首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Friedreich’s ataxia (FRDA) is the most common of the inherited ataxias and is associated with GAA trinucleotide repeat expansions within the first intron of the frataxin (FXN) gene. There are expanded FXN alleles from 66 to 1,700 GAA·TTC repeats in FRDA patients and correlations between number of GAA repeats and frataxin protein levels are assumed. Here, we present for the first time frataxin protein levels as well as analysis of GAA triplet repeats in the FXN gene in a population of 50 healthy Austrian people. Frataxin protein levels were measured in lymphocytes from blood samples by ELISA and GAA repeats were analyzed by capillary electrophoresis. Rather unexpectedly, we found a high variation of frataxin protein levels among the individuals. In addition, there was no correlation between frataxin levels, GAA repeats, age and sex in this group. However, these findings are of great importance for better characterization of the disease.  相似文献   

2.
Frataxin gene point mutations in Italian Friedreich ataxia patients   总被引:1,自引:0,他引:1  
Friedreich ataxia (FRDA) is associated with a GAA-trinucleotide-repeat expansion in the first intron of the FXN gene (9q13-21), which encodes a 210-amino-acid protein named frataxin. More than 95% of patients are homozygous for 90-1,300 repeat expansion on both alleles. The remaining patients have been shown to be compound heterozygous for a GAA expansion on one allele and a micromutation on the other. The reduction of both frataxin messenger RNA (mRNA) and protein was found to be proportional to the size of the smaller GAA repeat allele. We report a clinical and molecular study of 12 families in which classical FRDA patients were heterozygous for a GAA expansion on one allele. Sequence analysis of the FXN gene allowed the identification of the second disease-causing mutation in each heterozygous patient, which makes this the second largest series of FRDA compound heterozygotes reported thus far. We have identified seven mutations, four of which are novel. Five patients carried missense mutations, whereas eight patients carried null (frameshift or nonsense) mutations. Quantitation of frataxin levels in lymphoblastoid cell lines derived from six compound heterozygous patients showed a statistically significant correlation of residual protein levels with the age at onset (r = 0.82, p < 0.05) or the GAA expansion (r = -0.76, p < 0.1). In the group of patients heterozygous for a null allele, a strong (r = -0.94, p < 0.01) correlation was observed between the size of GAA expansion and the age at onset, thus lending support to the hypothesis that the residual function of frataxin in patients' cells derive exclusively from the expanded allele.  相似文献   

3.
Two patients with a progressive ataxia are presented with clinical features consistent with classic Friedreich's ataxia (FRDA), but also with features unusual for FRDA. Analysis of DNA showed that each patient is heterozygous for the expanded GAA repeat of FRDA, but carries a base change on his other frataxin allele. For one patient a non-conservative arginine to cysteine amino acid change is predicted at amino acid 165 whereas the other mutation is found at the junction of exon one and intron one. Muscle biopsy showed an absence of frataxin immunoreactivity in the patient harbouring the intronic mutation, confirming the pathological nature of the base change. These mutations extend the range of point mutations seen in FRDA, and agree with recent reports suggesting phenotypic variation in patients with FRDA harbouring point mutations in conjunction with an expanded GAA repeat.  相似文献   

4.
Friedreich's ataxia (FRDA) is the most common hereditary ataxia, affecting about 1 in 50,000 individuals. It is caused by mutations in the frataxin gene; 98% of cases have homozygous expansions of a GAA trinucleotide in intron 1 of the frataxin gene. The remaining 2% of patients are compound heterozygotes, who have a GAA repeat expansion in one allele and a point mutation in the other allele. FRDA patients with point mutation have been suggested to have atypical clinical features. We present a case of compound heterozygotes in a FRDA patient who has a deletion of one T in the start codon (ATG) of the frataxin gene and a GAA repeat expansion in the other allele. The patient presented with chorea and subsequently developed FRDA symptoms. The disease in this case is the result of both a failure of initiation of translation and the effect of the expansion. This novel mutation extends the range of point mutations seen in FRDA patients, and also broadens the spectrum of FRDA genotype associated with chorea.  相似文献   

