首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In cardiac ventricular myocytes, sarcoplasmic reticulum (SR) Ca(2+) load is a key determinant of SR Ca(2+) release. This release normally occurs predominantly from SR junctions at sarcolemmal invaginations (t-tubules), ensuring synchronous SR Ca(2+) release throughout the cell. However under conditions of Ca(2+) overload, spontaneous SR Ca(2+) release and propagating Ca(2+) waves can occur, which are pro-arrhythmic. We used detubulated rat ventricular myocytes to determine the dependence of Ca(2+) wave propagation on SR Ca(2+) load, and the role of t-tubules in SR Ca(2+) uptake and spontaneous release. After SR Ca(2+) depletion, recovery of Ca(2+) transient amplitude (and SR Ca(2+) load) was slower in detubulated than control myocytes (half-maximal recovery: 9.9+/-1.4 vs. 5.5+/-0.7 beats). In detubulated myocytes the extent and velocity of Ca(2+) propagation from the cell periphery increased with each beat and depended steeply on SR Ca(2+) load. Isoproterenol (ISO) accelerated recovery, increased maximal propagation velocity and reduced the threshold SR Ca(2+) load for propagation. Ca(2+) spark frequency was uniform across control cell width and was similar at the periphery of detubulated cells. However, internal Ca(2+) spark frequency in detubulated cells was 75% lower (despite comparable local SR Ca(2+) load); this transverse spark frequency profile was similar to that in atrial myocytes. We conclude that: (1) t-tubule Ca(2+) fluxes normally control SR Ca(2+) refilling; (2) Ca(2+) wave propagation depends steeply on SR Ca(2+) content (3) SR-t-tubule junctions are important in initiating SR Ca(2+) release and (4) ISO enhances propagation of SR Ca release, but not the initiation of SR Ca release events (for given SR Ca(2+) loads).  相似文献   

2.
目的观察伊布利特对急性心肌梗死(AMI)后一周心室肌细胞L型钙通道电流(ICa-L)的影响。方法兔开胸,左前降支结扎造成AMI,1周后酶解分离梗死周边区心外膜心室肌细胞,用全细胞膜片钳技术记录10-6mol/L伊布利特细胞外液(伊布利特组)对梗死周边区心外膜心室肌细胞ICa-L活性的影响,并与正常对照组(对照组)及AMI但未灌流伊布利特组(AMI组)比较。结果①AMI 1周时兔梗死周边区心室肌细胞ICa-L受到抑制,电流密度-电压曲线(I-V)上移,ICa-L电流密度峰值降低[-3.52±0.91 pA/pF(n=10)vs-5.68±1.53 pA/pF(n=10),P<0.05];伊布利特组电流密度峰值为-4.84±1.22 pA/pF(n=8),较AMI组显著增大(P<0.05),与对照组比较,虽有减小,但无差异(P>0.05)。②AMI组、伊布利特组ICa-L失活曲线明显左移,以AMI组左移更加明显,对照组半数失活电压(V0.5)为-32±4 mV(n=10),AMI组V0.5增加为-46±7 mV(n=10,P<0.05),伊布利特组V0.5为-36±6mV(n=8),与对照组比较无差异(P>0.05)。结论AMI后1周梗死周边带心室肌细胞L型钙通道受阻滞,伊布利特对缺血引起的ICa-L的异常有明显改善作用。  相似文献   

3.
4.
目的观察伊布利特对正常心肌细胞L型钙通道电流(ICa-L)的影响。方法用全细胞膜片钳技术记录10-6,10-5mol/L伊布利特细胞外液对兔正常左室中层心肌细胞L型钙通道电流(ICa-L)活性的影响。结果①伊布利特灌流后ICa-LI-V曲线下移,低、高剂量伊布利特灌流后电流密度峰值明显增加(-8.34±2.67,-10.50±3.81pA/pFvs-5.68±1.53pA/pF,P均<0.01),且高剂量较低剂量灌流时增加更明显。②低、高剂量伊布利特灌流后失活曲线右移,且高剂量时右移更明显。高剂量时半数失活电压(V0.5)较低剂量和用药前显著降低,而低剂量与用药前无差异。三种状态的激活曲线无差异。结论伊布利特可能呈浓度依赖性影响心室肌细胞L型钙电流(ICa-L)活性。  相似文献   

