首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

BACKGROUND AND PURPOSE

Pulmonary transepithelial Na+ transport is reduced by hypoxia, but in the airway the regulatory mechanisms remain unclear. We investigated the role of AMPK and ROS in the hypoxic regulation of apical amiloride-sensitive Na+ channels and basolateral Na+K+ ATPase activity.

EXPERIMENTAL APPROACH

H441 human airway epithelial cells were used to examine the effects of hypoxia on Na+ transport, AMP : ATP ratio and AMPK activity. Lentiviral constructs were used to modify cellular AMPK abundance and activity; pharmacological agents were used to modify cellular ROS.

KEY RESULTS

AMPK was activated by exposure to 3% or 0.2% O2 for 60 min in cells grown in submerged culture or when fluid (0.1 mL·cm−2) was added to the apical surface of cells grown at the air–liquid interface. Only 0.2% O2 activated AMPK in cells grown at the air–liquid interface. AMPK activation was associated with elevation of cellular AMP : ATP ratio and activity of the upstream kinase LKB1. Hypoxia inhibited basolateral ouabain-sensitive Isc (Iouabain) and apical amiloride-sensitive Na+ conductance (GNa+). Modification of AMPK activity prevented the effect of hypoxia on Iouabain (Na+K+ ATPase) but not apical GNa+. Scavenging of superoxide and inhibition of NADPH oxidase prevented the effect of hypoxia on apical GNa+ (epithelial Na+ channels).

CONCLUSIONS AND IMPLICATIONS

Hypoxia activates AMPK-dependent and -independent pathways in airway epithelial cells. Importantly, these pathways differentially regulate apical Na+ channels and basolateral Na+K+ ATPase activity to decrease transepithelial Na+ transport. Luminal fluid potentiated the effect of hypoxia and activated AMPK, which could have important consequences in lung disease conditions.  相似文献   

2.

Background and Purpose

Chondrocytes exist within cartilage and serve to maintain the extracellular matrix. It has been postulated that osteoarthritic (OA) chondrocytes lose the ability to regulate their volume, affecting extracellular matrix production. In previous studies, we identified expression of epithelial sodium channels (ENaC) in human chondrocytes, but their function remained unknown. Although ENaC typically has Na+ transport roles, it is also involved in the cell volume regulation of rat hepatocytes. ENaC is a member of the degenerin (Deg) family, and ENaC/Deg-like channels have a low conductance and high sensitivity to benzamil. In this study, we investigated whether canine chondrocytes express functional ENaC/Deg-like ion channels and, if so, what their function may be.

Experimental Approach

Canine chondrocytes were harvested from dogs killed for unassociated welfare reasons. We used immunohistochemistry and patch-clamp electrophysiology to investigate ENaC expression and video microscopy to analyse the effects of pharmacological inhibition of ENaC/Deg on cell volume regulation.

Key Results

Immunofluorescence showed that canine chondrocytes expressed ENaC protein. Single-channel recordings demonstrated expression of a benzamil-sensitive Na+ conductance (9 pS), and whole-cell experiments show this to be approximately 1.5 nS per cell with high selectivity for Na+. Benzamil hyperpolarized chondrocytes by approximately 8 mV with a pD2 8.4. Chondrocyte regulatory volume decrease (RVI) was inhibited by benzamil (pD2 7.5) but persisted when extracellular Na+ ions were replaced by Li+.

Conclusion and Implications

Our data suggest that benzamil inhibits RVI by reducing the influx of Na+ ions through ENaC/Deg-like ion channels and present ENaC/Deg as a possible target for pharmacological modulation of chondrocyte volume.  相似文献   

3.

Background and purpose:

Epithelial surface hydration is critical for proper gut function. However, colonic tissues from individuals with inflammatory bowel disease or animals with colitis are hyporesponsive to Cl secretagogues. The Cl secretory responses to the muscarinic receptor agonist bethanechol are virtually absent in colons of mice with dextran sodium sulphate (DSS)-induced colitis. Our aim was to define the mechanism underlying this cholinergic hyporesponsiveness.

