首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIM: To assess the efficacy and safety of a 24-week treatment with sitagliptin, a highly selective once-daily oral dipeptidyl peptidase-4 (DPP-4) inhibitor, in patients with type 2 diabetes who had inadequate glycaemic control [glycosylated haemoglobin (HbA(1c)) >or=7.5% and or=4 mg/day) monotherapy and 229 were on glimepiride (>or=4 mg/day) plus metformin (>or=1,500 mg/day) combination therapy. Patients exceeding pre-specified glycaemic thresholds during the double-blind treatment period were provided open-label rescue therapy (pioglitazone) until study end. The primary efficacy analysis evaluated the change in HbA(1c) from baseline to Week 24. Secondary efficacy endpoints included fasting plasma glucose (FPG), 2-h post-meal glucose and lipid measurements. RESULTS: Mean baseline HbA(1c) was 8.34% in the sitagliptin and placebo groups. After 24 weeks, sitagliptin reduced HbA(1c) by 0.74% (p < 0.001) relative to placebo. In the subset of patients on glimepiride plus metformin, sitagliptin reduced HbA(1c) by 0.89% relative to placebo, compared with a reduction of 0.57% in the subset of patients on glimepiride alone. The addition of sitagliptin reduced FPG by 20.1 mg/dl (p < 0.001) and increased homeostasis model assessment-beta, a marker of beta-cell function, by 12% (p < 0.05) relative to placebo. In patients who underwent a meal tolerance test (n = 134), sitagliptin decreased 2-h post-prandial glucose (PPG) by 36.1 mg/dl (p < 0.001) relative to placebo. The addition of sitagliptin was generally well tolerated, although there was a higher incidence of overall (60 vs. 47%) and drug-related adverse experiences (AEs) (15 vs. 7%) in the sitagliptin group than in the placebo group. This was largely because of a higher incidence of hypoglycaemia AEs (12 vs. 2%, respectively) in the sitagliptin group compared with the placebo group. Body weight modestly increased with sitagliptin relative to placebo (+0.8 vs. -0.4 kg; p < 0.001). CONCLUSIONS: Sitagliptin 100 mg once daily significantly improved glycaemic control and beta-cell function in patients with type 2 diabetes who had inadequate glycaemic control with glimepiride or glimepiride plus metformin therapy. The addition of sitagliptin was generally well tolerated, with a modest increase in hypoglycaemia and body weight, consistent with glimepiride therapy and the observed degree of glycaemic improvement.  相似文献   

2.
Aim: To evaluate the efficacy and safety of adding sitagliptin or glimepiride to the treatment regimen of patients with type 2 diabetes mellitus and inadequate glycaemic control on metformin monotherapy. Methods: Patients with type 2 diabetes and an HbA1c of 6.5–9.0% while on a stable dose of metformin (≥1500 mg/day) combined with diet and exercise for at least 12 weeks were randomized in a double‐blind manner to receive either sitagliptin 100 mg daily (N = 516) or glimepiride (starting dose 1 mg/day and up‐titrated, based upon patient's self‐monitoring of blood glucose results, to a maximum dose of up to 6 mg/day) (N = 519) for 30 weeks. The primary analysis assessed whether sitagliptin is non‐inferior to glimepiride in reducing HbA1c at week 30 (based on the criterion of having an upper bound of the 95% CI less than the prespecified non‐inferiority bound of 0.4%). Results: The mean baseline HbA1c was 7.5% in both the sitagliptin group (n = 443) and the glimepiride group (n = 436). After 30 weeks, the least squares (LS) mean change in HbA1c from baseline was ?0.47% with sitagliptin and ?0.54% with glimepiride, with a between‐group difference (95% CI) of 0.07% (?0.03, 0.16). This result met the prespecified criterion for declaring non‐inferiority. The percentages of patients with an HbA1c < 7.0% at week 30 were 52 and 60% in the sitagliptin and glimepiride groups, respectively. The LS mean change in fasting plasma glucose from baseline (95% CI) was ?0.8 mmol/l (?1.0, ?0.6) with sitagliptin and ?1.0 mmol/l (?1.2, ?0.8) with glimepiride, for a between‐group difference (95% CI) of 0.2 mmol/l (?0.1, 0.4). The percentages of patients for whom hypoglycaemia was reported were 7% in the sitagliptin group and 22% in the glimepiride group (percentage‐point difference = ?15, p < 0.001). Relative to baseline, sitagliptin was associated with a mean weight loss (?0.8 kg), whereas glimepiride was associated with a mean weight gain (1.2 kg), yielding a between‐group difference of ?2.0 kg (p < 0.001). Conclusions: In patients with type 2 diabetes and inadequate glycaemic control on metformin monotherapy, the addition of sitagliptin or glimepiride led to similar improvement in glycaemic control after 30 weeks. Sitagliptin was generally well tolerated. Compared to treatment with glimepiride, treatment with sitagliptin was associated with a lower risk of hypoglycaemia and with weight loss versus weight gain ( ClinicalTrials.gov : NCT00701090).  相似文献   

