首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of the phosphoinositide 3 kinase (PI3K)/Akt signalling pathway has been linked with resistance to chemotherapeutic drugs, and its downregulation, by means of PI3K inhibitors, lowers resistance to various types of therapy in tumour cell lines. Recently, it has been reported that deguelin, a naturally occurring rotenoid, is a powerful inhibitor of PI3K. We investigated whether or not deguelin could enhance the sensitivity to chemotherapeutic drugs of human U937 leukaemia cells and acute myeloid leukaemia (AML) blasts with an activated PI3K/Akt network. Deguelin (10 nmol/l) induced S phase arrest with interference of progression to G2/M, and at 100 nmol/l significantly increased apoptotic cell death of U937. At 10-100 nmol/l concentrations, deguelin downregulated Akt phosphorylation of leukaemia cells and markedly increased sensitivity of U937 cells to etoposide or cytarabine. A 10 nmol/l concentration of deguelin did not negatively affect the survival rate of human cord blood CD34+ cells, whereas it increased sensitivity of AML blasts to cytarabine. Deguelin was less toxic than wortmannin on erythropoietin- and stem cell factor-induced erythropoiesis from CD34+ progenitor cells. Overall, our results indicate that deguelin might be used in the future for increasing sensitivity to therapeutic treatments of leukaemia cells with an active PI3K/Akt signalling network.  相似文献   

2.
Recent studies suggest that the prosurvival signal transduction pathway involving phosphoinositide 3-kinase (PI3K)/Akt can confer an aggressive, apoptosis-resistant phenotype to acute leukaemia cells. We have investigated the effect of modulating this signalling pathway on the sensitivity of leukaemic cell lines (NB-4, CEM, Jurkat, MOLT-4) and acute promyelocytic primary blasts to apoptosis induced by 1 micromol/l As2O3. Whereas parental NB-4 cells did not display any phosphorylated (active) Akt, CEM, Jurkat and MOLT-4 cells exhibited high levels of Akt activation. Consistently, treatment of NB-4 cells with pharmacological inhibitors of the PI3K/Akt pathway (LY294002, wortmannin) did not increase sensitivity of these cells to arsenic trioxide (As2O3), whereas siRNA knock-down of Akt enhanced As2O3-induced apoptosis of CEM, Jurkat and MOLT-4 cells. Overexpression of a constitutively active Akt cDNA rendered NB-4 cells less susceptible to As2O3. Upon prolonged exposure to As2O3, we isolated a NB-4 cell clone that was resistant to As2O3 and displayed high levels of active Akt. LY294002 treatment of acute promyelocytic primary blasts with elevated Akt phosphorylation levels resulted in an increased sensitivity to As2O3. These results may provide a rationale for the development of combined or sequential treatment with PI3K/Akt inhibitors to improve the efficacy of As2O3 on acute leukaemias and also to overcome As2O3 resistance.  相似文献   

3.
Acute myeloid leukaemia (AML) is a heterogeneous malignancy. Intracellular signalling through the phosphatidylinositol 3‐kinase (PI3K)‐Akt‐mammalian target of rapamycin (mTOR) pathway is important for regulation of cellular growth and metabolism, and inhibitors of this pathway is considered for AML treatment. Primary human AML cells, derived from 96 consecutive adult patients, were examined. The effects of two mTOR inhibitors (rapamycin, temsirolimus) and two PI3K inhibitors (GDC‐0941, 3‐methyladenine) were studied, and we investigated cytokine‐dependent proliferation, regulation of apoptosis and global gene expression profiles. Only a subset of patients demonstrated strong antiproliferative effects of PI3K‐mTOR inhibitors. Unsupervised hierarchical clustering analysis identified two main clusters of patients; one subset showing weak or absent antiproliferative effects (59%) and another group showing a strong growth inhibition for all drugs and concentrations examined (41%). Global gene expression analyses showed that patients with AML cell resistance against PI3K‐mTOR inhibitors showed increased mRNA expression of the CDC25B gene that encodes the cell cycle regulator Cell Division Cycle 25B. The antileukaemic effect of PI3K‐Akt‐mTOR inhibition varies between patients, and resistance to these inhibitors is associated with the expression of the cell cycle regulator CDC25B, which is known to crosstalk with the PI3K‐Akt‐mTOR pathway and mediate rapamycin resistance in experimental models.  相似文献   