Experimental approach:

Colitis was induced by 4% DSS water, given orally. Epithelial ion transport was measured in Ussing chambers. Colonic crypts were isolated and processed for mRNA expression via RT-PCR and protein expression via immunoblotting and immunolocalization.

Key results:

Expression of muscarinic M3 receptors in colonic epithelium was not decreased during colitis. Short-circuit current (ISC) responses to other Ca2+-dependent secretagogues (histamine, thapsigargin, cyclopiazonic acid and calcium ionophore) were either absent or severely attenuated in colonic tissue from DSS-treated mice. mRNA levels of several ion transport molecules (a Ca2+-regulated Cl channel, the intermediate-conductance Ca2+-activated K+ channel, the cystic fibrosis transmembrane conductance regulator, the Na+/K+-ATPase pump or the Na+/K+/2Cl co-transporter) were not reduced in colonic crypts from DSS-treated mice. However, protein expression of Na+/K+-ATPase α1 subunits was decreased twofold during colitis. Activation of Ca2+-activated K+ channels increased ISC significantly less in DSS colons compared with control, as did the protein kinase C activator, phorbol 12-myristate 13-acetate.

Conclusions and implications:

Decreased Na+/K+-ATPase expression probably contributes to overall epithelial hyporesponsiveness during colitis, while dysfunctional K+ channels may account, at least partially, for lack of epithelial secretory responses to Ca2+-mediated secretagogues.  相似文献   

4.

BACKGROUND AND PURPOSE

Glucocorticoids appear to control Na+ absorption in pulmonary epithelial cells via a mechanism dependent upon serum and glucocorticoid-inducible kinase 1 (SGK1), a kinase that allows control over the surface abundance of epithelial Na+ channel subunits (α-, β- and γ-ENaC). However, not all data support this model and the present study re-evaluates this hypothesis in order to clarify the mechanism that allows glucocorticoids to control ENaC activity.

EXPERIMENTAL APPROACH

Electrophysiological studies explored the effects of agents that suppress SGK1 activity upon glucocorticoid-induced ENaC activity in H441 human airway epithelial cells, whilst analyses of extracted proteins explored the associated changes to the activities of endogenous protein kinase substrates and the overall/surface expression of ENaC subunits.

KEY RESULTS

Although dexamethasone-induced (24 h) ENaC activity was dependent upon SGK1, prolonged exposure to this glucocorticoid did not cause sustained activation of this kinase and neither did it induce a coordinated increase in the surface abundance of α-, β- and γ-ENaC. Brief (3 h) exposure to dexamethasone, on the other hand, did not evoke Na+ current but did activate SGK1 and cause SGK1-dependent increases in the surface abundance of α-, β- and γ-ENaC.

CONCLUSIONS AND IMPLICATIONS

Although glucocorticoids activated SGK1 and increased the surface abundance of α-, β- and γ-ENaC, these responses were transient and could not account for the sustained activation of ENaC. The maintenance of ENaC activity did, however, depend upon SGK1 and this protein kinase must therefore play an important but permissive role in glucocorticoid-induced ENaC activation.  相似文献   

5.

Background and purpose:

The epithelial sodium channel (ENaC) is a key regulator of airway mucosal hydration and mucus clearance. Negative regulation of airway ENaC function is predicted to be of clinical benefit in the cystic fibrosis lung. The aim of this study was to develop a small animal model to enable the direct assessment of airway ENaC function in vivo.

Experimental approach:

Tracheal potential difference (TPD) was utilized as a measure of airway epithelial ion transport in the guinea-pig. ENaC activity in the trachea was established with a dose–response assessment to a panel of well-characterized direct and indirect pharmacological modulators of ENaC function, delivered by intra-tracheal (i.t.) instillation.