3.
We investigated the long‐term efficacy and safety of gemigliptin and the efficacy and safety of gemigliptin treatment after once‐daily treatment with sitagliptin 100 mg, in patients with type 2 diabetes. This was a 28‐week extension of a 24‐week, randomized, double‐blind, parallel study of gemigliptin or sitagliptin added to ongoing metformin therapy. After randomization to sitagliptin 100 mg qd (S), gemigliptin 25 mg bid (G1) or gemigliptin 50 mg qd (G2) and after completing 24 weeks of treatment, 118 patients switched from gemigliptin 25 mg bid to 50 mg qd (G1/G2), 111 patients continued gemigliptin 50 mg qd (G2/G2) and 106 patients switched from sitagliptin 100 mg qd to gemigliptin 50 mg qd (S/G2). All 3 treatments reduced glycated haemoglobin (HbA1c) (S/G2,?0.99% [95% CI ?1.25%, ?0.73%]; G1/G2, ?1.11% [95% CI ?1.33%, ?0.89%]; G2/G2, ?1.06% [95% CI ?1.28%, ?0.85%]). The percentage of patients achieving HbA1c < 6.5% was 27.6% in the G1/G2 group at both Week 24 and Week 52, and ranged from 27.3% to 32.7% in the G2/G2 group (difference in proportions, 5% [95% CI ?6%, 17%]), while it increased from 6.8% to 27.3% from Week 24 to Week 52 in the S/G2 group (difference in proportions, 20% [95% CI 7%, 34%]). Addition of gemigliptin 50 mg qd to metformin was shown to be efficacious for 52 weeks. Switching from sitagliptin 100 mg to gemigliptin 50 mg showed consistent glyacemic control over the previous treatment.  相似文献   

4.
Aims: Dapagliflozin increases urinary glucose excretion by selectively inhibiting renal sodium–glucose transporter 2, an insulin‐independent mechanism of action that may be complementary to that of other oral antidiabetes drugs. The current studies assessed the potential for pharmacokinetic (PK) interaction between dapagliflozin and pioglitazone, metformin, glimepiride or sitagliptin in healthy subjects following single‐dose administration. Methods: In open‐label, randomized, three‐period, three‐treatment crossover studies, 24 subjects received 50 mg dapagliflozin, 45 mg pioglitazone or the combination, while 18 subjects received 20 mg dapagliflozin, 1000 mg metformin or the combination. In an open‐label, randomized, five‐period, five‐treatment, unbalanced crossover study, 18 subjects first received 20 mg dapagliflozin, 4 mg glimepiride or the combination, and afterward 100 mg sitagliptin or sitagliptin plus 20 mg dapagliflozin. Blood samples were taken over 72 h of each treatment period. Lack of PK interaction was defined as the ratio of geometric means and 90% confidence interval (CI) for combination:monotherapy being within the range of 0.80–1.25. Results: Co‐administration of dapagliflozin with pioglitazone, metformin, glimepiride or sitagliptin had no effect on dapagliflozin maximum plasma concentration (Cmax) or area under the plasma concentration‐time curve (AUC). Similarly, dapagliflozin did not affect the Cmax or AUC for the co‐administered drug, except for slight extensions of the 90% CI for the ratio of geometric means for glimepiride AUC (upper limit 1.29) and pioglitazone Cmax (lower limit 0.75). All monotherapies and combination therapies were well tolerated. Conclusion: Dapagliflozin can be co‐administered with pioglitazone, metformin, glimepiride or sitagliptin without dose adjustment of either drug.  相似文献   

5.
Aim: To assess the 104‐week efficacy and safety of sitagliptin and metformin as initial combination therapy and as monotherapy in patients with type 2 diabetes and inadequate glycaemic control (HbA1c 7.5–11%) on diet and exercise. Methods: This study was a 50‐week, double‐blind extension of a 54‐week, randomized, double‐blind, factorial study of the initial combination of sitagliptin and metformin, metformin monotherapy and sitagliptin monotherapy (104 weeks total duration). Patients assigned to active therapy in the 54‐week base study remained on those treatments in the extension study: sitagliptin 50 mg b.i.d. + metformin 1000 mg b.i.d. (higher dose combination), sitagliptin 50 mg b.i.d. + metformin 500 mg b.i.d. (lower dose combination), metformin 1000 mg b.i.d. (higher dose), metformin 500 mg b.i.d. (lower dose) and sitagliptin 100 mg q.d. Patients randomized to receive the sequence of placebo/metformin were switched, in a blinded manner, from placebo to metformin monotherapy uptitrated to 1000 mg b.i.d. beginning at week 24 and remained on higher dose metformin through the extension. Results: Amongst patients who entered the extension study without having initiated glycaemic rescue therapy, least‐squares mean changes in HbA1c from baseline at week 104 were ?1.7% (higher dose combination), ?1.4% (lower dose combination), ?1.3% (higher dose), ?1.1% (lower dose) and ?1.2% (sitagliptin). The proportions of patients with an HbA1c <7% at week 104 were 60% (higher dose combination), 45% (lower dose combination), 45% (higher dose), 28% (lower dose) and 32% (sitagliptin). Fasting and postmeal measures of glycaemic control and β‐cell function improved in all groups, with glycaemic responses generally maintained over the 104‐week treatment period. The incidence of hypoglycaemia was low across all groups. The incidences of gastrointestinal adverse experiences were generally lower in the sitagliptin group and similar between the metformin monotherapy and combination groups. Conclusions: Initial combination therapy with sitagliptin and metformin and monotherapy with either drug alone provided substantial and sustained glycaemic improvements and were well tolerated over 104 weeks in patients with type 2 diabetes.  相似文献   