4.
All-trans retinoic acid (ATRA) is a specific inducer of CD38 antigen on marrow CD34+ cells as well as on blast cells in acute promyelocytic and myeloblastic leukaemia. The CD38 antigen contributes to the control of blast cell proliferation, and the upregulation of CD38 might constitute an element in the pathogenesis of retinoic acid syndrome. The aim of this study was to determine whether phosphoinositide 3-kinase (PI3-K) is involved in the modification of CD38 antigen expression on myeloid cells, as PI3-K plays a major role in the ATRA-induced granulocytic differentiation of HL-60 cells. We evaluated the effects of PI3-K inhibitors (wortmannin and LY294002) on the levels of CD38 antigen and mRNA in HL-60 and normal marrow CD34+ cells exposed to ATRA (1 micromol/l). The inhibitors prevented increase in CD38 mRNA expression and the overexpression of membrane CD38 antigen, without modification of the cytoplasmic level of this antigen. Interestingly, PI3-K activity was also necessary for CD38 expression on normal marrow CD34+ cells and for the ATRA-induced upregulation of CD157, a CD38-related antigen. In conclusion, PI3-K activity plays an essential role in the regulation of CD38 expression on human haematopoietic cells, and might constitute an interesting therapeutic target in haematological disorders involving CD38 overexpression.  相似文献   

5.
BACKGROUND: Abnormalities in the vascular function of insulin are observed in insulin resistance, and hyperglycaemia is one of the important factors inducing insulin resistance. OBJECTIVE: To investigate the role of glucose in the interaction of insulin and beta-adrenergic signalling systems in vascular smooth muscle cells (VSMC). METHODS: After cells were treated with D-glucose (525 mmol/l) and insulin (100 nmol/l), adenylyl cyclase activity was measured in the presence of isoproterenol, forskolin, and cholera toxin. Assays for insulin-induced activities of insulin receptor substrate (IRS)-1, phosphoinositide 3-kinase (PI3-K) and mitogen-activated protein kinase (MAPK) were performed. RESULTS: In the presence of low glucose concentrations (5 mmol/l), insulin enhanced isoproterenol-, forskolin- and cholera toxin-stimulated adenylyl cyclase activities. This stimulatory effect was abolished by PI3-K inhibitors, wortmannin, or LY294002. In contrast, in the presence of high glucose concentrations (25 mmol/l), insulin attenuated isoproterenol-stimulated activity but not cholera toxin- or forskolin-stimulated activity. Insulin-stimulated activities of IRS-1 and PI3-K, but not MAPK activity, were also attenuated in the presence of high concentrations of glucose. The MAPK kinase inhibitor, PD98059, abolished the inhibitory effect of insulin on the beta-adrenergic signalling system. Troglitazone and pioglitazone prevented this inhibitory effect of insulin by restoring IRS-1 and PI3-K activities. CONCLUSIONS: In the presence of low glucose concentrations, insulin stimulates the beta-adrenergic signalling system through the IRS-1/PI3-K pathway. However, in the presence of high glucose concentrations, the effect of insulin is switched to an inhibitory one, through the MAPK pathway. Our finding suggests that high glucose concentrations modify the cross-talk between insulin and the beta-adrenergic signalling systems in VSMC.  相似文献   

