutamatergic synapses, while GABAergic synapses did not show similar developmental alterations. Furthermore, we used high-frequency stimulation (HFS) of glutamatergic and GABAergic synapses to reveal the physiological consequences of reserve-pool maturation. As expected, recovery from HFS-induced depletion was incomplete at immature glutamatergic synapses and strongly improved during synapse maturation. Again, GABAergic synapses did not show similar developmental changes. Taken together, our study characterizes the functional consequences of a pronounced accumulation of reserve-pool vesicles occurring selectively at glutamatergic synapses.  相似文献   

16.
Synaptic integration is modulated by inhibition onto the dendrites of postsynaptic cells. However, presynaptic inhibition at axonal terminals also plays a critical role in the regulation of neurotransmission. In contrast to the development of inhibitory synapses onto dendrites, GABAergic/glycinergic synaptogenesis onto axon terminals has not been widely studied. Because retinal bipolar cells receive subclass-specific patterns of GABAergic and glycinergic presynaptic inhibition, they are a good model for studying the development of inhibition at axon terminals. Here, using whole cell recording methods and transgenic mice in which subclasses of retinal bipolar cells are labeled, we determined the temporal sequence and patterning of functional GABAergic and glycinergic input onto the major subclasses of bipolar cells. We found that the maturation of GABAergic and glycinergic synapses onto the axons of rod bipolar cells (RBCs), on-cone bipolar cells (ON-CBCs) and off-cone bipolar cells (OFF-CBCs) were temporally distinct: spontaneous chloride-mediated currents are present in RBCs earlier in development compared with ON- and OFF-CBC, and RBCs receive GABAergic and glycinergic input simultaneously, whereas in OFF-CBCs, glycinergic transmission emerges before GABAergic transmission. Because on-CBCs show little inhibitory activity, GABAergic and glycinergic events could not be pharmacologically distinguished for these bipolar cells. The balance of GABAergic and glycinergic input that is unique to RBCs and OFF-CBCs is established shortly after the onset of synapse formation and precedes visual experience. Our data suggest that presynaptic modulation of glutamate transmission from bipolar cells matures rapidly and is differentially coordinated for GABAergic and glycinergic synapses onto distinct bipolar cell subclasses.  相似文献   

17.
Balanced development of excitatory and inhibitory synapses is required for normal brain function, and an imbalance in this development may underlie the pathogenesis of many neuropsychiatric disorders. Compared with the many identified trans-synaptic adhesion complexes that organize excitatory synapses, little is known about the organizers that are specific for inhibitory synapses. We found that Slit and NTRK-like family member 3 (Slitrk3) actS as a postsynaptic adhesion molecule that selectively regulates inhibitory synapse development via trans-interaction with axonal tyrosine phosphatase receptor PTPδ. When expressed in fibroblasts, Slitrk3 triggered only inhibitory presynaptic differentiation in contacting axons of co-cultured rat hippocampal neurons. Recombinant Slitrk3 preferentially localized to inhibitory postsynaptic sites. Slitrk3-deficient mice exhibited decreases in inhibitory, but not excitatory, synapse number and function in hippocampal CA1 neurons and exhibited increased seizure susceptibility and spontaneous epileptiform activity. Slitrk3 required trans-interaction with axonal PTPδ to induce inhibitory presynaptic differentiation. These results identify Slitrk3-PTPδ as an inhibitory-specific trans-synaptic organizing complex that is required for normal functional GABAergic synapse development.  相似文献   