6.
Aims: This study was conducted to compare the glycaemic efficacy and safety of initial combination therapy with the fixed‐dose combination of sitagliptin and metformin versus metformin monotherapy in drug‐naive patients with type 2 diabetes. Methods: This double‐blind study (18‐week Phase A and 26‐week Phase B) randomized 1250 drug‐naÏve patients with type 2 diabetes [mean baseline haemoglobin A1c (HbA1c) 9.9%] to sitagliptin/metformin 50/500 mg bid or metformin 500 mg bid (uptitrated over 4 weeks to achieve maximum doses of sitagliptin/metformin 50/1000 mg bid or metformin 1000 bid). Results of the primary efficacy endpoint (mean HbA1c reductions from baseline at the end of Phase A) are reported herein. Results: At week 18, mean change from baseline HbA1c was ?2.4% for sitagliptin/metformin FDC and ?1.8% for metformin monotherapy (p < 0.001); more patients treated with sitagliptin/metformin FDC had an HbA1c value <7% (p < 0.001) versus metformin monotherapy. Changes in fasting plasma glucose were significantly greater with sitagliptin/metformin FDC (?3.8 mmol/l) versus metformin monotherapy (?3.0 mmol/l; p < 0.001). Homeostasis model assessment of β‐cell function (HOMA‐β) and fasting proinsulin/insulin ratio were significantly improved with sitagliptin/metformin FDC versus metformin monotherapy. Baseline body weight was reduced by 1.6 kg in each group. Both treatments were generally well tolerated with a low and similar incidence of hypoglycaemia. Abdominal pain (1.1 and 3.9%; p = 0.002) and diarrhoea (12.0 and 16.6%; p = 0.021) occurred significantly less with sitagliptin/metformin FDC versus metformin monotherapy; the incidence of nausea and vomiting was similar in both groups. Conclusion: Compared with metformin monotherapy, initial treatment with sitagliptin/metformin FDC provided superior glycaemic improvement with a similar degree of weight loss and lower incidences of abdominal pain and diarrhoea.  相似文献   

7.
Aims: Combination therapy with sitagliptin and metformin has shown superior efficacy compared with metformin monotherapy. In this study, we compare two strategies: initial combination therapy with sitagliptin/metformin as a fixed‐dose combination (FDC) and initial metformin monotherapy, with the option to add additional antihyperglycaemic agents (AHAs) in either treatment arm during the second phase of the study in order to reach adequate glycaemic control. Methods: We evaluated the sitagliptin and metformin FDC compared with metformin monotherapy over 44 weeks in 1250 patients with type 2 diabetes mellitus in a two‐part, double‐blind, randomized, controlled clinical trial. The initial 18‐week portion (Phase A) of this study in which additional AHAs were only allowed based on prespecified glycaemic criteria, has been previously reported. Here, we present results from the 26‐week Phase B portion of the study during which double‐blind study medication continued; however, unlike Phase A, during Phase B investigators were unmasked to results for haemoglobin A1C (HbA1c) and fasting plasma glucose (FPG) and directed to manage glycaemic control by adding incremental AHA(s) as deemed clinically appropriate. Results: There were 1250 patients randomized in the study with 965 completing Phase A and continuing in Phase B. Among patients receiving sitagliptin/metformin FDC or metformin monotherapy, 8.8% and 16.7% received additional AHA therapy, respectively. Although glycaemic therapy in both groups was to have been managed to optimize HbA1c reductions with the option for investigators to supplement with additional AHAs during Phase B, patients randomized to initial therapy with sitagliptin/metformin FDC had larger reductions of HbA1c from baseline compared with patients randomized to initial metformin monotherapy [least squares (LS) mean change: ?2.3% and ?1.8% (p < 0.001 for difference) for sitagliptin/metformin FDC and metformin monotherapy groups, respectively]. A significantly larger reduction in FPG from baseline was observed in the sitagliptin/metformin FDC group compared with the metformin monotherapy group (p = 0.001). Significantly more patients in the sitagliptin/metformin FDC group had an HbA1c of less than 7.0% or less than 6.5% compared with those on metformin monotherapy. Both treatment strategies were generally well tolerated, with a low and similar incidence of hypoglycaemia in both groups and lower incidences of abdominal pain and diarrhoea in the sitagliptin/metformin FDC group compared with the metformin monotherapy group. Conclusions: A strategy initially implementing combination therapy with sitagliptin/metformin FDC was superior to a strategy initially implementing metformin monotherapy, even when accounting for the later addition of supplemental AHAs. Sitagliptin/metformin FDC was generally well tolerated.  相似文献   

