首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Neuropathology in mice expressing human alpha-synuclein.   总被引:32,自引:0,他引:32  
The presynaptic protein alpha-synuclein is a prime suspect for contributing to Lewy pathology and clinical aspects of diseases, including Parkinson's disease, dementia with Lewy bodies, and a Lewy body variant of Alzheimer's disease. alpha-Synuclein accumulates in Lewy bodies and Lewy neurites, and two missense mutations (A53T and A30P) in the alpha-synuclein gene are genetically linked to rare familial forms of Parkinson's disease. Under control of mouse Thy1 regulatory sequences, expression of A53T mutant human alpha-synuclein in the nervous system of transgenic mice generated animals with neuronal alpha-synucleinopathy, features strikingly similar to those observed in human brains with Lewy pathology, neuronal degeneration, and motor defects, despite a lack of transgene expression in dopaminergic neurons of the substantia nigra pars compacta. Neurons in brainstem and motor neurons appeared particularly vulnerable. Motor neuron pathology included axonal damage and denervation of neuromuscular junctions in several muscles examined, suggesting that alpha-synuclein interfered with a universal mechanism of synapse maintenance. Thy1 transgene expression of wild-type human alpha-synuclein resulted in similar pathological changes, thus supporting a central role for mutant and wild-type alpha-synuclein in familial and idiotypic forms of diseases with neuronal alpha-synucleinopathy and Lewy pathology. These mouse models provide a means to address fundamental aspects of alpha-synucleinopathy and test therapeutic strategies.  相似文献   

2.
Lehmensiek V  Tan EM  Schwarz J  Storch A 《Neuroreport》2002,13(10):1279-1283
Mutations in the alpha-synuclein gene (A30P and A53T) are reported to cause familial Parkinson's disease (PD), but it is not known how they result in selective dopaminergic cell death. Here we report on effects of mutant alpha-synucleins on dopamine transporter (DAT)-mediated toxicity of the selective dopaminergic neurotoxin 1-methyl-4-phenylpyridinium ion (MPP+) in vitro. We established human embryonic kidney HEK-293 cell lines stably co-expressing each alpha-synuclein isoform and the human DAT. We demonstrate that expression of all alpha-synuclein isoforms enhances toxicity of general complex I inhibition (rotenone), but only the expression of mutant alpha-synucleins induces significant increased DAT-dependent toxicity of very low concentrations of MPP+ compared to wild-type protein. Proteasomal inhibition by lactacystin does not alter MPP+-toxicity in all cell lines. Our data suggest a new mechanism of MPP+-induced dopaminergic toxicity by an interaction between mutant alpha-synucleins and the DAT, which is independent of the function of the proteasome.  相似文献   

3.
Alpha-synuclein was implicated in Parkinson's disease when missense mutations in the alpha-synuclein gene were found in autosomal dominant Parkinson's disease and alpha-synuclein was shown to be a major constituent of protein aggregates in sporadic Parkinson's disease and other synucleinopathies. We have generated transgenic mice expressing A53T mutant and wild-type human alpha-synuclein. The mutant transgenic protein was distributed abnormally to the axons, perikarya, and dendrites of neurons in many brain areas. In electron microscopic immunogold studies, no aggregation of alpha-synuclein was found in these mice. However, behavior analysis showed a progressive reduction of spontaneous vertical motor activity in both mutant lines correlating with the dosage of overexpression. In addition, deficits of grip strength, rotarod performance, and gait were observed in homozygous PrPmtB mice. Transgenic animals expressing mutant alpha-synuclein may be a valuable model to assess specific aspects of the pathogenesis of synucleinopathies.  相似文献   