Key results:

The TPD in anaesthetized guinea-pigs was attenuated by the direct ENaC blockers: amiloride, benzamil and CF552 with ED50 values of 16, 14 and 0.2 μg kg−1 (i.t.), respectively. 5-(N-Ethyl-N-isopropyl) amiloride, a structurally related compound but devoid of activity on ENaC, was without effect on the TPD. Intra-tracheal dosing of the Kunitz-type serine protease inhibitors aprotinin and placental bikunin, which have previously been demonstrated to inhibit proteolytic activation of ENaC, likewise potently attenuated TPD in guinea-pigs, whereas α1-antitrypsin and soya bean trypsin inhibitor were without effect.

Conclusions and implications:

The pharmacological sensitivity of the TPD to amiloride analogues and also to serine protease inhibitors are both consistent with that of ENaC activity in the guinea-pig trachea. The guinea-pig TPD therefore represents a suitable in vivo model of human airway epithelial ion transport.  相似文献   

6.

Background and purpose:

Bepridil is an anti-arrhythmic agent with anti-electrical remodelling effects that target many cardiac ion channels, including the voltage-gated Na+ channel. However, long-term effects of bepridil on the Na+ channel remain unclear. We explored the long-term effect of bepridil on the Na+ channel in isolated neonatal rat cardiomyocytes and in a heterologous expression system of human Nav1.5 channel.

Experimental approach:

Na+ currents were recorded by whole-cell voltage-clamp technique. Na+ channel message and protein were evaluated by real-time RT-PCR and Western blot analysis.

Key results:

Treatment of cardiomyocytes with 10 µmol·L−1 bepridil for 24 h augmented Na+ channel current (INa) in a dose- and time-dependent manner. This long-term effect of bepridil was mimicked or masked by application of W-7, a calmodulin inhibitor, but not KN93 [2-[N-(2-hydroxyethyl)-N-(4-methoxy benzenesulphonyl)]-amino-N-(4-chlorocinnamyl)-N-methylbenzylamine], a Ca2+/calmodulin-dependent kinase inhibitor. During inhibition of protein synthesis by cycloheximide, the INa increase due to bepridil was larger than the increase without cycloheximide. Bepridil and W-7 significantly slowed the time course of Nav1.5 protein degradation in neonatal cardiomyocytes, although the mRNA levels of Nav1.5 were not modified. Bepridil and W-7 did not increase INa any further in the presence of the proteasome inhibitor MG132 [N-[(phenylmethoxy)carbonyl]-L-leucyl-N-[(1S)-1-formyl-3-methylbutyl]-L-leucinamide]. Bepridil, W-7 and MG132 but not KN93 significantly decreased 20S proteasome activity in a concentration-dependent manner.

Conclusions and implications:

We conclude that long-term exposure of cardiomyocytes to bepridil at therapeutic concentrations inhibits calmodulin action, which decreased degradation of the Nav1.5 α-subunit, which in turn increased Na+ current.  相似文献   

7.

Background and purpose:

Synaptic deficiency is generally accepted to be involved in major depression, and accordingly classic antidepressants exert their effects through enhancing synaptic efficiency. Hypericin is one of the major active constituents of extracts of St. John''s Wort (Hypericum perforatum L.) with antidepressive actions, but little is known about its therapeutic mechanisms. Our aim was to explore whether hypericin has a modulatory effect on neuronal action potential (AP) duration by acting on voltage-gated ion channels.

Experimental approach:

We used voltage-clamp and current-clamp techniques in a whole-cell configuration to study primary cultures of neonatal rat hippocampal neurones. We measured the effects of extracellularly applied hypericin on AP duration as well as on voltage-gated Na+, IA and IK currents.

Key results:

Extracellularly applied hypericin dose-dependently increased AP duration but barely affected its amplitude. Further analysis revealed that hypericin inhibited both transient IA and delayed rectifier IK potassium currents. In contrast, hypericin exerted no significant effect on both Na+ peak current and its decay kinetics.