8.
AIM: The aim of this study was to assess the effect of sitagliptin, a dipeptidyl peptidase-4 inhibitor, on 24-h glucose control when added to the regimen of patients with type 2 diabetes who had inadequate glycaemic control on metformin therapy. METHODS: In a double-blind, randomized, placebo-controlled, two-period crossover study, patients with type 2 diabetes with inadequate glycaemic control on metformin monotherapy (i.e. on a stable dose of > or = 1500 mg/day for > or = 6 weeks prior to the screening visit and an haemoglobin A(1c) (HbA(1c)) > or = 6.5% and <10% and fasting plasma glucose (FPG) < or = 240 mg/dl) were recruited for participation. A total of 28 patients (baseline HbA(1c) range = 6.5-9.6%) receiving metformin were randomized into one of two treatment sequences: the addition of placebo for 4 weeks followed by the addition of sitagliptin 50 mg twice daily (b.i.d.) for 4 weeks, or vice versa. At the end of each treatment period, patients were domiciled for frequent blood sampling over 24 h. The primary endpoint was 24-h weighted mean glucose (WMG) and secondary endpoints included change in FPG, mean of 7 daily self-blood glucose measurements (MDG) and fructosamine. beta-cell function was assessed from glucose and C-peptide concentrations were measured during the 5-h period after a standard breakfast meal by using the C-peptide minimal model. RESULTS: Despite a carryover effect from period 1 to period 2, the combined period 1 and period 2 results for glycaemic endpoints were statistically significant for sitagliptin relative to placebo when added to ongoing metformin therapy. To account for the carryover effect, the period 1 results were also compared between the groups. Following period 1, there were significant least-squares (LS) mean reductions in 24-h WMG of 32.8 mg/dl, significant LS mean reduction from baseline in MDG of 28 mg/dl, FPG of 20.3 mg/dl and fructosamine of 33.7 mmol/l in patients treated with sitagliptin relative to placebo (p < 0.05). When added to ongoing metformin therapy, parameters of beta-cell function were significantly improved with sitagliptin compared with placebo. No weight gain or increases in gastrointestinal adverse events or hypoglycaemia events were observed with sitagliptin relative to placebo during this study. CONCLUSIONS: In this study, the addition of sitagliptin 50 mg b.i.d. to ongoing metformin therapy improved 24-h glycaemic control and beta-cell function, and was generally well tolerated in patients with type 2 diabetes.  相似文献   

9.
The objective of this study was to evaluate the efficacy and safety of gemigliptin added to a stable dose of insulin alone or of insulin in combination with metformin in patients with type 2 diabetes mellitus. After a two-week run-in period, patients were randomized 2:1 to receive gemigliptin 50 mg or placebo once daily as add-on to background therapy with insulin or insulin plus metformin for 24 weeks. The primary endpoint was change in haemoglobin A1c (HbA1c) from baseline at Week 24. Baseline characteristics were similar between the gemigliptin (n = 188) and placebo (n = 95) groups in terms of HbA1c (8.1%). At Week 24, the gemigliptin group showed a statistically significant reduction in mean HbA1c from baseline as compared with placebo (between-group mean difference, −0.7% [95% CI, −0.9% to −0.4%]; P-value < 0.0001). The incidence of overall adverse events and the number of hypoglycaemic adverse events were similar between the study groups. Gemigliptin added to insulin alone or to insulin in combination with metformin resulted in superior glycaemic control compared to that in the placebo group and was well tolerated for 24 weeks in patients with type 2 diabetes mellitus, without causing weight gain or increasing the incidence of hypoglycaemia.  相似文献   

10.
This study evaluated the effects of renal impairment (RI) and haemodialysis (HD) on the pharmacokinetics of gemigliptin, a novel dipeptidyl peptidase‐4 (DPP‐4) inhibitor. After a 100 mg administration to subjects with normal renal function (n = 23) or RI (n = 24), plasma, urine or dialysate samples were analysed. Control subjects were matched to patients based on age, gender and body mass index. Patients with mild, moderate, severe RI and end‐stage renal disease (ESRD) showed 1.20, 2.04, 1.50 and 1.66‐fold (1.10, 1.49, 1.22 and 1.21‐fold) increase of mean area under the time‐plasma concentration curve from 0 to infinity (AUCinf) [maximum plasma concentration (Cmax)] of gemigliptin, respectively. Pharmacokinetics of gemigliptin was comparable between HD and non‐HD periods in ESRD patients. Less than 4% of the dose was removed by 4 h HD. RI appeared to have modest effect on the gemigliptin disposition. No dose adjustment in patients with RI is proposed on the basis of exposure–response relationship. Impact of HD on the removal of gemigliptin was negligible.  相似文献   

11.
Aim: To examine the effects of 12 weeks of treatment with the DPP‐4 inhibitor, sitagliptin, on gastrointestinal hormone responses to a standardized mixed meal and beta cell secretory capacity, measured as glucose and non‐glucose induced insulin secretion during a hyperglycaemic clamp, in patients with type 2 diabetes. Method: A double‐blinded, placebo‐controlled study over 12 weeks in which 24 patients with T2DM were randomized to receive either sitagliptin (Januvia) 100 mg qd or placebo as an add‐on therapy to metformin. In week 0, 1 and 12 patients underwent a meal test and a 90‐min 20 mM hyperglycaemic clamp with 5 g of l ‐arginine infusion. Main outcome measure was postprandial total glucagon‐like peptide 1 (GLP‐1) concentration. Additional measures were insulin and C‐peptide, glycaemic control, intact and total peptide YY (PYY) and glucose‐dependent insulinotropic polypeptide (GIP), and intact glucagon‐like peptide 2 (GLP‐2) and GLP‐1. Results: All patients [sitagliptin n = 12, age: 59.5 (39–64) years, HbA1c: 8.0 (7.3–10.0)%, BMI: 33.2 (29.3–39.4); placebo n = 12, age: 60 (31–72) years, HbA1c: 7.7 (7.1–9.8)%, BMI: 30.7 (25.7–40.5)] [median (range)] completed the trial. Sitagliptin treatment improved glycaemic control, had no effect on total GLP‐1, GIP or intact GLP‐2, but reduced total PYY and PYY3‐ 36, and increased PYY1‐ 36 and intact incretin hormones. Sitagliptin improved first and second phases of beta cell secretion and maximal secretory capacity. All effects were achieved after 1 week. No significant changes occurred in the placebo group. Conclusion: The postprandial responses of total GLP‐1 and GIP and intact GLP‐2 were unaltered. PYY degradation was prevented. Glucose and non‐glucose induced beta cell secretion was improved. There was no difference in responses to sitagliptin between 1 and 12 weeks of treatment.  相似文献   