4.
5.
alpha-Synuclein has been identified as a major component of Lewy body inclusions, which are one of the pathologic hallmarks of idiopathic Parkinson's disease. Mutations in alpha-synuclein have been found to be responsible for rare familial cases of Parkinsonism. To test whether overexpression of human alpha-synuclein leads to inclusion formation and neuronal loss of dopaminergic cells in the substantia nigra, we made transgenic mice in which the expression of wild-type or mutant (A30P and A53T) human alpha-synuclein protein was driven by the promoter from the tyrosine hydroxylase gene. Even though high levels of human alpha-synuclein accumulated in dopaminergic cell bodies, Lewy-type-positive inclusions did not develop in the nigrostriatal system. In addition, the number of nigral neurons and the levels of striatal dopamine were unchanged relative to non-transgenic littermates, in mice up to one year of age. These findings suggest that overexpression of alpha-synuclein within nigrostriatal dopaminergic neurons is not in itself sufficient to cause aggregation into Lewy body-like inclusions, nor does it trigger overt neurodegenerative changes.  相似文献   

6.
Genetic and biochemical abnormalities associated with alpha-synuclein are implicated in the etiology of Parkinson's disease (PD). In this study, altered locomotor behavior linked to the expression of mutant or wildtype human alpha-synuclein was investigated. A53T alpha-synuclein transgenic (A53T-tg) mice exhibited normal activity at 5 months of age; however, by 7 months, they developed marked hyperactivity that remained evident until 19 months. By contrast, mice expressing human wildtype or A30P mutant alpha-synuclein showed no locomotor alterations. Hyperactivity in A53T-tg mice was reversed by the D1 receptor antagonist SCH 23390. Furthermore, A53T-tg mice were supersensitive to the D1 receptor agonist SKF 81297 but not to the serotonin1B receptor agonist RU 24969. Hyperactivity in A53T-tg mice was also associated with increased D1 receptor expression in the substantia nigra and decreased dopamine transporter expression in the nucleus accumbens and striatum. Finally, striatal dopamine uptake measured by high-speed chronoamperometry was reduced by 40% in A53T-tg mice. Thus, expression of A53T mutant human alpha-synuclein in mice results in adult-onset hyperactivity associated with D1 receptor and dopamine transporter-mediated alterations in dopamine neurotransmission.  相似文献   

7.
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the appearance of intracytoplasmic inclusions called Lewy bodies (LB) in dopamine neurons in the substantia nigra and the progressive loss of these neurons. Recently, mutations in the alpha-synuclein gene have been identified in early-onset familial PD, and alpha-synuclein has been shown to be a major component of LB in all patients. Yet, the pathophysiological function of alpha-synuclein remains unknown. In this report, we have investigated the toxic effects of adenovirus-mediated alpha-synuclein overexpression on dopamine neurons in rat primary mesencephalic cultures and in a rat dopaminergic cell line - the large T-antigen immortalized, mesencephalon-derived 1RB3AN27 (N27). Adenovirus-transduced cultures showed high-level expression of alpha-synuclein within the cells. Overexpression of human mutant alpha-synuclein (Ala(53)Thr) selectively induced apoptotic programmed cell death of primary dopamine neurons as well as N27 cells. The mutant protein also potentiated the neurotoxicity of 6-hydroxydopamine (6-OHDA). By contrast, overexpression of wild-type human alpha-synuclein was not directly neurotoxic but did increase cell death after 6-OHDA. Overexpression of wild-type rat alpha-synuclein had no effect on dopamine cell survival or 6-OHDA neurotoxicity. These results indicate that overexpression of human mutant alpha-synuclein directly leads to dopamine neuron death, and overexpression of either human mutant or human wild-type alpha-synuclein renders dopamine neurons more vulnerable to neurotoxic insults.  相似文献   