5.
Friedreich ataxia (FRDA) is caused by a GAA expansion in the first intron of the FXN gene, which encodes frataxin. Four percent of patients harbor a point mutation on one allele and a GAA expansion on the other. We studied an Italian patient presenting with symptoms suggestive of FRDA, and carrying a single expanded 850 GAA allele. As a second diagnostic step, frataxin was measured in peripheral blood mononuclear cells, and proved to be in the pathological range (2.95 pg/μg total protein, 12.7 % of control levels). Subsequent sequencing revealed a novel deletion in exon 5a (c.572delC) which predicted a frameshift at codon 191 and a premature truncation of the protein at codon 194 (p.T191IfsX194). FXN/mRNA expression was reduced to 69.2 % of control levels. Clinical phenotype was atypical with absent dysarthria, and rapid disease progression. l-Buthionine-sulphoximine treatment of the proband’s lymphoblasts showed a severe phenotype as compared to classic FRDA.  相似文献   

6.
OBJECTIVES: Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by expansion of GAA repeats in the frataxin gene. We have carried out the first molecular analysis at the Friedreich's ataxia locus in the Indian population. MATERIALS AND METHODS: Three families clinically diagnosed for Friedreich's ataxia were analyzed for GAA expansion at the FRDA locus. The distribution of GAA repeats was also estimated in normal individuals of Indian origin. RESULTS: All patients clinically diagnosed for Friedreich's ataxia were found to be homozygous for GAA repeat expansion. The GAA repeat in the normal population show a bimodal distribution with 94% of alleles ranging from 7-16 repeats. CONCLUSION: Indian patients with expansion at the FRDA locus showed typical clinical features of Friedreich's ataxia. The low frequency of large normal alleles (6%) could indicate that the prevalence of this disease in the Indian population is likely to be low.  相似文献   

7.
Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disease most commonly caused by a GAA trinucleotide repeat expansion in the first intron of FXN, which reduces expression of the mitochondrial protein frataxin. Approximately 98% of individuals with FRDA are homozygous for GAA expansions, with the remaining 2% compound heterozygotes for a GAA expansion and a point mutation within FXN. Two siblings with early onset of symptoms experienced rapid loss of ambulation by 8 and 10 years. Diagnostic testing for FRDA demonstrated one GAA repeat expansion of 1010 repeats and one non-expanded allele. Sequencing all five exons of FXN identified a novel deletion-insertion mutation in exon 3 (c.371_376del6ins15), which results in a modified frataxin protein sequence at amino acid positions 124–127. Specifically, the amino acid sequence changes from DVSF to VHLEDT, increasing frataxin from 211 residues to 214. Using the known structure of human frataxin, a theoretical 3D model of the mutant protein was developed. In the event that the modified protein is expressed and stable, it is predicted that the acidic interface of frataxin, known to be involved in iron binding and interactions with the iron–sulphur cluster assembly factor IscU, would be impaired.  相似文献   

8.
OBJECTIVES: Friedreich's ataxia (FRDA), the most common inherited ataxia, is associated with an unstable expansion of GAA repeats in the first intron of the frataxin gene on chromosome 9. We investigated the mosaicism of expanded alleles to elucidate the basis for genotype phenotype correlations. PATIENTS AND METHODS: We studied the instability of the GAA repeat in blood leukocytes from 45 individuals including 20 FRDA patients and 20 non-affected controls using small pool PCR combined with Southern blotting and hybridization. RESULTS: Expanded GAA repeats could be resolved into distinct alleles showing differences in length up to 1,000 triplets for an individual genome. We found a significant correlation between the size of the largest allele and the range of mosaicism. CONCLUSION: The somatic mosaicism for expanded repeats observed in FRDA patients rendered the precise measurement of allele sizes more difficult and may influence the results of studies correlating the clinical spectrum with the genotype. Following, a confidential prediction of the prognosis deduced from the repeat length is hardly possible for an individual FRDA patient.  相似文献   

9.
Journal of Neurology - Patients with Friedreich ataxia (FRDA) have severely reduced levels of the mitochondrial protein frataxin, which results from a large GAA triplet-repeat expansion within the...  相似文献   