Conclusions and implications:

Extracellularly applied hypericin increased AP duration, which might be ascribed to its effect on IA and IK currents. As a small increase in AP duration could lead to a dramatic increase in synaptic efficiency, our results imply that hypericin might exert its antidepressant effects by enhancing presynaptic efficiency.  相似文献   

8.

Background and purpose:

The effects of veratridine, an alkaloid found in Liliaceae plants, on tetrodotoxin (TTX)-sensitive voltage-gated Na+ channels were investigated in mouse vas deferens.

Experimental approach:

Effects of veratridine on TTX-sensitive Na+ currents (INa) in vas deferens myocytes dispersed from BALB/c mice, homozygous mice with a null allele of NaV1.6 (NaV1.6−/−) and wild-type mice (NaV1.6+/+) were studied using patch-clamp techniques. Tension measurements were also performed to compare the effects of veratridine on phasic contractions in intact tissues.

Key results:

In whole-cell configuration, veratridine had a concentration-dependent dual action on the peak amplitude of INa: INa was enhanced by veratridine (1–10 µM), while higher concentrations (≥30 µM) inhibited INa. Additionally, two membrane current components were evoked by veratridine, namely a sustained inward current during the duration of the depolarizing rectangular pulse and a tail current at the repolarization. Although veratridine caused little shift of the voltage dependence of the steady-state inactivation curve and the activation curve for INa, veratridine enhanced a non-inactivating component of INa. Veratridine caused no detectable contractions in vas deferens from NaV1.6−/− mice, although in tissues from NaV1.6+/+ mice, veratridine (≥3 µM) induced TTX-sensitive contractions. Similarly, no detectable inward currents were evoked by veratridine in NaV1.6−/− vas deferens myocytes, while veratridine elicited both the sustained and tail currents in cells taken from NaV1.6+/+ mice.

Conclusions and implications:

These results suggest that veratridine possesses a dual action on INa and that the veratridine-induced activation of contraction is induced by the activation of NaV1.6 channels.  相似文献   

9.

Aim:

To examine the electrophysiological effects of sophocarpine on action potentials (AP) and ionic currents of cardiac myocytes and to compare some of these effects with those of amiodarone.

Methods:

Langendorff perfusion set-up was used in isolated guinea pig heart, and responses to sophocarpine were monitored using electrocardiograph. Conventional microelectrode, voltage clamp technique and perforated patch were employed to record fast response AP (fAP), slow response AP (sAP) and ionic currents in guinea pig papillary muscle or rabbit sinus node cells.

Results:

Tachyarrhythmia produced by isoprenaline (15 μmol/L) could be reversed by sophocarpine (300 μmol/L). Sophocarpine (10 μmol/L) decreased the amplitude by 4.0%, maximal depolarization velocity (Vmax) of the fAP by 24.4%, and Na+ current (INa) by 18.0%, while it prolonged the effective refractory period (ERP) by 21.1%. The same concentration of sophocarpine could also decrease the amplitude and Vmax of the sAP, by 26.8% and 25.7%, respectively, and attenuated the Ca2+ current (ICaL) and the K+ tail current substantially. Comparison of sophocarpine with amiodarone demonstrated that both prolonged the duration and the ERP of fAP and sAP, both decreased the amplitude and Vmax of the fAP and sAP, and both slowed the automatic heart rate.

Conclusion:

Sophocarpine could reverse isoprenaline-induced arrhythmia and inhibit INa, ICaL, and IKr currents. The electrophysiological effects of sophocarpine are similar to those of amiodarone, which might be regarded as a prospective antiarrhythmic agent.  相似文献   

10.

Aim:

Tetrandrine (Tet) is a Ca2+ channel blocker and has antiarrhythmic effects. Less information exists with regard to the mechanisms underlying its antiarrhythmic action other than blocking Ca2+ channels. In this study, the effects of Tet on the Na+ current (INa) in the atrial myocardium of patients in atrial fibrillation (AF) and sinus rhythm (SR) were investigated, and the characteristics of the Na+ current were synchronously compared between the AF and SR patients.