6.
In pituitary cells, prolactin (PRL) synthesis and release are controlled by multiple transduction pathways. In the GH4C1 somatolactotroph cell line, we previously reported that MAPK ERK-1/2 are a point of convergence between the pathways involved in the PRL gene regulation. In the present study, we focused on the involvement of the phosphoinositide 3-kinase (PI3K)/Akt pathway in the MAPK ERK-1/2 regulation and PRL secretion in pituitary cells. Either specific pharmacological PI3K and Akt inhibitors (LY294002, Akt I, and phosphoinositide analog-6) or Akt dominant-negative mutant (K179M) enhanced ERK-1/2 phosphorylation in unstimulated GH4C1 cells. Under the same conditions, PI3K and Akt inhibition also both increased Raf-1 kinase activity and the levels of GTP-bound (active form) monomeric G protein Rap1, which suggests that a down-regulation of the ERK-1/2 cascade is induced by the PI3K/Akt signaling pathway in unstimulated cells. On the contrary, ERK-1/2 phosphorylation, Raf-1 activity, and Rap1 activation were almost completely blocked in IGF-I-stimulated cells previously subjected to PI3K or Akt inhibition. Although the PRL promoter was not affected by either PI3K/Akt inhibition or activation, PRL release increased in response to the pharmacological PI3K/Akt inhibitors in unstimulated GH4C1 and rat pituitary primary cells. The IGF-I-stimulated PRL secretion was diminished, on the contrary, by the pharmacological PI3K/Akt inhibitors. Taken together, these findings indicate that the PI3K/Akt pathway exerts dual regulatory effects on both the Rap1/Raf-1/ERK-1/2 cascade and PRL release in pituitary cells, i.e. negative effects in unstimulated cells and positive ones in IGF-I-stimulated cells.  相似文献   

7.
8.
We have investigated the role of the NPXY motif in the insulin-like growth factor I receptor (IGF-IR) by focusing on the activation of the phosphatidylinositol-3' kinase (PI3-K) pathway and DNA synthesis following IGF-I stimulation. For this purpose, we established stable R-cell lines, which are deficient in endogenous IGF-IR, and express human IGF-IR lacking the whole NPEY(950) sequence (DeltaNPEY). The DeltaNPEY cells showed an apparent autophosphorylation of IGF-IR, albeit with reduced sensitivity to stimulation compared with cells expressing similar levels of wild-type IGF-IR. Activation of insulin receptor substrate (IRS)-1 and IRS-2 was severely impaired in DeltaNPEY cells even at high concentrations of IGF-I. However, recruitment of p85, a regulatory subunit of PI3-K, to activated IRS-2 was similar between the cell lines, but recruitment of p85 to IRS-1 was reduced in DeltaNPEY cells. Essentially similar levels of p85- or phosphotyrosine-associated PI3-K and Akt activities were observed between the cell lines, although the sensitivity to stimulation was reduced in DeltaNPEY cells. Activation of extracellular signal-regulated kinase and DNA synthesis were virtually unaffected by the mutation, in terms of both sensitivity to stimulation and responsiveness. DNA synthesis was completely inhibited by the PI3-K inhibitor, LY294002. These results indicate that the IGF-IR is able to activate the PI3-K pathway and induce DNA synthesis in a normal fashion without the NPXY motif when the receptor is fully activated.  相似文献   

9.
Sheng H  Shao J  Townsend CM  Evers BM 《Gut》2003,52(10):1472-1478
BACKGROUND AND AIMS: Determination of intracellular signalling pathways that mediate intestinal epithelial proliferation is fundamental to the understanding of the integrity and function of the intestinal tract under normal and diseased conditions. The phosphoinositide 3-kinase (PI3K)/Akt pathway transduces signals initiated by growth factors and is involved in cell proliferation and differentiation. In this study, we assessed the role of PI3K/Akt in transduction of proliferative signals in intestinal epithelial cells. METHODS: A rat intestinal epithelial (RIE) cell line and human colorectal cancer HCA-7 and LS-174 cell lines served as in vitro models. The Balb/cJ mouse was the in vivo model. RESULTS: PI3K activation was critical for G1 cell cycle progression of intestinal epithelial cells. Ectopic expression of either active p110alpha or Akt-1 increased RIE cell proliferation. In vivo experiments demonstrated that PI3K activation was closely associated with the proliferative activity of intestinal mucosa. Treatment of mice with PI3K inhibitors blocked induction of PI3K activity and attenuated intestinal mucosal proliferation associated with oral intake. Epidermal growth factor and transforming growth factor alpha stimulated PI3K activation which was required for growth factor induced expression of cyclin D1. CONCLUSIONS: The PI3K/Akt pathway transduces mitogenic signals from growth factor receptors to the cell cycle machinery and plays a critical role in regulation of intestinal epithelial proliferation.  相似文献   