8.
In familial and sporadic forms of Parkinson's disease (PD), alpha-synuclein pathology is present in the brain stem nuclei and olfactory bulb (OB) long before Lewy bodies are detected in the substantia nigra. The OB is an active region of adult neurogenesis, where newly generated neurons physiologically integrate. While accumulation of wild-type alpha-synuclein is one of the pathogenic hallmarks of non-genetic forms of PD, the A30P alpha-synuclein mutation results in an earlier disease onset and a severe clinical phenotype. Here, we study the regulation of adult neurogenesis in the subventricular zone (SVZ)/OB system in a tetracycline-suppressive (tet-off) transgenic model of synucleinopathies, expressing human mutant A30P alpha-synuclein under the control of the calcium/calmodulin-dependent protein kinase II alpha (CaMK) promoter. In A30P transgenic mice alpha-synuclein was abundant at the site of integration in the glomerular cell layer of the OB. Without changes in proliferation in the SVZ, significantly fewer newly generated neurons were observed in the OB granule cell and glomerular layers of A30P transgenic mice than in controls, most probably due to increased cell death. By tetracycline-dependent abrogation of A30P alpha-synuclein expression, OB neurogenesis and programmed cell death was restored to control levels. Our results indicate that, using A30P conditional (tet-off) mice, A30P alpha-synuclein has a negative impact on olfactory neurogenesis and suppression of A30P alpha-synuclein enhances survival of newly generated neurons. This finding suggests that interfering with alpha-synuclein pathology can rescue newly generated neurons, possibly leading to new targets for therapeutic interventions in synucleinopathies.  相似文献   

9.
Parkinson's disease (PD) is the most common motor disorder affecting the elderly. PD is characterized by the formation of Lewy bodies and death of dopaminergic neurons. The mechanisms underlying PD are unknown, but the discoveries that mutations in alpha-synuclein can cause familial PD and that alpha-synuclein accumulates in Lewy bodies suggest that alpha-synuclein participates in the pathophysiology of PD. Using human BE-M17 neuroblastoma cells overexpressing wild-type, A53T, or A30P alpha-synuclein, we now show that iron and free radical generators, such as dopamine or hydrogen peroxide, stimulate the production of intracellular aggregates that contain alpha-synuclein and ubiquitin. The aggregates can be identified by immunocytochemistry, electron microscopy, or the histochemical stain thioflavine S. The amount of aggregation occurring in the cells is dependent on the amount of alpha-synuclein expressed and the type of alpha-synuclein expressed, with the amount of alpha-synuclein aggregation following a rank order of A53T > A30P > wild-type > untransfected. In addition to stimulating aggregate formation, alpha-synuclein also appears to induce toxicity. BE-M17 neuroblastoma cells overexpressing alpha-synuclein show up to a fourfold increase in vulnerability to toxicity induced by iron. The vulnerability follows the same rank order as for aggregation. These data raise the possibility that alpha-synuclein acts in concert with iron and dopamine to induce formation of Lewy body pathology in PD and cell death in PD.  相似文献   

10.
Despite fission yeast's history of modeling salient cellular processes, it has not yet been used to model human neurodegeneration-linked protein misfolding. Because alpha-synuclein misfolding and aggregation are linked to Parkinson's disease (PD), here, we report a fission yeast (Schizosaccharomyces pombe) model that evaluates alpha-synuclein misfolding, aggregation, and toxicity and compare these properties with those recently characterized in budding yeast (Saccharomyces cerevisiae). Wild-type alpha-synuclein and three mutants (A30P, A53T, and A30P/A53T) were expressed with thiamine-repressible promoters (using vectors of increasing promoter strength: pNMT81, pNMT41, and pNMT1) to test directly in living cells the nucleation polymerization hypothesis for alpha-synuclein misfolding and aggregation. In support of the hypothesis, wild-type and A53T alpha-synuclein formed prominent intracellular cytoplasmic inclusions within fission yeast cells in a concentration- and time-dependent manner, whereas A30P and A30P/A53T remained diffuse throughout the cytoplasm. A53T alpha-synuclein formed aggregates faster than wild-type alpha-synuclein and at a lower alpha-synuclein concentration. Unexpectedly, unlike in budding yeast, wild-type and A53T alpha-synuclein did not target to the plasma membrane in fission yeast, not even at low alpha-synuclein concentrations or as a precursor step to forming aggregates. Despite alpha-synuclein's extensive aggregation, it was surprisingly nontoxic to fission yeast. Future genetic dissection might yield molecular insight into this protection against toxicity. We speculate that alpha-synuclein toxicity might be linked to its membrane binding capacity. To conclude, S. pombe and S. cerevisiae model similar yet distinct aspects of alpha-synuclein biology, and both organisms shed insight into alpha-synuclein's role in PD pathogenesis.  相似文献   