Methods:

Na+ currents were recorded using the whole-cell patch clamp technique in single atrial myocyte of the AF and the normal SR groups. The effects of Tet (40–120 μmol/L) on the Na+ current in the two groups were then observed.

Results:

Tet (60–120 μmol/L) decreased INa density in a concentration-dependent manner and made the voltage-dependent activation curve shift to more positive voltages in the SR and AF groups. After exposure to Tet, the voltage-dependent inactivation curve of INa was shifted to more negative voltages in the two groups. Tet delayed the time-dependent recovery of INa in a concentration dependent manner in both AF and SR cells; however, there were no differences in the effects of Tet on INa density and properties in the two groups. The INa density of AF patients did not differ from that of the SR patients.

Conclusion:

Tet can block sodium channels with slow recovery kinetics, which may explain the mechanisms underlying the antiarrhythmic action of Tet. The decreased conduction velocity (CV) in AF patients is not caused by the Na+ current.  相似文献   

11.
12.

Background and purpose:

Piceatannol is more potent than resveratrol in free radical scavenging in association with antiarrhythmic and cardioprotective activities in ischaemic-reperfused rat hearts. The present study aimed to investigate the antiarrhythmic efficacy and the underlying ionic mechanisms of piceatannol in rat hearts.

Experimental approach:

Action potentials and membrane currents were recorded by the whole-cell patch clamp techniques. Fluo-3 fluorimetry was used to measure cellular Ca2+ transients. Antiarrhythmic activity was examined from isolated Langendorff-perfused rat hearts.

Key results:

In rat ventricular cells, piceatannol (3–30 µmol·L−1) prolonged the action potential durations (APDs) and decreased the maximal rate of upstroke (Vmax) without altering Ca2+ transients. Piceatannol decreased peak INa and slowed INa inactivation, rather than induced a persistent non-inactivating current, which could be reverted by lidocaine. Resveratrol (100 µmol·L−1) decreased peak INa without slowing INa inactivation. The inhibition of peak INa or Vmax was associated with a negative shift of the voltage-dependent steady-state INa inactivation curve without altering the activation threshold. At the concentrations more than 30 µmol·L−1, piceatannol could inhibit ICa,L, Ito, IKr, Ca2+ transients and Na+-Ca2+ exchange except IK1. Piceatannol (1–10 µmol·L−1) exerted antiarrhythmic activity in isolated rat hearts subjected to ischaemia-reperfusion injury.

Conclusions and implications:

The additional hydroxyl group on resveratrol makes piceatannol possessing more potent in INa inhibition and uniquely slowing INa inactivation, which may contribute to its antiarrhythmic actions at low concentrations less than 10 µmol·L−1.  相似文献   

13.

BACKGROUND AND PURPOSE

Although the serum and glucocorticoid-inducible protein kinase 1 (SGK1) appears to be involved in controlling epithelial Na+ absorption, its role in this physiologically important ion transport process is undefined. As SGK1 activity is dependent upon target of rapamycin complex 2 (TORC2)-catalysed phosphorylation of SGK1-Ser422, we have explored the effects of inhibiting TORC2 and/or TORC1 upon the hormonal control of Na+ absorption.

EXPERIMENTAL APPROACH

Na+ absorption was quantified electrometrically in mouse cortical collecting duct cells (mpkCCD) grown to confluence on permeable membranes. Kinase activities were assessed by monitoring endogenous protein phosphorylation, with or without TORC1/2 inhibitors (TORIN1 and PP242) and the TORC1 inhibitor: rapamycin.