5.
目的:利用荧光标记法观察代谢抑制处理后,大鼠心肌细胞反向Na+/Ca2+交换体(NCX)转运功能的变化。方法:酶解法分离制备钙耐受心肌细胞用Fura-2/AM负载,采用双激发荧光光电倍增系统(IonOptix Photom etry Sys-tem)检测钙信号。结果:细胞置于无Na+液后,可见[Ca2+]i逐渐升高,L-型Ca2+通道阻断剂n ifed ip ine在浓度为1μmol/L时,不影响此现象;而NCX的抑制剂N i2+,在浓度为1 mmol/L时,则完全阻断[Ca2+]i的升高。采用20mmol/L乳酸加10 mmol/L脱氧葡萄糖作为代谢抑制物处理心肌细胞不同时间,正常Tyrode液灌流10 m in,之后检测无Na+液引发[Ca2+]i升高效应的变化,发现5 m in处理与对照组无显著性差异,10和30 m in处理后此效应逐渐减弱。结论:首次发现,代谢抑制处理后心肌NCX的反向转运功能被抑制,阐明其调节机制,将为心肌缺血/再灌注损伤的治疗提供新思路。  相似文献   

6.
Aims/hypothesis. The Ca2+/calmodulin-dependent protein kinase II (CaMK II) is highly expressed in pancreatic islets and associated with insulin secretion vesicles. The suppression of CaMK II disturbs insulin secretion and insulin gene expression. There are four isoforms of CaMK II, α to δ, that are expressed from different genes in mammals. Our aim was to identify the isoforms of CaMK II expressed in human beta cells by molecular cloning from a human insulinoma cDNA library and to assess its distribution in humans.¶Methods. The previously unknown complete coding sequences of human CaMK II β and the kinase domain of CaMK II δ were cloned from a human insulinoma cDNA library. Quantitative determination of CaMK II isoform mRNA was carried out in several tissues and beta cells purified by fluorescence activated cell sorting and compared to the housekeeping enzyme pyruvate dehydrogenase.¶Results. We found CaMK IIβ occurred in three splice variants and was highly expressed in endocrine tissues such as adrenals, pituitary and beta cells. Liver showed moderate expression but adipose tissue or lymphocytes had very low levels of CaMK II β-mRNA. In human beta cells CaMK II β and δ were expressed equally with pyruvate dehydrogenase whereas tenfold lower expression of CaMK II γ and no expression of CaMK IIα were found.¶Conclusion/interpretation. Although CaMK II δ is ubiquitously expressed, CaMK II β shows preferential expression in neuroendocrine tissues. In comparison with the expression of a key regulatory enzyme in glucose oxidation, pyruvate dehydrogenase, two of the four CaM kinases investigated are expressed at equally high levels, which supports an important role in beta-cell physiology. These results provide the basis for exploring the pathophysiological relevance of CaMK IIβ in human diabetes. [Diabetologia (2000) 43: 465–473]  相似文献   

7.
The elementary event of Ca(2+) release in heart is the Ca(2+) spark. It occurs at a low rate during diastole, activated only by the low cytosolic [Ca(2+)](i). Synchronized activation of many sparks is due to the high local [Ca(2+)](i) in the region surrounding the sarcoplasmic reticulum (SR) Ca(2+) release channels and is responsible for the systolic [Ca(2+)](i) transient. The biophysical basis of this calcium signaling is discussed. Attention is placed on the local organization of the ryanodine receptors (SR Ca(2+) release channels, RyRs) and the other proteins that underlie and modulate excitation-contraction (EC) coupling. A brief review of specific elements that regulate SR Ca(2+) release (including SR lumenal Ca(2+) and coupled gating of RyRs) is presented. Finally integrative calcium signaling in heart is presented in the context of normal heart function and heart failure.  相似文献   