12.
Objective: To evaluate the efficacy and tolerability of sitagliptin when added to insulin therapy alone or in combination with metformin in patients with type 2 diabetes. Methods: After a 2 week placebo run‐in period, eligible patients inadequately controlled on long‐acting, intermediate‐acting or premixed insulin (HbA1c ≥ 7.5% and ≤ 11%), were randomised 1:1 to the addition of once‐daily sitagliptin 100 mg or matching placebo over a 24‐week study period. The study capped the proportion of randomised patients on insulin plus metformin at 75%. Further, the study capped the proportion of randomised patients on premixed insulin at 25%. The metformin dose and the insulin dose were to remain stable throughout the study. The primary endpoint was HbA1c change from baseline at week 24. Results: Mean baseline characteristics were similar between the sitagliptin (n = 322) and placebo (n = 319) groups, including HbA1c (8.7 vs. 8.6%), diabetes duration (13 vs. 12 years), body mass index (31.4 vs. 31.4 kg/m2), and total daily insulin dose (51 vs. 52 IU), respectively. At 24 weeks, the addition of sitagliptin significantly (p < 0.001) reduced HbA1c by 0.6% compared with placebo (0.0%). A greater proportion of patients achieved an HbA1c level < 7% while randomised to sitagliptin as compared with placebo (13 vs. 5% respectively; p < 0.001). Similar HbA1c reductions were observed in the patient strata defined by insulin type (long‐acting and intermediate‐acting insulins or premixed insulins) and by baseline metformin treatment. The addition of sitagliptin significantly (p < 0.001) reduced fasting plasma glucose by 15.0 mg/dl (0.8 mmol/l) and 2‐h postmeal glucose by 36.1 mg/dl (2.0 mmol/l) relative to placebo. A higher incidence of adverse experiences was reported with sitagliptin (52%) compared with placebo (43%), due mainly to the increased incidence of hypoglycaemia (sitagliptin, 16% vs. placebo, 8%). The number of hypoglycaemic events meeting the protocol‐specified criteria for severity was low with sitagliptin (n = 2) and placebo (n = 1). No significant change from baseline in body weight was observed in either group. Conclusion: In this 24‐week study, the addition of sitagliptin to ongoing, stable‐dose insulin therapy with or without concomitant metformin improved glycaemic control and was generally well tolerated in patients with type 2 diabetes.  相似文献   

13.
Aim: To compare the efficacy and safety of monotherapy with sitagliptin and metformin in treatment‐naïve patients with type 2 diabetes. Methods: In a double‐blind study, 1050 treatment‐naïve patients (i.e. not taking an antihyperglycaemic agent for ≥16 weeks prior to study entry) with type 2 diabetes and an HbA1c 6.5–9% were randomized (1:1) to treatment with once‐daily sitagliptin 100 mg (N = 528) or twice‐daily metformin 1000 mg (N = 522) for 24 weeks. Metformin was up‐titrated from 500 to 2000 mg per day (or maximum tolerated daily dose ≥1000 mg) over a period of 5 weeks. The primary analysis used a per‐protocol (PP) approach to assess whether sitagliptin was non‐inferior to metformin based on HbA1c change from baseline at week 24. Non‐inferiority was to be declared if the upper boundary of the 95% confidence interval (CI) for the between‐group difference in this endpoint was <0.40%. Results: From a mean baseline HbA1c of 7.2% in the PP population, HbA1c change from baseline was ?0.43% with sitagliptin (n = 455) and ?0.57% with metformin (n = 439). The between‐group difference (95% CI) was 0.14% (0.06, 0.21), thus confirming non‐inferiority. Baseline HbA1c influenced treatment response, with larger reductions in HbA1c observed in patients with baseline HbA1c≥8% in the sitagliptin (–1.13%; n = 74) and metformin (–1.24%; n = 73) groups. The proportions of patients at week 24 with HbA1c values at the goals of <7 or <6.5% were 69 and 34% with sitagliptin and 76 and 39% with metformin, respectively. Fasting plasma glucose changes from baseline were ?11.5 mg/dL (–0.6 mmol/l) and ?19.4 mg/dl (–1.1 mmol/l) with sitagliptin and metformin, respectively (difference in LS mean change from baseline [95% CI] = 8.0 mg /dl [4.5,11.4]). Both treatments led to similar improvements from baseline in measures of homeostasis model assessment‐β cell function (HOMA‐β) and insulin resistance (HOMA‐IR). The incidence of hypoglycaemia was 1.7% with sitagliptin and 3.3% with metformin (p = 0.116). The incidence of gastrointestinal‐related adverse experiences was substantially lower with sitagliptin (11.6%) compared with metformin (20.7%) (difference in incidence [95% CI] = ?9.1% [?13.6,?4.7]), primarily because of significantly decreased incidences of diarrhoea (3.6 vs. 10.9%; p < 0.001) and nausea (1.1 vs. 3.1%; p = 0.032). Body weight was reduced from baseline with both sitagliptin (LS mean change [95% CI] = ?0.6 kg [?0.9,?0.4]) and metformin (–1.9 kg [–2.2, ?1.7]) (p < 0.001 for sitagliptin vs. metformin). Conclusions: In this 24‐week monotherapy study, sitagliptin was non‐inferior to metformin in improving HbA1c in treatment‐naïve patients with type 2 diabetes. Although both treatments were generally well tolerated, a lower incidence of gastrointestinal‐related adverse experiences was observed with sitagliptin.  相似文献   