10.
Takeda A  Osaki M  Adachi K  Honjo S  Ito H 《Pancreas》2004,28(3):353-358
: Phosphatidylinositol 3'-kinase (PI3K) and Akt mediate survival signals and allow the cells to escape apoptosis in various human cancers. We postulated that LY294002, a PI3K inhibitor, might inactivate Akt, consequently inhibiting cell proliferation in 3 human pancreatic ductal carcinoma cell lines, PSN-1, PANC-1, and KP-4. LY294002 (50 micromol/L) caused a decrease in phosphorylated Akt and inhibition of cell proliferation in a time-dependent manner, but there was no obvious induction of apoptosis. Flow cytometric analysis revealed that pancreatic cancer cells treated with 50 micromol/L LY294002 underwent G1 arrest, which was associated with dephosphorylation of the ppRB protein, a decrease in the protein expression of cyclin D and E, and their activating partners Cdk2, 4, and 6 with simultaneous accumulation of P27/Kip1. Our data indicate that P27/Kip1 accumulation by Akt inactivation could induce cell cycle arrest in the G1 phase and suggest that the PI3K-Akt pathway plays an important role in cell proliferation in human pancreatic ductal carcinoma cells.  相似文献   

11.
The phosphatidylinositol 3-kinase (PI3-K) pathway, which activates serine/threonine protein kinase Akt, enhances endothelial nitric oxide synthase (eNOS) phosphorylation and nitric oxide (NO) production. We investigated the involvement of the PI3-K/Akt pathway in the relaxation responses to acetylcholine (ACh) and clonidine in a new type 2 diabetic model (streptozotocin plus nicotinamide-induced diabetic mice). Plasma glucose and insulin levels were significantly elevated in our model, and intravenous glucose tolerance tests revealed clear abnormalities in glucose tolerance and insulin responsiveness. Although in our model the ACh-induced relaxation and NOx- (NO2-+NO3-)/cGMP production were unchanged, the clonidine-induced and insulin-induced relaxations and NOx-/cGMP production were all greatly attenuated. In control mice, the clonidine-induced and insulin-induced relaxations were each abolished by LY294002 and by Wortmannin (inhibitors of PI3-K), and also by Akt-inhibitor treatment. The ACh-induced relaxation was unaffected by such treatments in either group of mice. The expression level of total Akt protein was significantly decreased in the diabetic mice aorta, but those for the p85 and p110gamma subunits of PI3-K were not. The clonidine-induced Ser-473 phosphorylation of Akt through PI3-K was significantly decreased in our model; however, that induced by ACh was not. These results suggest that relaxation responses and NO production mediated via the PI3-K/Akt pathway are decreased in this type 2 diabetic model. This may be a major cause of endothelial dysfunction (and the resulting hypertension) in type 2 diabetes.  相似文献   