8.
The sustained positive inotropic effect of alpha-adrenoceptor agonists in the heart is associated with a small increase in intracellular Ca(2+) transients together with a larger sensitization of myofilaments to Ca(2+). The multifunctional Ca(2+) and calmodulin-dependent protein kinase II (CaMKII) could contribute to this effect, either by affecting the Ca(2+) release (ryanodine receptor) or by an uptake mechanism (via phospholamban [PLB] and SR Ca(2+) ATPase). Here we examined the role of CaMKII in the positive inotropic effect of the alpha-adrenoceptor agonist phenylephrine in left atria isolated from a genetic mouse model of cardiac CaMKII inhibition (AC3-I). Compared to atria from wild-type (WT) or AC3-C (scrambled peptide), AC3-I atria showed the following abnormalities. PLB phosphorylation at Thr17, a known CaMKII target, was significantly lower ( approximately 20%). Post-rest (30 s, 1 Hz, 37 degrees C) potentiation of force was absent (AC3-C, 190% of pre-rest amplitude). Basal force was approximately 20% lower at 1.8 mM Ca(2+), but normal at high Ca(2+) concentration (>4.5 mM). The maximal positive inotropic effect of phenylephrine, which was more pronounced at low frequencies in WT and AC3-C atria, lost its frequency dependence (1 Hz to 8 Hz). Thus, the effect of phenylephrine was reduced by approximately 50% at 1 Hz, but was normal at 8 Hz. All three groups showed a negative force-frequency relation, and did not differ in the frequency-dependent acceleration of relaxation. Our data indicate a role of CaMKII in post-rest potentiation and the positive inotropic effect of alpha-adrenergic stimulation at low frequencies.  相似文献   

9.
It has been reported that sarcoplasmic reticulum (SR) Ca(2+) uptake is more rapid in rat than rabbit ventricular myocytes, but little information is available on the relative SR Ca(2+) uptake activity in others species, including humans. We induced Ca(2+) transients with a short caffeine pulse protocol (rapid solution switcher, 10 mM caffeine, 100 ms) in single ventricular myocytes voltage clamped (-80 mV) with pipettes containing 100 microM fluo-3 and nominal 0 Ca(2+), in 0 Na(+)(o)/0 Ca(2+)(o) solution to inhibit Na/Ca exchange. SR in non-paced human, dog, rabbit, and mouse ventricular myocytes could be readily loaded with Ca(2+) under our experimental conditions with a pipette [Ca(2+)] = 100 nM. Resting [Ca(2+)](i) was similar in four types of ventricular myocytes. Activation of the Ca(2+)-release channel with a 100-ms caffeine pulse produced a rise in [caffeine](i) to slightly above 2 mM, the threshold for caffeine activation of Ca(2+) release. This caused a similar initial rate of rise and peak [Ca(2+)](i) in the four types of ventricular myocytes. However, there were significant differences in the duration of the plateau (top 10%) [Ca(2+)](i) transients and the time constant of the [Ca(2+)](i) decline (reflecting activity of the SR Ca(2+)-ATPase), with values for human > dog > rabbit > mouse. In paced myocytes under physiologic conditions, SR Ca(2+) content was greater in mouse than in rabbit myocytes, while peak I(Ca,L) was smaller in mouse. These findings confirm substantial species difference in SR Ca(2+)-ATPase activity, and suggest that the smaller the animal and the more rapid the heart rate, greater the activity of the SR Ca(2+)-ATPase. In addition, it appears that substantial species differences exist in the degree of SR Ca(2+) loading and I(Ca,L) under physiologic conditions.  相似文献   