11.
Mutations in the alpha-synuclein gene have been linked to rare cases of familial Parkinson's disease (PD). Alpha-synuclein is a major component of Lewy bodies (LB), a pathological hallmark of PD. Transgenic mice and Drosophila expressing either wild-type or mutant human alpha-synuclein develop motor deficits, LB-like inclusions in some neurons, and neuronal degeneration. However, the relationship between abnormal aggregates of alpha-synuclein and human dopamine (DA) neuron degeneration remains unclear. In this report, we have investigated the influence of alpha-synuclein expression on DA neurons in primary culture of embryonic human mesencephalon. Two days after culture, human DA cells were transduced with wild-type or mutant human (Ala(53)Thr) alpha-synuclein adenoviruses and maintained for 5 days. Overexpression of mutant and wild-type human alpha-synuclein resulted in 49% (P<0.01) and 27% (P<0.05) loss of DA neurons, respectively, while not affecting viability of other cells in the culture. Overexpression of rat alpha-synuclein or GFP (green fluorescent protein) had no effect on DA neuron survival. Cytoplasmic inclusions of alpha-synuclein were detected immunohistochemically in DA cells transduced with mutant human alpha-synuclein, but not wild-type alpha-synuclein. These results show that overexpression of human alpha-synuclein, particularly the mutant form, can cause human DA neuron death, suggesting that alpha-synuclein may have a primary role in the pathogenesis of PD.  相似文献   

12.
Numerous recent observations have implicated alpha-synuclein in the pathogenesis of several neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, dementia with Lewy bodies and multiple-system atrophy. Two missense mutations in the gene for alpha-synuclein have been identified in some cases of familial Parkinson's disease and it is thought that these may disrupt the normal structure of the protein and thus promote aggregation into Lewy body filaments. Here, we examine the subcellular localization of alpha-synuclein in primary cortical neurons maintained in a monolayer culture. The protein has widespread expression throughout neurons, including the nucleus, and has a discete localization in the neurites of more mature neurons, reminiscent of synaptic specializations. Interestingly, in a subpopulation of cortical neurons transfected at 13 days in vitro, we find that alpha-synuclein appears to aggregate into distinct punctate inclusions in the cytoplasm and proximal neurites. Unlike Lewy bodies, these structures are not ubiquitin positive. These regions of alpha-synuclein accumulation are observed following transfections with wild-type, Ala30Pro or Ala53Thr alpha-synuclein; neither mutation alters their frequency.  相似文献   

13.
Two missense mutations (A30P and A53T) in the gene for alpha-synuclein (alpha-syn) cause familial Parkinson's disease (PD) in a small cohort. There is increasing evidence to propose that abnormal metabolism and accumulation of alpha-syn in dopaminergic neurons play a role in the development of familial as well as sporadic PD. The complexity of the mechanisms underlying alpha-syn-induced neurotoxicity, however, has made difficult the development of animal models that faithfully reproduce human PD pathology. We now describe and characterize such a model, which is based on the stereotaxic injection into rat right substantia nigra pars compacta of the A30P mutated form of alpha-syn fused to a protein transduction domain (TAT). The TAT sequence allows diffusion of the fusion protein across the neuronal plasma membrane and results in a localized dopaminergic loss. Dopaminergic cell loss was evaluated both by tyrosine hydroxylase immunohistochemistry and by HPLC analysis of dopamine and its catabolite 3,4 dihydroxyphenylacetic acid. Infusion of TAT-alpha-synA30P induced a significant 26% loss in dopaminergic neurons. This dopaminergic loss was accompanied by a time-dependent impairment in motor function, evaluated utilizing the rotarod and footprint tests. In comparison to chemical neurotoxin-based (e.g. 6-hyroxydopamine, MPTP) animal models of PD, the alpha-syn-based PD animal model offers the advantage of mimicking the early stages and slow development of the human disease and should prove valuable in assessing specific aspects of PD pathogenesis in vivo and in developing new therapeutic strategies.  相似文献   