14.
AIM: To compare the effect of glimepiride in combination with metformin with monotherapy of each drug on glycaemic control in Type 2 diabetic patients. DESIGN AND METHODS: Randomized, double-blind, double-dummy, parallel-group multicentre study conducted in France. Type 2 diabetic patients aged 35-70 years inadequately controlled by metformin monotherapy 2550 mg daily for at least 4 weeks were randomized to either metformin, glimepiride or metformin and glimepiride. RESULTS: Three hundred and seventy-two patients aged 56 +/- 8 years were treated for 5 months. Combination treatment was significantly more efficient in controlling HbA1c (% change + 0.07 +/- 1.20 for metformin, + 0.27 +/- 1.10 for glimepiride, -0.74 +/- 0.96 for combination treatment, P < 0.001), fasting blood glucose (FBG) (mmol/l change + 0.8 +/- 0.4 for metformin, + 0.7 +/- 3.1 for glimepiride and -1.8 +/- 2.2 for combination treatment, P < 0.001) and post-prandial blood glucose (PPBG) (mmol/l change + 1.1 +/- 5.9 for metformin, + 0.1 +/- 5.1 for glimepiride and -2.6 +/- 3.9 for combination treatment, P < 0.001) than either glimepiride or metformin alone. There was no significant difference between metformin or glimepiride monotherapy with respect to the change in HbA1c or FBG; however, glimepiride was significantly more effective than metformin in reducing PPBG. The incidence of symptomatic hypoglycaemia was higher in the combination group than in either monotherapy group (P = 0.039). CONCLUSIONS: Addition of glimepiride to metformin in Type 2 diabetic patients inadequately controlled by metformin alone resulted in superior glycaemic control compared with glimepiride or metformin monotherapy.  相似文献   

15.
Aim: To assess the 54‐week efficacy of initial combination therapy with sitagliptin and pioglitazone, compared with pioglitazone monotherapy, and to assess safety in these groups during the 30 weeks after the dosage of pioglitazone was increased from 30 to 45 mg/day, in drug‐naÏve patients with type 2 diabetes mellitus and inadequate glycaemic control [haemoglobin A1c (HbA1c) 8–12%]. Methods: Following a 24‐week, randomized, double‐blind, parallel‐group study (Sitagliptin Protocol 064, Clinicaltrials.gov: NCT00397631; Yoon KH, Shockey GR, Teng R et al. Effect of initial combination therapy with sitagliptin, a dipeptidyl peptidase‐4 inhibitor, and pioglitazone on glycaemic control and measures of beta‐cell function in patients with type 2 diabetes. Int J Clin Pract 2011; 65: 154–164) in which patients were treated with the combination of sitagliptin 100 mg/day and pioglitazone 30 mg/day or monotherapy with pioglitazone 30 mg/day, patients entered a 30‐week extension study. In the extension study, the pioglitazone dose was increased from 30 to 45 mg/day in both groups. Depending upon treatment allocation, patients took one tablet of sitagliptin 100 mg or matching placebo daily. Pioglitazone was administered in an open‐label fashion as a single 45‐mg tablet taken once daily. Patients not meeting specific glycaemic goals in the extension study were rescued with metformin therapy. Efficacy and safety results for the extension study excluded data after initiation of rescue therapy. Results: Of the 520 patients initially randomized, 446 completed the base study and, of these, 317 entered the extension. In this extension study cohort, the mean reductions from baseline in HbA1c and fasting plasma glucose (FPG) at the end of the base study (week 24) were ?2.5% and ?62.1 mg/dl with the combination of sitagliptin 100 mg and pioglitazone 30 mg versus ?1.9% and ?48.7 mg/dl with pioglitazone monotherapy. At the end of the extension study (week 54), the mean reduction in haemoglobin A1c (HbA1c) was ?2.4% with the combination of sitagliptin 100 mg and pioglitazone 45 mg versus ?1.9% with pioglitazone monotherapy [between‐group difference (95% CI) = ?0.5% (?0.8, ?0.3)] and the mean reduction in FPG was ?61.3 mg/dl versus ?52.8 mg/dl, respectively [between‐group difference (95% CI) = ?8.5 mg/dl (?16.3, ?0.7)]. Safety and tolerability of initial treatment with the combination of sitagliptin and pioglitazone and pioglitazone monotherapy were similar. As expected, increases in body weight from baseline were observed in both treatment groups at week 54: 4.8 and 4.1 kg in the combination and monotherapy groups, respectively [between‐group difference (95% CI) = 0.7 kg (?0.7, 2.1)]. Conclusion: In this study, initial combination therapy with sitagliptin 100 mg and pioglitazone 30 mg increased to 45 mg after 24 weeks led to a substantial and durable incremental improvement in glycaemic control compared with initial treatment with pioglitazone monotherapy during a 54‐week treatment period. Both initial combination therapy with sitagliptin and pioglitazone and pioglitazone monotherapy were generally well tolerated (Clinicaltrials.gov: NCT01028391).  相似文献   