KEY RESULTS

Inhibition of TORC1/2 (TORIN1, PP242) suppressed basal SGK1 activity, prevented insulin- and dexamethasone-induced SGK1 activation, and caused modest (10–20%) inhibition of basal Na+ absorption and substantial (∼80%) inhibition of insulin/dexamethasone-induced Na+ transport. Inhibition of TORC1 did not impair SGK1 activation or insulin-induced Na+ transport, but did inhibit (∼80%) dexamethasone-induced Na+ absorption. Arginine vasopressin stimulated Na+ absorption via a TORC1/2-independent mechanism.

CONCLUSION AND IMPLICATIONS

Target of rapamycin complex 2, but not TORC1, is important to SGK1 activation. Signalling via phosphoinositide-3-kinase/TORC2/SGK1 can explain insulin-induced Na+ absorption. TORC2, but not TORC1, is also involved in glucocorticoid-induced SGK1 activation but its role is permissive. Glucocorticoid-induced Na+ transport displayed a requirement for TORC1 activity. Therefore, TORC1 and TORC2 contribute to the regulation of Na+ absorption. Pharmacological manipulation of TORC1/2 signalling may provide novel therapies for Na+-sensitive hypertension.  相似文献   

14.

Background and purpose:

Peroxisome proliferator-activated receptor γ (PPARγ) agonists, such as rosiglitazone and pioglitazone, sensitize cells to insulin, and are therefore used to treat type 2 diabetes. However, in some patients, these drugs induce oedema, and the present study tests the hypothesis that this side effect reflects serum and glucocorticoid-inducible kinase 1 (SGK1)-dependent enhancement of epithelia Na+ absorption.

Experimental approach:

Na+ absorbing epithelial cells (H441 cells, mpkCCD cells) on permeable membranes were mounted in Ussing chambers, and the effects of rosiglitazone (2 µM) and pioglitazone (10 µM) on transepithelial Na+ absorption were quantified electrometrically. Changes in SGK1 activity were assessed by monitoring phosphorylation of residues within an endogenous protein.

Key results:

Both cell types absorbed Na+ via an electrogenic process that was enhanced by insulin. In mpkCCD cells, this stimulation of Na+ transport was associated with increased activity of SGK1, whereas insulin regulated Na+ transport in H441 cells through a mechanism that did not involve activation of this kinase. Rosiglitazone and pioglitazone had no discernible effect on transepithelial Na+ absorption in unstimulated or insulin-stimulated cells and failed to alter cellular SGK1 activity.

Conclusions and implications:

Our results do not support the view that PPARγ agonists stimulate epithelial Na+ absorption or alter the control of cellular SGK1 activity. It is therefore likely that other mechanisms are involved in PPARγ-mediated fluid retention, and a better understanding of these mechanisms may help with the identification of patients likely to develop oedema or heart failure when treated with these drugs.  相似文献   

15.
16.

Aim:

Intracellular Ca2+ ([Ca2+]i) overload occurs in myocardial ischemia. An increase in the late sodium current (INaL) causes intracellular Na+ overload and subsequently [Ca2+]i overload via the reverse-mode sodium-calcium exchanger (NCX). Thus, inhibition of INaL is a potential therapeutic target for cardiac diseases associated with [Ca2+]i overload. The aim of this study was to investigate the effects of ketamine on Na+-dependent Ca2+ overload in ventricular myocytes in vitro.

Methods:

Ventricular myocytes were enzymatically isolated from hearts of rabbits. INaL, NCX current (INCX) and L-type Ca2+ current (ICaL) were recorded using whole-cell patch-clamp technique. Myocyte shortening and [Ca2+]i transients were measured simultaneously using a video-based edge detection and dual excitation fluorescence photomultiplier system.