14.
Alpha-synuclein is a neuronal protein originally identified in Alzheimer's disease (AD) amyloid plaques in 1993 and named non-Abeta component precursor (NACP) [92]. Later, the discovery of two missense mutations (G88C and G209A), which resulted in Ala30Pro (A30P) and Ala53Thr (A53T) substitutions, of the alpha-synuclein gene in certain autosomal-dominant early onset familial Parkinson's disease (PD) has greatly promoted the understanding of the role of alpha-synuclein in the pathogenesis of neurodegenerative diseases, such as PD, dementia with Lewy bodies (DLB) and multiple system atrophy (MSA) [5,6,51,75]. At present, it is widely accepted that alpha-synuclein may play a central role in several neurodegenerative disorders because of the presence of insoluble alpha-synuclein as the major fibrillar component of inclusion bodies. From the cloning of the human alpha-synuclein cDNA in 1993 to the present, alpha-synuclein has been carefully documented in many aspects. In this article, we review the progress of studies on alpha-synuclein and its role in alpha-synuclein-related neurodegenerative diseases.  相似文献   

15.
alpha-Synuclein is a primarily neuronal protein that is enriched at the pre-synapse. alpha-Synuclein and the microtubule binding protein tau have been implicated in neurodegenerative diseases. alpha-Synuclein is known to associate with phospholipid vesicles, regulates dopamine metabolism and exhibits chaperone activity, but its main role remains largely unknown. Furthermore, knowledge on its interactions and post-translational modifications is essential for a molecular understanding of alpha-synucleinopathies. We investigated alpha-synuclein mutations, causative for autosomal dominant forms of Parkinson's disease (A30P, A53T and E46K), and phosphorylation mutants at serine 129 (S129A and S129D) using fluorescently labelled alpha-synuclein, actin and tau. The investigation of colocalization, and protein-protein interactions by F?rster resonance energy transfer and fluorescence lifetime imaging showed that alpha-synuclein associates with the actin cytoskeleton and interacts with tau. The A30P mutation and cytoskeletal destabilization decreased this interaction. Given the concurrent loss of membrane binding by this mutation, we propose a membrane-bound functional complex with tau that might involve the actin cytoskeleton.  相似文献   

16.
α-Synuclein (α-syn) is a presynaptic protein present at most nerve terminals, but its function remains largely unknown. The familial forms of Parkinson's disease associated with multiplications of the α-syn gene locus indicate that overabundance of this protein might have a detrimental effect on dopaminergic transmission. To investigate this hypothesis, we use adeno-associated viral (AAV) vectors to overexpress human α-syn in the rat substantia nigra. Moderate overexpression of either wild-type (WT) or A30P α-syn differs in the motor phenotypes induced, with only the WT form generating hemiparkinsonian impairments. Wild-type α-syn causes a reduction of dopamine release in the striatum that exceeds the loss of dopaminergic neurons, axonal fibers, and the reduction in total dopamine. At the ultrastructural level, the reduced dopamine release corresponds to a decreased density of dopaminergic vesicles and synaptic contacts in striatal terminals. Interestingly, the membrane-binding-deficient A30P mutant does neither notably reduce dopamine release nor it cause ultrastructural changes in dopaminergic axons, showing that α-syn's membrane-binding properties are critically involved in the presynaptic defects. To further determine if the affinity of the protein for membranes determines the extent of motor defects, we compare three forms of α-syn in conditions leading to pronounced degeneration. While membrane-binding α-syns (wild-type and A53T) induce severe motor impairments, an N-terminal deleted form with attenuated affinity for membranes is inefficient in inducing motor defects. Overall, these results demonstrate that α-syn overabundance is detrimental to dopamine neurotransmission at early stages of the degeneration of nigrostriatal dopaminergic axons.  相似文献   