10.
The Na(+)/Ca(2+)-exchanger (NCX) is the main mechanism by which Ca(2+) is transported out of the ventricular myocyte. NCX levels are raised in failing human heart, and the consequences of this for excitation-contraction coupling are still debated. We have increased NCX levels in adult rabbit myocytes by adenovirally-mediated gene transfer and examined the effects on excitation-contraction coupling after 24 and 48 h. Infected myocytes were identified through expression of green fluorescent protein (GFP), transfected under a separate promoter on the same viral construct. Control experiments were done with both non-infected myocytes and those infected with adenovirus expressing GFP only. Contraction amplitude was markedly reduced in NCX-overexpressing myocytes at either time point, and neither increasing frequency nor raising extracellular Ca(2+) could reverse this depression. Resting membrane potential and action potential duration were largely unaffected by NCX overexpression, as was peak Ca(2+) entry via the L-type Ca(2+) channel. Systolic and diastolic Ca(2+) levels were significantly reduced, with peak systolic Ca(2+) in NCX-overexpressing myocytes lower than diastolic levels in control cells at 2 m m extracellular Ca(2+). Both cell relengthening and the decay of the Ca(2+) transient were significantly slowed. Sarcoplasmic reticulum (SR) Ca(2+) stores were completely depleted in a majority of myocytes, and remained so despite increasingly vigorous loading protocols. Depressed contractility following NCX overexpression is therefore related to decreased SR Ca(2+) stores and low diastolic Ca(2+) levels rather than reduced Ca(2+) entry.  相似文献   

11.
In the mouse, genetic reduction in the Na(+), K(+)-ATPase alpha1 or alpha2 isoforms results in different functional phenotypes: heterozygous alpha2 isolated hearts are hypercontractile, whereas heterozygous alpha1 hearts are hypocontractile. We examined Na(+)/Ca(2+) exchange (NCX) currents in voltage clamped myocytes (pipette [Na(+)]=15 mM) induced by abrupt removal of extracellular Na(+). In wild-type (WT) myocytes, peak exchanger currents were 0.59+/-0.04 pA/pF (mean+/-S.E.M., n=10). In alpha1(+/-) myocytes (alpha2 isoform increased by 54%), NCX current was reduced to 0.33+/-0.05 (n=9, P<0.001) indicating a lower subsarcolemmal [Na(+)]. In alpha2(+/-) myocytes (alpha2 isoform reduced by 54%), the NCX current was increased to 0.89+/-0.11 (n=8, P=0.03). The peak sarcolemmal Na(+) pump currents activated by abrupt increase in [K(+)](o) to 4 mM in voltage clamped myocytes in which the Na(+) pump had been completely inhibited for 5 min by exposure to 0 [K(+)](o) were similar in alpha1(+/-) (0.86+/-0.12, n=10) and alpha2(+/-) myocytes (0.94+/-0.08 pA/pF, n=16), and were slightly but insignificantly reduced relative to WT (1.03+/-0.05, n=24). The fluo-3 [Ca(2+)](i) transient (F/F(o)) in WT myocytes paced at 0.5 Hz was 2.18+/-0.09, n=34, was increased in alpha2(+/-) myocytes (F/F(o)=2.56+/-0.14, n=24, P=0.02), and was decreased in alpha1(+/-) myocytes (F/F(o)=1.93+/-0.08, n=28, P<0.05). Thus the alpha2 isoform rather than the alpha1 appears to influence Na(+)/Ca(2+) exchanger currents [Ca(2+)](i) transients, and contractility. This finding is consistent with the proposal that alpha2 isoform of the Na pump preferentially alters [Na(+)] in a subsarcolemmal micro-domain adjacent to Na(+)/Ca(2+) exchanger molecules and SR Ca(2+) release sites.  相似文献   