16.
Aim: To examine the efficacy and safety of vildagliptin vs. glimepiride as add‐on therapy to metformin in patients with type 2 diabetes mellitus in a 52‐week interim analysis of a large, randomized, double‐blind, multicentre study. The primary objective was to demonstrate non‐inferiority of vildagliptin vs. glimepiride in glycosylated haemoglobin (HbA1c) reduction at week 52. Methods: Patients inadequately controlled on metformin monotherapy (HbA1c 6.5–8.5%) and receiving a stable dose of metformin (mean dose 1898 mg/day; mean duration of use 36 months) were randomized 1:1 to receive vildagliptin (50 mg twice daily, n = 1396) or glimepiride (titrated up to 6 mg/day; mean dose 4.5 mg/day, n = 1393). Results: Non‐inferiority of vildagliptin was demonstrated (97.5% confidence interval 0.02%, 0.16%) with a mean (SE) change from baseline HbA1c (7.3% in both groups) to week 52 endpoint of ?0.44% (0.02%) with vildagliptin and ?0.53% (0.02%) with glimepiride. Although a similar proportion of patients reached a target HbA1c level of <7% with vildagliptin and glimepiride (54.1 and 55.5%, respectively), a greater proportion of patients reached this target without hypoglycaemia in the vildagliptin group (50.9 vs. 44.3%; p < 0.01). Fasting plasma glucose (FPG) reductions were comparable between groups (mean [SE] ?1.01 [0.06] mmol/l and ?1.14 [0.06] mmol/l respectively). Vildagliptin significantly reduced body weight relative to glimepiride (mean [SE] change from baseline ?0.23 [0.11] kg; between‐group difference ?1.79 kg; p < 0.001) and resulted in a 10‐fold lower incidence of hypoglycaemia than glimepiride (1.7 vs. 16.2% of patients presenting at least one hypoglycaemic event; 39 vs. 554 hypoglycaemic events, p < 0.01). No severe hypoglycaemia occurred with vildagliptin compared with 10 episodes with glimepiride (p < 0.01), and no patient in the vildagliptin group discontinued because of hypoglycaemia compared with 11 patients in the glimepiride group. The incidence of adverse events (AEs), serious AEs and adjudicated cardiovascular events was 74.5, 7.1 and 0.9%, respectively, in patients receiving vildagliptin, and 81.1, 9.5 and 1.6%, respectively, in patients receiving glimepiride. Conclusions: When metformin alone fails to maintain sufficient glycaemic control, the addition of vildagliptin provides comparable efficacy to that of glimepiride after 52 weeks and displays a favourable AE profile, with no weight gain and a significant reduction in hypoglycaemia compared with glimepiride.  相似文献   

17.
There is increasing evidence that glycemic disorders such as rapid glucose fluctuations over a daily period might play an important role on diabetic complications. We evaluated the efficacy of sitagliptin 100 mg once daily vs. vildagliptin 50 mg twice daily on daily blood glucose fluctuations in patients with type 2 diabetes that was inadequately controlled by metformin.Forty-eight-hour continuous subcutaneous glucose monitoring (CSGM) was performed in patients treated with metformin plus vildagliptin (n=18) or sitagliptin (n=20) over a period of 3 months. The mean amplitude of glycemic excursions (MAGE) was used for assessing glucose fluctuations during the day. During a standardized meal, glucagon-like peptide-1 (GLP-1), glucagon, and insulin were measured.CSGM shows large MAGE decrements in the vildagliptin group compared with the sitagliptin group (P<.01). A marked increase in GLP-1 occurred during interprandial period in vildagliptin bid-treated toward sitagliptin 100 mg once daily (P<.01). Glucagon was more suppressed during interprandial period in subjects receiving vildagliptin compared to those receiving sitagliptin (P<.01). Since MAGE is associated with an activation of oxidative stress, our data suggest that dipeptidyl peptidase IV inhibition therapy should target not only reducing HbA1c but also flattening acute glucose fluctuations over a daily period.  相似文献   

18.
Aims To test the hypothesis that glycaemic control achieved when switching sitagliptin to exenatide twice daily plus metformin is non‐inferior to adding exenatide twice daily to sitagliptin and metformin. Methods Patients with Type 2 diabetes inadequately controlled with sitagliptin plus metformin were randomly assigned to 20 weeks of treatment with twice‐daily exenatide plus placebo and metformin (SWITCH, n = 127) or twice‐daily exenatide plus sitagliptin and metformin (ADD, n = 128). Results Non‐inferiority (0.4% margin) of SWITCH to ADD treatment, measured by change in HbA1c from baseline to week 20, was not shown {between‐treatment difference in least‐squares mean [95% CI 3 mmol/mol (0.30%)] [0.8–5.8 (0.07–0.53)]}. A greater reduction (P = 0.012) in HbA1c [least‐squares mean (se )] was experienced by patients in the ADD group {?7 mmol/mol [?0.68%] [0.9 (0.08)]}, compared with those in the SWITCH group {?4 mmol/mol [?0.38%] [1.0 (0.09)]} and a greater proportion (P = 0.027) of patients in the ADD group (41.7%) reached < 7.0% (< 53 mmol/mol) HbA1c target, compared with those in the SWITCH group (26.6%) by week 20. Patients in the ADD group experienced greater fasting serum glucose (P = 0.038) and daily mean postprandial self‐monitored blood glucose (P = 0.048) reductions, compared with patients in the SWITCH group, by week 20. Patients in both groups experienced a lower incidence of nausea and vomiting compared with previous exenatide studies. Conclusions Non‐inferiority of SWITCH to ADD treatment was not supported by the results of this study. In patients with Type 2 diabetes inadequately controlled with sitagliptin plus metformin, adding exenatide provided better glycaemic control than switching to exenatide. These results are consistent with the clinical approach that adding is better than switching to another oral anti‐hyperglycaemic medication.  相似文献   