10.
Friedreich ataxia (FRDA) is the most common hereditary autosomal recessive ataxia, but is also a multisystemic condition with frequent presence of cardiomyopathy or diabetes. It has been linked to expansion of a GAA-triplet repeat in the first intron of the FXN gene, leading to a reduced level of frataxin, a mitochondrial protein which, by controlling both iron entry and/or sulfide production, is essential to properly assemble and protect the Fe-S cluster during the initial stage of biogenesis. Several data emphasize the role of oxidative damage in FRDA, but better understanding of pathophysiological consequences of FXN mutations has led to develop animal models. Conditional knockout models recapitulate important features of the human disease but lack the genetic context, GAA repeat expansion-based knock-in and transgenic models carry a GAA repeat expansion but they only show a very mild phenotype. Cells derived from FRDA patients constitute the most relevant frataxin-deficient cell model as they carry the complete frataxin locus together with GAA repeat expansions and regulatory sequences. Induced pluripotent stem cell (iPSC)-derived neurons present a maturation delay and lower mitochondrial membrane potential, while cardiomyocytes exhibit progressive mitochondrial degeneration, with frequent dark mitochondria and proliferation/accumulation of normal mitochondria. Efforts in developing therapeutic strategies can be divided into three categories: iron chelators, antioxidants and/or stimulants of mitochondrial biogenesis, and frataxin level modifiers. A promising therapeutic strategy that is currently the subject of intense research is to directly target the heterochromatin state of the GAA repeat expansion with histone deacytelase inhibitors (HDACi) to restore frataxin levels.  相似文献   

11.
Friedreich ataxia (FRDA) is an autosomal recessive inherited neurodegenerative disorder leading to reduced expression of the mitochondrial protein frataxin. Previous studies showed frataxin upregulation in FRDA following treatment with recombinant human erythropoietin (rhuEPO). Dose-response interactions between frataxin and rhuEPO have not been studied until to date. We administered escalating rhuEPO single doses (5,000, 10,000 and 30,000?IU) in monthly intervals to five adult FRDA patients. Measurements of frataxin, serum erythropoietin levels, iron metabolism and mitochondrial function were carried out. Clinical outcome was assessed using the "Scale for the assessment and rating of ataxia". We found maximal erythropoietin serum concentrations 24?h after rhuEPO application which is comparable to healthy subjects. Frataxin levels increased significantly over 3?months, while ataxia rating did not reveal clinical improvement. All FRDA patients had considerable ferritin decrease. NADH/NAD ratio, an indicator of mitochondrial function, increased following rhuEPO treatment. In addition to frataxin upregulation in response to continuous low-dose rhuEPO application shown in previous studies, our results indicate for a long-lasting frataxin increase after single high-dose rhuEPO administration. To detect frataxin-derived neuroprotective effects resulting in clinically relevant improvement, well-designed studies with extended time frame are required.  相似文献   

12.
Fourteen patients with classical features of Friedreich's ataxia (FRDA) were examined. The clinical diagnosis of FRDA was afterwards confirmed in all patients by the appropriate DNA investigation which showed markedly increased amounts of GAA repeats on both alleles of the frataxin gene. None of our patients presented with atypical features such as late-onset FRDA, FRDA with retained deep tendon reflexes or with a very slow course. Five of them are not yet confined to a wheelchair. But for 1 patient who died at age 36 years and had the largest number of GAA repeats on both alleles, there was no significant correlation between number of repeats in the shortest allele, age at onset, age at wheelchair dependence, duration of the disease and main clinical signs. All patients but 3 had between 500 and 1,050 GAA repeats. The 3 patients with, respectively, 400, 450 and 500 repeats on the shortest allele had a clinical course comparable to the other patients. Even in the case of variations in the number of repeats in the same sibship, there were only modest differences between the siblings concerning age at onset of the disease, symptoms and signs and age at wheelchair dependence. There were no qualitative differences in the main clinical features and laboratory investigations in the full-blown phase of the disorder. Molecular biology has become a major element in the diagnosis of FRDA. DNA testing for FRDA should be applied to every case of idiopathic autosomal recessive or sporadic ataxia. However, the clinical features of FRDA remain fully characteristic in many patients and keep their diagnostic value.  相似文献   