12.
The phosphatidylinositide 3‐kinase (PI3K) pathway is activated and correlated with drug resistance in multiple myeloma (MM). In the present study we investigated the role of PI3KCA (PI3K‐α) in the progression and drug resistance in MM. We showed that the gene expression of PI3KCA isoform was higher in MM compared to normal subjects. BYL719, a novel and specific PI3KCA inhibitor inhibited the survival of primary MM cells and cell lines but not normal peripheral blood mononuclear cells. BYL719 induced the apoptosis of MM cells and inhibited their cell cycle by causing G1 arrest. BYL719 inhibited PI3K signalling, decreased proliferation and cells cycle signalling, and induced apoptosis signalling in MM cells. Finally, BYL719 synergized with bortezomib and carfilzomib, and overcame drug resistance induced by bone marrow stroma. These results were confirmed using in silico simulation of MM cell lines, BYL719 and bortezomib, and showed similar trends in survival, proliferation, apoptosis, cell signalling and synergy with drugs. In conclusion, PI3KCA plays a major role in proliferation and drug resistance of MM cells, the effects of which were inhibited with BYL719. These results provide a preclinical basis for a future clinical trial of BYL719 in MM as a single agent or in combination with other drugs.  相似文献   

13.
14.
Previously, we showed that inhibition of the protein kinase C β (PKCβ)/AKT pathway augments engagement of the histone deacetylase inhibitor (HDI)‐induced apoptosis in lymphoma cells. In the present study, we investigated the cytotoxicity and mechanisms of cell death induced by the delta isoform‐specific phosphatidylinositide 3‐kinase (PI3K) inhibitor, GS‐1101, in combination with the HDI, panobinostat (LBH589) and suberoylanilide hydroxamic acid (SAHA). Lymphoma cell lines, primary non‐Hodgkin Lymphoma (NHL) and chronic lymphocytic leukaemia (CLL) cells were simultaneously treated with the HDI, LBH589 and GS‐1101. An interaction of the LBH589/GS‐1101 combination was formally examined by using various concentrations of LBH589 and GS‐1101. Combined treatment resulted in a synergistic inhibition of proliferation and showed synergistic effect on apoptotic induction in all tested cell lines and primary NHL and CLL cells. This study indicates that interference with PI3K signalling dramatically increases HDI‐mediated apoptosis in malignant haematopoietic cells, possibly through both AKT‐dependent or AKT‐ independent mechanisms. Moreover, the increase in HDI‐related apoptosis observed in PI3K inhibitor‐treated cells appears to be related to the disruption of the extracellular signal‐regulated kinase (ERK) signalling pathway. This study provides a strong rational for testing the combination of PI3K inhibitors and HDI in the clinic.  相似文献   

15.
BACKGROUND AND AIMS: In intestinal Na absorptive cells, phosphatidylinositol 3-kinase (PI 3-K) is involved in rapid epidermal growth factor (EGF) stimulation of Na absorption by the brush border membrane (BBM) Na(+)/H(+) exchanger NHE3. However, how NHE3 is regulated by the PI 3-K pathway and the role of Akt2 are poorly defined. METHODS: The localization of Akt, PI 3-K, and NHE3 was determined by either immunocytochemistry and/or membrane fractionation using OptiPrep density gradient centrifugation. RESULTS: In ileum, active total Akt was present most in the villi and basal layer of the crypts, and Akt2 was mostly in villi. In villus cells, PI 3-K and Akt2 were mostly at the apical surface at which they were present partially in lipid rafts (LR). EGF increased PI 3-K and active Akt2 in ileal BBM at the same time that it increased PI 3-K-dependent trafficking of NHE3 to BBM and stimulation of Na absorption. However, Akt2 was only active in the detergent soluble (DS) pool and not LR of ileal BBM, which correlated with the presence of PTEN in LR. In Caco-2 cells, while EGF stimulated BB NHE3, Akt2 was active in both LR and DS pools. This correlated with the lack of PTEN in the LR of Caco-2 membranes. Akt2 also correlated with epithelial cell differentiation. Akt2 amount and activity were greater in differentiated than undifferentiated Caco-2 cells. CONCLUSIONS: These results suggest that LR may play an important role in determining the function of PI 3-K/Akt2 signaling, including stimulation of intestinal Na absorption. These results also suggest that LR-associated Akt2 may be involved in enterocyte differentiation.  相似文献   