12.
Endothelin-1 (ET-1) is released in various cardiovascular disorders including congestive heart failure, and may modulate significantly the disease process by its potent action on vascular and cardiac muscle cell function and gene regulation. In adult mouse ventricular cardiomyocytes loaded with indo-1, ET-1 induced a sustained negative inotropic effect (NIE) in association with decreases in Ca2+ transients. The ET-1-induced effects on Ca2+ transients and cell shortening were abolished in diacylglycerol (DAG) kinase ζ-overexpressing mouse ventricular myocytes. A nonselective protein kinase C (PKC) inhibitor, GF109203X, inhibited the ET-1-induced decreases in Ca2+ transients and cell shortening in concentration-dependent manners, whereas a selective Ca2+-dependent PKC inhibitor, Gö6976, did not affect the ET-1-induced effects. A phospholipase Cβ inhibitor, U73122, and an inhibitor of phospholipase D, C2-ceramide, partially, but significantly, attenuated the ET-1-induced effects. Derivatives of the respective inhibitors with no specific effects, U73343 and dihydro-C2-ceramide, did not affect the ET-1-induced effects. Taken together, these results indicate that activation of a Ca2+-independent PKC isozyme by 1,2-DAG, which is generated by phospholipase Cβ and phospholipase D activation and inactivated by phosphorylation via DAG kinase, is responsible for the ET-1-induced decreases in Ca2+ transients and cell shortening in mouse ventricular cardiomyocytes.  相似文献   

13.
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmogenic disease characterized by life-threatening arrhythmias elicited by adrenergic activation. CPVT is caused by mutations in the cardiac ryanodine receptor gene (RyR2). In vitro studies demonstrated that RyR2 mutations respond to sympathetic activation with an abnormal diastolic Ca(2+) leak from the sarcoplasmic reticulum; however the pathways that mediate the response to adrenergic stimulation have not been defined. In our RyR2(R4496C+/-) knock-in mouse model of CPVT we tested the hypothesis that inhibition of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) counteracts the effects of adrenergic stimulation resulting in an antiarrhythmic activity. CaMKII inhibition with KN-93 completely prevented catecholamine-induced sustained ventricular tachyarrhythmia in RyR2(R4496C+/-) mice, while the inactive congener KN-92 had no effect. In ventricular myocytes isolated from the hearts of RyR2(R4496C+/-) mice, CaMKII inhibition with an autocamtide-2 related inhibitory peptide or with KN-93 blunted triggered activity and transient inward currents induced by isoproterenol. Isoproterenol also enhanced the activity of the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA), increased spontaneous Ca(2+) release and spark frequency. CaMKII inhibition blunted each of these parameters without having an effect on the SR Ca(2+) content. Our data therefore indicate that CaMKII inhibition is an effective intervention to prevent arrhythmogenesis (both in vivo and in vitro) in the RyR2(R4496C+/-) knock-in mouse model of CPVT. Mechanistically, CAMKII inhibition acts on several elements of the EC coupling cascade, including an attenuation of SR Ca(2+) leak and blunting catecholamine-mediated SERCA activation. CaMKII inhibition may therefore represent a novel therapeutic target for patients with CPVT.  相似文献   

14.
Summary. Human La protein (hLa) is a multifunctional RNA‐binding protein involved in the regulation of hepatitis B virus (HBV) expression. Casein kinase II (CK2), a protein kinase, is known to activate hLa by phosphorylating Ser366. Tetrabromobenzimidazole (TBBz) has been shown to be a specific inhibitor of CK2 activity, which suggests that TBBz may be useful for reducing HBV gene expression. The aim of our study was to determine whether inhibition of CK2 by TBBz and decreased phosphorylation of hLa Ser366 (pLa) would reduce HBV gene expression. pLa and total La expression levels were evaluated by immunohistochemistry in human liver tissues with or without HBV infection. HepG2.2.15 cells (an HBV‐expressing cell line) were treated with TBBz, and cell viability and pLa levels were evaluated. Knockdown of hLa and CK2 levels by specific siRNA and mutant hLa Ala366 were utilized to establish the roles of pLa and CK2 in HBV gene expression. HBV DNA replication and HBsAg and HBeAg levels were analysed in HepG2.2.15 cell supernatants by standard methods. pLa was significantly overexpressed in HBV‐infected human liver samples. TBBz decreased the phosphorylation of hLa, which coincided with decreased HBV expression. Mutant hLa Ala366 had reduced viral expression compared with hLa Ser366 treatment in hLa siRNA knockdown cells. Knockdown of CK2 also decreased the HBV parameters. hLa plays a key role in the regulation of HBV gene expression in a CK2‐dependent mechanism via phosphorylation of hLa at Ser366.  相似文献   