13.
We studied genotype-phenotype correlations in a group of 100 patients with typical Friedreich ataxia (FRDA), and in three groups of patients with atypical clinical presentations, including 44 Acadian FRDA, 8 late-onset FRDA (LOFA), and 6 FRDA with retained reflexes (FARR). All patients, except 3 with typical FRDA, carried two copies of the FRDA-associated GAA triplet repeat expansion. Overall, the phenotypic spectrum of FRDA appeared to be wider than defined by the currently used diagnostic criteria. Our study indicated the existence of several sources of variability in FRDA. Patients with larger GAA expansions tended to have earlier onset and were more likely to show additional manifestations of the disease. Mitotic instability of the expanded GAA repeats may partially account for the limited degree of correlation between expansion sizes as determined in lymphocytes and clinical parameters. Some clinical variants associated with specific FRDA haplotypes, such as Acadian FRDA and FARR, turned out to be unrelated to expansion sizes. No polymorphism in the frataxin coding sequence could be associated with these clinical variants.  相似文献   

14.
Friedreich's ataxia (FRDA), the most-common form of autosomal recessive ataxia, is inherited in most cases by a large expansion of a GAA triplet repeat in the first intron of the frataxin (X25) gene. Genetic heterogeneity in FRDA has been previously reported in typical FRDA families that do not link to the FRDA locus on chromosome 9q13. We report localization of a second FRDA locus (FRDA2) to chromosome 9p23-9p11, and we provide evidence for further genetic heterogeneity of the disease, in a family with the classic FRDA phenotype.  相似文献   

15.
Friedreich ataxia (FRDA) is an inherited neurodegenerative disorder caused by GAA repeat expansion within the FXN gene, leading to epigenetic changes and heterochromatin-mediated gene silencing that result in a frataxin protein deficit. Histone deacetylase (HDAC) inhibitors, including pimelic o-aminobenzamide compounds 106, 109 and 136, have previously been shown to reverse FXN gene silencing in short-term studies of FRDA patient cells and a knock-in mouse model, but the functional consequences of such therapeutic intervention have thus far not been described. We have now investigated the long-term therapeutic effects of 106, 109 and 136 in our GAA repeat expansion mutation-containing YG8R FRDA mouse model. We show that there is no overt toxicity up to 5 months of treatment and there is amelioration of the FRDA-like disease phenotype. Thus, while the neurological deficits of this model are mild, 109 and 106 both produced an improvement of motor coordination, whereas 109 and 136 produced increased locomotor activity. All three compounds increased global histone H3 and H4 acetylation of brain tissue, but only 109 significantly increased acetylation of specific histone residues at the FXN locus. Effects on FXN mRNA expression in CNS tissues were modest, but 109 significantly increased frataxin protein expression in brain tissue. 109 also produced significant increases in brain aconitase enzyme activity, together with reduction of neuronal pathology of the dorsal root ganglia (DRG). Overall, these results support further assessment of HDAC inhibitors for treatment of Friedreich ataxia.  相似文献   

16.
17.
Friedreich ataxia (FRDA) is the most common autosomal recessive ataxia characterized by a combination of neurological involvement, cardiomyopathy, and skeletal and glucose metabolism disturbances. FRDA is caused by mutations in FXN gene that results in reduction of mRNA and protein levels of frataxin. Previous microarray and real-time quantitative PCR (qPCR) studies showed that the downregulation of FXN is associated with a complex gene expression profile. However, these studies showed a wide variability in the subset of genes with altered expression among tissues and models. Genes differentially expressed in peripheral blood cells (PBC) could potentially help in the understanding of FRDA pathophysiology and also function as reliable disease biomarkers obtained from an easily accessible tissue, which could have implications in clinical practice. This study aimed to validate by qPCR the expression of 26 genes, revealed as differentially expressed by other studies, using peripheral blood cells (PBC) of 11 FRDA patients compared to 11 healthy controls. We found a robust downregulation of FXN, but no statistically significant differences were found between FRDA and controls for the remaining genes. Except for FXN, our study did not find a differential gene expression profile in PBC of FRDA patients and a reliable gene expression profile biomarker in a clinical relevant and noninvasive tissue remains unclear.  相似文献   

18.

Background

Optic neuropathy is a near ubiquitous feature of Friedreich's ataxia (FRDA). Previous studies have examined varying aspects of the anterior and posterior visual pathways but none so far have comprehensively evaluated the heterogeneity of degeneration across different areas of the retina, changes to the macula layers and combined these with volumetric MRI studies of the visual cortex and frataxin level.