18.
Immunocytochemical and electron microscopic methods were used to study the GABAergic innervation in adult cat periaqueductal gray matter (PAG). A mouse monoclonal antibody against γ -aminobutyric acid (GABA) was used to visualize the inhibitory neuronal system of PAG. At light microscopy, GABA-immunopositive (GABAIP) neurons formed two longitudinally oriented columns in the dorsolateral and ventrolateral PAG that accounted for 36% of the neuronal population of both PAG columns; their perikaryal cross-sectional area was smaller than that of unlabeled (UNL) neurons found in the same PAG subdivisions. At electron microscopic level, patches of GABA immunoreactivity were readily detected in neuronal cell bodies, proximal and distal dendrites, axons and axon terminals. Approximately 35–36% of all terminals were GABAIP; they established symmetric synapses with dendrites (84.72% of the sample in the dorsolateral PAG and 86.09% of the sample in the ventrolateral PAG) or with cell bodies (7–10% of the sample). Moreover, 49.15% of GABAIP axon terminals in the dorsolateral and 52.16% in the ventrolateral PAG established symmetric synapses with GABAIP dendrites. Immunopositive axon terminals and unlabeled terminals were also involved in the formation of a complex synaptic arrangment, i.e. clusters of synaptic terminals in close contact between them that were often observed in the PAG neuropil. Moreover, a fair number of axo-axonic synapses between GABAIP and/or UNL axon terminals were present in both PAG subdivisions. Several dendro-dendritic synapses between labeled and unlabeled dendrites were also observed in both PAG subdivisions. These results suggest that in the cat PAG there exist at least two classes of GABArgic neurons. The first class could exert a tonic control on PAG projecting neurons, the second could act on those GABAergic neurons that in turn keep PAG projecting neurons under tonic inhibition. The functional implications of this type of GABAergic synapse organization are discussed in relation to the dishinibitory processes that take place in the PAG.  相似文献   

19.
Uusisaari M  Knöpfel T 《Neuroscience》2008,156(3):537-549
The deep cerebellar nuclei (DCN) are the final integrative units of the cerebellar network. The strongest single afferent to the DCN is formed by GABAergic Purkinje neuron axons whose synapses constitute the majority of all synapses in the DCN, with their action strongly regulating the intrinsic activity of their target neurons. Although this is well established, it remains unclear whether all DCN cell groups receive a functionally similar inhibitory input. We previously characterized three types of mouse DCN neurons based on the expression of glutamic acid decarboxylase isoform 67 (GAD67), their active membrane properties and morphological features. Here we describe the GABAergic synapses in these cell groups and show that spontaneous GABAergic synaptic activity can be seen in all three cell types. Since the majority of DCN neurons fire action potentials spontaneously at high frequencies both in vivo and in vitro, we expected that spontaneous GABAergic synaptic activities mediated by intra-DCN synaptic connections could be uncovered by their sensitivity to TTX. However, TTX had little effect on spontaneous synaptic activity. It seems, therefore that functional GABAergic connectivity within the DCN is sparse and/or weak at least under our experimental conditions. Even though present in all cell types, the spontaneous GABAergic events showed significant differences between the cell types. The synaptic currents in GABAergic cells had lower amplitude, lower frequency and slower kinetics than those of non-GABAergic cells. These differences could not be sufficiently explained by considering only cell size differences or a differential GABA(A)-receptor alpha-subunit composition. Rather, the main differentiating factor appears to be the dendritic localization of GABAergic synapses in the GABAergic cells.  相似文献   

20.
Yoshioka M  Kawai Y 《Neuroscience》2007,150(4):905-914
Neural activity during critical periods could fine-tune functional synaptic connections. N-methyl-d-aspartate (NMDA) receptor activation is critically implicated in this process and blockade leads to disruption of normal circuit formation. This phenomenon has been well investigated in several neural systems including the somatosensory system, but not yet evidenced in the visceral sensory system. Ultrastructural analysis of GABAergic synapses and electrophysiological analysis of inhibitory and excitatory postsynaptic currents of the rat caudal nucleus tractus solitarii (NTS) cells revealed that developmental changes in the synaptic organizations were blocked by MK-801, an NMDA receptor antagonist, when administered at postnatal days 5–8, a presumed critical period for the visceral sensory system. Normal synapse reorganization during postnatal development dictates undifferentiated neonatal caudal NTS neurons in terms of synaptic input patterns measured by electron microscopy and electrophysiology into two cell groups: small and large cells under far stronger excitatory and inhibitory influence, respectively. Blockade by MK-801 during the critical period might leave adult neurons wired in the undifferentiated synaptic networks, possibly preventing synapse elimination and subsequent stabilization of the proper wiring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号