15.
Calcium/calmodulin dependent protein kinase II delta C (CaMKIIdelta(C)) and the EF-hand Ca(2+)-binding protein, sorcin have both been shown to regulate the excitation-contraction coupling process. This study explores the possibility that these two proteins interact directly and, as a result of this interaction, modulate cardiac calcium handling. Two independent methods (surface plasmon resonance (SPR) and overlay assays) were used to determine whether CaMKIIdelta(C) and sorcin interacted in a direct manner. The nature of this interaction was explored by (i) examining the effects of sorcin on CaMKIIdelta(C) activity using a selective kinase assay and (ii) studying whether sorcin was a substrate for CaMKIIdelta(C) using autoradiography. Ryanodine binding assays on mouse ventricular cardiomyocytes were used to determine specific functional effects of this interaction. SPR studies suggested that sorcin interacts with CaMKIIdelta(C) in a concentration-dependent manner. This interaction occurs in the presence of Ca(2+) and in the presence or absence of calmodulin (CaM). Overlay assays confirmed the existence of this interaction. Further experiments suggested that this interaction is reciprocal. Firstly, sorcin significantly inhibited both recombinant and native CaMKIIdelta(C) activity to similar extents. Secondly, sorcin was phosphorylated by CaMKIIdelta(C). Thirdly, sorcin inhibition of CaMKII activity occurred under conditions where sorcin remained dephosphorylated. Functionally, CaMKIIdelta(C)-mediated phosphorylation of sorcin served to abolish the inhibitory effect of sorcin on ryanodine receptor (RyR(2)) open probability (Po). Since both proteins are capable of directly modulating RyR(2) activity, this interaction may serve as an additional or alternative indirect route by which both proteins can regulate RyR(2) opening status in cardiac myocytes.  相似文献   

16.
17.
The Ca2+-dependent facilitation (CDF) of L-type Ca2+ channels, a major mechanism for force-frequency relationship of cardiac contraction, is mediated by Ca2+/CaM-dependent kinase II (CaMKII). Recently, CaMKII was shown to be activated by methionine oxidation. We investigated whether oxidation-dependent CaMKII activation is involved in the regulation of L-type Ca2+ currents (ICa,L) by H2O2 and whether Ca2+ is required in this process. Using patch clamp, ICa,L was measured in rat ventricular myocytes. H2O2 induced an increase in ICa,L amplitude and slowed inactivation of ICa,L. This oxidation-dependent facilitation (ODF) of ICa,L was abolished by a CaMKII blocker KN-93, but not by its inactive analog KN-92, indicating that CaMKII is involved in ODF. ODF was not affected by replacement of external Ca2+ with Ba2+ or presence of EGTA in the internal solutions. However, ODF was abolished by adding BAPTA to the internal solution or by depleting sarcoplasmic reticulum (SR) Ca2+ stores using caffeine and thapsigargin. Alkaline phosphatase, β-iminoadenosine 5′-triphosphate (AMP-PNP), an autophosphorylation inhibitor autocamtide-2-related inhibitory peptide (AIP), or a catalytic domain blocker (CaM-KIINtide) did not affect ODF. In conclusion, oxidation-dependent facilitation of L-type Ca2+ channels is mediated by oxidation-dependent CaMKII activation, in which local Ca2+ increases induced by SR Ca2+ release is required.  相似文献   