16.
Fas-stimulated neutrophils from elderly individuals show impaired granulocyte macrophage-colony-stimulating factor (GM-CSF)-induced apoptosis cell rescue. Herein, this defect was found to be associated with a significant reduction in GM-CSF-mediated Akt and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation. Using Akt and ERK1/2 inhibitors, we demonstrated that both kinases were critical for GM-CSF antiapoptotic effects. Whereas Akt inhibition also affected GM-CSF-dependent ERK1/2 phosphorylation, ERK1/2 inhibition did not affect GM-CSF-induced Akt phosphorylation, suggesting that phosphoinositide 3-kinase (PI3-K)/Akt and ERK1/2 are activated in series and that PI3-K is located upstream of ERK1/2 along the GM-CSF-dependent signaling pathway. No age-associated changes in GM-CSF receptor expression were observed. Interestingly, both suppressors of cytokine signaling (SOCS)1 and SOCS3 proteins were significantly higher in unstimulated neutrophils from elderly individuals and, unlike in young individuals, did not further increase following GM-CSF cell triggering. These results indicate that defective PI3-K/Akt/ERK1/2 activation, likely dependent on elevated SOCS1 and SOCS3 levels, may affect the GM-CSF capacity to delay neutrophil apoptosis in elderly persons.  相似文献   

17.
The gut peptide ghrelin is expressed within neurons of the hypothalamus. Using a hypothalamic cell line, mHypoE-38 neurons, the effect of insulin on preproghrelin gene expression was assayed. These cells contain neuron-specific markers, preproghrelin and the insulin receptor. We determined that insulin has direct effects on preproghrelin gene expression. Insulin (10 nM) stimulated protein kinase B (Akt) and extracellular signal-regulated kinase 1 and 2 (ERK1/2) phosphorylation from 5 to 60 min and 5 min, respectively, and led to repression of preproghrelin gene expression at 2 h. Pharmacological inhibitors to phosphoinositide-3-kinase (PI3-K; LY294002) and MEK (PD98059) demonstrated that basal ghrelin gene expression is regulated by the PI3-K pathway and requires the mitogen-activated protein kinase pathway for insulin-stimulated preproghrelin repression. These results demonstrate that insulin has a direct effect on hypothalamic neurons to decrease preproghrelin gene expression through classic insulin pathways.  相似文献   

18.
19.
Lin X  Zhang X  Wang Q  Li J  Zhang P  Zhao M  Li X 《Neoplasma》2012,59(3):248-256
P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) is the major clinical impediment to chemotherapy of breast cancers. Down-regulation of PI3K/Akt pathway has been described as related to reversal of MDR in cancer cells. Here, we investigated the reversal effect on MDR phenotype of perifosine, a?new Akt inhibitor, in breast cancer cell lines. In this study, MCF-7/ADM cells and MCF-7 cells were treated with different concentrations of perifosine. Our results suggested that perifosine reversed MDR partially by downregulation of P-gp expression and inhibition of PI3K/Akt/NF-κB pathway in the MCF-7/ADM cell line. The novel Akt inhibitor perifosine may be a?promising new drug due to its ability to reverse MDR in human breast cancer cells.  相似文献   

20.
The phosphatidylinositol 3-kinase/protein kinase B (Akt)/mechanistic target of rapamycin (PI3K/Akt/mTOR) pathway is amplified in 60–80% of patients with acute myelogenous leukemia (AML). Since this complex pathway is crucial to cell functions such as growth, proliferation, and survival, inhibition of this pathway would be postulated to inhibit leukemia initiation and propagation. Inhibition of the mTORC1 pathway has met with limited success in AML due to multiple resistance mechanisms including direct insensitivity of the mTORC1 complex, feedback activation of the PI3k/Akt signaling network, insulin growth factor-1 (IGF-1) activation of PI3K, and others. This review explores the role of mTOR inhibition in AML, mechanisms of resistance, and means to improve outcomes through use of dual mTORC1/2 inhibitors or dual TORC/PI3K inhibitors. How these inhibitors interface with currently available therapies in AML will require additional preclinical experiments and conduct of well-designed clinical trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号