17.
The pathophysiological processes that cause Parkinson's disease (PD) affect dopamine neurons residing in the substantia nigra with devastating consequences for normal movement. One important gene involved in both familial and sporadic PD is alpha-synuclein. We have generated three strains of alpha-synuclein transgenic mice to study the pathologic consequences of the targeted expression of mutant or wild-type human alpha-synuclein in a model system. We have analyzed gene expression patterns in these mice using high throughput microarrays in anatomical regions implicated in disease (substantia nigra and brainstem). Our study reveals gene dosage-dependent dysregulation of several genes important for the dopaminergic phenotype in mice over-expressing wild-type human alpha-synuclein in the substantia nigra at time points preceding neuronal cell death. Analysis of mutant alpha-synuclein mice at a time point when pathology is advanced reveals several new candidate genes that may play a role in neuronal demise and/or protein accumulation.  相似文献   

18.
Parkinson's disease (PD) is the most common neurodegenerative movement disorder and is characterized by the loss of dopaminergic neurons in the substantia nigra compacta. alpha-Synuclein is strongly implicated in the pathophysiology of PD because aggregated alpha-synuclein accumulates in the brains of subjects with PD, mutations in alpha-synuclein cause familial PD, and overexpressing mutant human alpha-synuclein (A30P or A53T) causes degenerative disease in mice or drosophila. The pathophysiology of PD is poorly understood, but increasing evidence implicates mitochondrial dysfunction and oxidative stress. To understand how mutations in alpha-synuclein contribute to the pathophysiology of PD, we undertook a proteomic analysis of transgenic mice overexpressing A30P alpha-synuclein to investigate which proteins are oxidized. We observed more than twofold selective increases in specific carbonyl levels of three metabolic proteins in brains of symptomatic A30P alpha-synuclein mice: carbonic anhydrase 2 (Car2), alpha-enolase (Eno1), and lactate dehydrogenase 2 (Ldh2). Analysis of the activities of these proteins demonstrates decreased functions of these oxidatively modified proteins in brains from the A30P compared to control mice. Our findings suggest that proteins associated with impaired energy metabolism and mitochondria are particularly prone to oxidative stress associated with A30P-mutant alpha-synuclein.  相似文献   

19.
Missense mutations in the alpha-synuclein gene were associated with a familial Parkinson's disease, and alpha-synuclein is a major component of Lewy bodies, the intracellular inclusions that neuropathologically characterize Parkinson's disease. We investigated the neurotoxic activity of the nonamyloid component (NAC) of senile plaque, the fibrillogenic fragment (61-95) of alpha-synuclein, in vitro and in vivo. Rat primary mesencephalic neurons were exposed for 6 days to low concentrations of preaggregated NAC (0.5-10.0 microM). The number of dopaminergic neurons and dopamine content were both reduced with no effect on the general viability of the cells. At higher concentrations (25-100 microM), the neurotoxic effect of NAC was extended to all neurons. Preaggregated NAC was also toxic on a PC12 dopaminergic cell line differentiated with nerve growth factor. The intracellular localization of NAC has been identified by the exposure of neuronal cells to fluorescent peptide. In vivo application of aggregated NAC in the substantia nigra induced loss of dopaminergic neurons. Our data illustrate the selective neurotoxic effect of NAC for dopaminergic neurons and support the central role of alpha-synuclein in the pathogenesis of Parkinson's disease.  相似文献   

20.
Aoffa-Synuclein, a presynaptic nerve terminal protein, may be an important component of Lewy bodies in Parkinson's disease, dementia with Lewy bodies, and other neurodegenerative diseases. Additionally, recent genetic studies based on linkage analysis and cosegregation of A53T and A30P missense mutations demonstrated that the alpha-synuclein gene may be responsible for the development of at least some cases of familial Parkinson's disease. Despite intense interest in the members of the synuclein family, their function(s) and exact role in the diseases remained unknown. Here we describe a new member of the synuclein family, which we term synoretin, and show that it is expressed in different retinal cells, as well as in the brain, and it may affect the regulation of signal transduction through activation of the Elk1 pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号