18.
目的探讨再生障碍性贫血(AA)患者血清对小鼠髓系前体细胞(32D细胞)的影响及机制。方法将小鼠32D细胞株分别与AA患者[重型AA(SAA)与非重型AA(NSAA)各6例]、正常对照者血清共培养24h,流式细胞仪检测细胞凋亡率;Western blot法检测磷酸化蛋白激酶B(PAKT)蛋白表达,并行相关分析。结果32D细胞经血清作用24h后,SAA、NSAA和正常对照者32D细胞凋亡率分别为13.21%±3.52%、10.15%±1.50%、6.52%±0.92%,两两比较,P均〈0.01;PAKT水平分别为0.313±0.018、0.600±0.012、0.609±0.011,SAA者明显高于NSAA和正常对照者,P均〈0.01。相关分析显示SAA者经同一份血清孵育的细胞凋亡率与PAKT表达水平呈负相关(r=-0.814,P〈0.05)。结论从患者血清在体外可诱导32D细胞凋亡,AKT抗凋亡通路可能在此过程中发挥重要作用。  相似文献   

19.
Inhibition of Ca(2+) mobilization by cyclic nucleotides is central to the mechanism whereby endothelial-derived prostacyclin and nitric oxide limit platelet activation in the intact circulation. However, we show that ~ 50% of the Ca(2+) response after stimulation of glycoprotein VI (GPVI) by collagen, or of Toll-like 2/1 receptors by Pam(3)Cys-Ser-(Lys)(4) (Pam(3)CSK(4)), is resistant to prostacyclin. At low agonist concentrations, the prostacyclin-resistant Ca(2+) response was predominantly because of P2X1 receptors activated by ATP release via a phospholipase-C-coupled secretory pathway requiring both protein kinase C and cytosolic Ca(2+) elevation. At higher agonist concentrations, an additional pathway was observed because of intracellular Ca(2+) release that also depended on activation of phospholipase C and, for TLR 2/1, PI3-kinase. Secondary activation of P2X1-dependent Ca(2+) influx also persisted in the presence of nitric oxide, delivered from spermine NONOate, or increased ectonucleotidase levels (apyrase). Surprisingly, apyrase was more effective than prostacyclin and NO at limiting secondary P2X1 activation. Dilution of platelets reduced the average extracellular ATP level without affecting the percentage contribution of P2X1 receptors to collagen-evoked Ca(2+) responses, indicating a highly efficient activation mechanism by local ATP. In conclusion, platelets possess inhibitor-resistant Ca(2+) mobilization pathways, including P2X1 receptors, that may be particularly important during early thrombotic or immune-dependent platelet activation.  相似文献   

20.
The hypertrophic agonist endothelin-1 rapidly but transiently activates the extracellular signal-regulated kinase 1/2 (ERK1/2) cascade (and other signalling pathways) in cardiac myocytes, but the events linking this to hypertrophy are not understood. Using Affymetrix rat U34A microarrays, we identified the short-term (2-4 h) changes in gene expression induced in neonatal myocytes by endothelin-1 alone or in combination with the ERK1/2 cascade inhibitor, U0126. Expression of 15 genes was significantly changed by U0126 alone, and expression of an additional 78 genes was significantly changed by endothelin-1. Of the genes upregulated by U0126, four are classically induced through the aryl hydrocarbon receptor (AhR) by dioxins suggesting that U0126 activates the xenobiotic response element in cardiac myocytes potentially independently of effects on ERK1/2 signalling. The 78 genes showing altered expression with endothelin-1 formed five clusters: (i) three clusters showing upregulation by endothelin-1 according to time course (4 h > 2 h; 2 h > 4 h; 2 h approximately 4 h) with at least partial inhibition by U0126; (ii) a cluster of 11 genes upregulated by endothelin-1 but unaffected by U0126 suggesting regulation through signalling pathways other than ERK1/2; (iii) a cluster of six genes downregulated by endothelin-1 with attenuation by U0126. Thus, U0126 apparently activates the AhR in cardiac myocytes (which must be taken into account in protracted studies), but careful analysis allows identification of genes potentially regulated acutely via the ERK1/2 cascade. Our data suggest that the majority of changes in gene expression induced by endothelin-1 are mediated by the ERK1/2 cascade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号