19.
Aims: To evaluate the efficacy and safety of initial therapy with a fixed‐dose combination (FDC) of sitagliptin and metformin compared with pioglitazone in drug‐naÏve patients with type 2 diabetes. Methods: After a 2‐week single‐blind placebo run‐in period, patients with type 2 diabetes, HbA1c of 7.5–12% and not on antihyperglycaemic agent therapy were randomized in a double‐blind manner to initial treatment with a FDC of sitagliptin/metformin 50/500 mg twice daily (N = 261) or pioglitazone 30 mg per day (N = 256). Sitagliptin/metformin and pioglitazone were up‐titrated over 4 weeks to doses of 50/1000 mg twice daily and 45 mg per day, respectively. Both treatments were then continued for an additional 28 weeks. Results: From a mean baseline HbA1c of 8.9% in both groups, least squares (LS) mean changes in HbA1c at week 32 were ?1.9 and ?1.4% for sitagliptin/metformin and pioglitazone, respectively (between‐group difference = ?0.5%; p < 0.001). A greater proportion of patients had an HbA1c of <7% at week 32 with sitagliptin/metformin vs. pioglitazone (57% vs. 43%, p < 0.001). Compared with pioglitazone, sitagliptin/metformin treatment resulted in greater LS mean reductions in fasting plasma glucose (FPG) [?56.0 mg/dl (?3.11 mmol/l) vs. ?44.0 mg/dl (?2.45 mmol/l), p < 0.001] and in 2‐h post‐meal glucose [?102.2 mg/dl (?5.68 mmol/l) vs. ?82.0 mg/dl (?4.56 mmol/l), p < 0.001] at week 32. A substantially greater reduction in FPG [?40.5 mg/dl (?2.25 mmol/l) vs. ?13.0 mg/dl (?0.72 mmol/l), p < 0.001] was observed at week 1 with sitagliptin/metformin vs. pioglitazone. A greater reduction in the fasting proinsulin/insulin ratio and a greater increase in homeostasis model assessment of β‐cell function (HOMA‐β) were observed with sitagliptin/metformin than with pioglitazone, while greater decreases in fasting insulin and HOMA of insulin resistance (HOMA‐IR), and a greater increase in quantitative insulin sensitivity check index (QUICKI) were observed with pioglitazone than with sitagliptin/metformin. Both sitagliptin/metformin and pioglitazone were generally well tolerated. Sitagliptin/metformin led to weight loss (?1.4 kg), while pioglitazone led to weight gain (3.0 kg) (p < 0.001 for the between‐group difference). Higher incidences of diarrhoea (15.3% vs. 4.3%, p < 0.001), nausea (4.6% vs. 1.2%, p = 0.02) and vomiting (1.9% vs. 0.0%, p = 0.026), and a lower incidence of oedema (1.1% vs. 7.0%, p < 0.001), were observed with sitagliptin/metformin vs. pioglitazone. The between‐group difference in the incidence of hypoglycaemia did not reach statistical significance (8.4 and 4.3% with sitagliptin/metformin and pioglitazone, respectively; p = 0.055). Conclusion: Compared with pioglitazone, initial therapy with a FDC of sitagliptin and metformin led to significantly greater improvement in glycaemic control as well as a higher incidence of prespecified gastrointestinal adverse events, a lower incidence of oedema and weight loss vs. weight gain.  相似文献   

20.
Aim: To evaluate the efficacy and safety of the potent and selective dipeptidyl peptidase‐4 (DPP‐4) inhibitor linagliptin administered as add‐on therapy to metformin in patients with type 2 diabetes with inadequate glycaemic control. Methods: This 24‐week, randomized, placebo‐controlled, double‐blind, parallel‐group study was carried out in 82 centres in 10 countries. Patients with HbA1c levels of 7.0–10.0% on metformin and a maximum of one additional antidiabetes medication, which was discontinued at screening, continued on metformin ≥1500 mg/day for 6 weeks, including a placebo run‐in period of 2 weeks, before being randomized to linagliptin 5 mg once daily (n = 524) or placebo (n = 177) add‐on. The primary outcome was the change from baseline in HbA1c after 24 weeks of treatment, evaluated with an analysis of covariance (ANCOVA). Results: Mean baseline HbA1c and fasting plasma glucose (FPG) were 8.1% and 9.4 mmol/l, respectively. Linagliptin showed significant reductions vs. placebo in adjusted mean changes from baseline of HbA1c (?0.49 vs. 0.15%), FPG (?0.59 vs. 0.58 mmol/l) and 2hPPG (?2.7 vs. 1.0 mmol/l); all p < 0.0001. Hypoglycaemia was rare, occurring in three patients (0.6%) treated with linagliptin and five patients (2.8%) in the placebo group. Body weight did not change significantly from baseline in both groups (?0.5 kg placebo, ?0.4 kg linagliptin). Conclusions: The addition of linagliptin 5 mg once daily in patients with type 2 diabetes inadequately controlled on metformin resulted in a significant and clinically meaningful improvement in glycaemic control without weight gain or increased risk of hypoglycaemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号