Methods

We investigated 62 genetically confirmed FRDA patients using an integrated approach as part of an observational cohort study. We included measurement of frataxin protein levels, clinical evaluation of visual and neurological function, optical coherence tomography to determine retinal nerve fibre layer thickness and macular layer volume and volumetric brain MRI.

Results

We demonstrate that frataxin level correlates with peripapillary retinal nerve fibre layer thickness and that retinal sectors differ in their degree of degeneration. We also shown that retinal nerve fibre layer is thinner in FRDA patients than controls and that this thinning is influenced by the AAO and GAA1. Furthermore we show that the ganglion cell and inner plexiform layers are affected in FRDA. Our MRI data indicate that there are borderline correlations between retinal layers and areas of the cortex involved in visual processing.

Conclusion

Our study demonstrates the uneven distribution of the axonopathy in the retinal nerve fibre layer and highlight the relative sparing of the papillomacular bundle and temporal sectors. We show that thinning of the retinal nerve fibre layer is associated with frataxin levels, supporting the use the two biomarkers in future clinical trials design. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.  相似文献   

19.
Friedreich's ataxia (FRDA) is an autosomal recessive inherited disorder characterized by progressive gait and limb ataxia, dysarthria, areflexia, loss of vibratory and position sense, and a progressive motor weakness of central origin. Additional features include hypertrophic cardiomyopathy and diabetes. Large GAA repeat expansions in the first intron of the FXN gene are the most common mutation underlying FRDA. Patients show severely reduced levels of a FXN-encoded mitochondrial protein called frataxin. Frataxin deficiency is associated with abnormalities of iron metabolism: decreased iron-sulfur cluster (ISC) biogenesis, accumulation of iron in mitochondria and depletion in the cytosol, enhanced cellular iron uptake. Some models have also shown reduced heme synthesis. Evidence for oxidative stress has been reported. Respiratory chain dysfunction aggravates oxidative stress by increasing leakage of electrons and the formation of superoxide. In vitro studies have demonstrated that Frataxin deficient cells not only generate more free radicals, but also show a reduced capacity to mobilize antioxidant defenses. The search for experimental drugs increasing the amount of frataxin is a very active and timely area of investigation. In cellular and in animal model systems, the replacement of frataxin function seems to alleviate the symptoms or even completely reverse the phenotype. Therefore, drugs increasing the amount of frataxin are attractive candidates for novel therapies. This review will discuss recent findings on FRDA pathogenesis, frataxin function, new treatments, as well as recent animal and cellular models. Controversial aspects are also discussed.  相似文献   

20.
BACKGROUND: Friedrich ataxia (FRDA1) is most often the result of a homozygous GAA repeat expansion in the first intron of the frataxin gene (FRDA gene). This condition is seen in individuals of European, North African, Middle Eastern and Indian descent and has not been reported in Southeast Asian populations. Approximately 4% of FRDA1 patients are compound heterozygotes. These patients have a GAA expansion on one allele and a point mutation on the other and have been reported to have an atypical phenotype. OBJECTIVE: To describe a novel dinucleotide deletion in the FRDA gene in two Malaysian siblings with FRDA1. SETTING: Tertiary referral university hospital setting. PATIENTS AND METHODS: A previously healthy 10-year-old Malaysian boy, presented with fever, lethargy, headaches, dysarthria, dysphagia, vertigo and ataxia which developed over a one week period. His neurological exam revealed evidence of dysarthria and ataxia, mild generalized weakness and choreoform movements of the tongue and hands. His reflexes were absent and Babinski sign was present bilaterally. A nine-year-old sister was found to have mild ataxia but was otherwise neurologically intact. RESULTS: Molecular genetic studies demonstrated that both siblings were compound heterozygotes with a GAA expansion on one allele and a novel dinucleotide deletion on the other allele. CONCLUSIONS: We describe a novel dinucleotide deletion in the first exon of the FRDA gene in two siblings with FRDA1. Additionally this is the first report of FRDA1 occurring in a family of southeast Asian descent, it demonstrates intrafamilial phenotypic variability, and confirms that atypical phenotypes are associated with compound heterozygosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号