Results:

Ketamine (20, 40, 80 μmol/L) inhibited INaL in a concentration-dependent manner. In the presence of sea anemone toxin II (ATX, 30 nmol/L), INaL was augmented by more than 3-fold, while ketamine concentration-dependently suppressed the ATX-augmented INaL. Ketamine (40 μmol/L) also significantly suppressed hypoxia or H2O2-induced enhancement of INaL. Furthermore, ketamine concentration-dependently attenuated ATX-induced enhancement of reverse-mode INCX. In addition, ketamine (40 μmol/L) inhibited ICaL by 33.4%. In the presence of ATX (3 nmol/L), the rate and amplitude of cell shortening and relaxation, the diastolic [Ca2+]i, and the rate and amplitude of [Ca2+]i rise and decay were significantly increased, which were reverted to control levels by tetrodotoxin (TTX, 2 μmol/L) or by ketamine (40 μmol/L).

Conclusion:

Ketamine protects isolated rabbit ventricular myocytes against [Ca2+]i overload by inhibiting INaL and ICaL.  相似文献   

17.

Background and purpose:

Recent pharmacological studies have proposed there is a high degree of similarity between calcium-activated Cl channels (CaCCs) and large conductance, calcium-gated K+ channels (KCa1.1). The goal of the present study was to ascertain whether blockers of KCa1.1 inhibited calcium-activated Cl currents (IClCa) and if the pharmacological overlap between KCa1.1 and CaCCs extends to intermediate and small conductance, calcium-activated K+ channels.

Experimental approaches:

Whole-cell Cl and K+ currents were recorded from murine portal vein myocytes using the whole-cell variant of the patch clamp technique. CaCC currents were evoked by pipette solutions containing 500 nM free [Ca2+].

Key results:

The selective KCa1.1 blocker paxilline (1 µM) inhibited IClCa by ∼90%, whereas penitrem A (1 µM) and iberiotoxin (100 and 300 nM) reduced the amplitude of IClCa by ∼20%, as well as slowing channel deactivation. Paxilline also abolished the stimulatory effect of niflumic acid on the CaCC. In contrast, an antibody against the Ca2+-binding domain of murine KCa1.1 had no effect on IClCa while inhibiting spontaneous KCa1.1 currents. Structurally different modulators of small and intermediate conductance calcium-activated K+ channels (KCa2.1 and KCa2.3), namely 1-EBIO, (100 µM); NS309, (1 µM); TRAM-34, (10 µM); UCL 1684, (1 µM) had no effect on IClCa.

Conclusions and implications:

These data show that the selective KCa1.1 blockers also reduce IClCa considerably. However, the pharmacological overlap that exists between CaCCs and KCa1.1 does not extend to the calcium-binding domain or to other calcium-gated K+ channels.  相似文献   

18.

Aim:

To investigate the blocking effects of methylflavonolamine (MFA) on human NaV1.5 channels expressed in Xenopus laevis oocytes and on sodium currents (INa) in rabbit ventricular myocytes.

Methods:

Human NaV1.5 channels were expressed in Xenopus oocytes and studied using the two-electrode voltage-clamp technique. INa and action potentials in rabbit ventricular myocytes were studied using the whole-cell recording.

Results:

MFA and lidocaine inhibited human NaV1.5 channels expressed in Xenopus oocytes in a positive rate-dependent and concentration-dependent manner, with IC50 values of 72.61 μmol/L and 145.62 μmol/L, respectively. Both of them markedly shifted the steady-state activation curve of INa toward more positive potentials, shifted the steady-state inactivation curve of INa toward more negative potentials and postponed the recovery of the INa inactivation state. In rabbit ventricular myocytes, MFA inhibited INa with a shift in the steady-state inactivation curve toward more negative potentials, thereby postponing the recovery of the INa inactivation state. This shift was in a positive rate-dependent manner. Under current-clamp mode, MAF significantly decreased action potential amplitude (APA) and maximal depolarization velocity (Vmax) and shortened action potential duration (APD), but did not alter the resting membrane potential (RMP). The demonstrated that the kinetics of sodium channel blockage by MFA resemble those of class I antiarrhythmic agents such as lidocaine.

Conclusion:

MFA protects the heart against arrhythmias by its blocking effect on sodium channels.  相似文献   

19.

Background and Purpose

The function of the endocannabinoid system (ECS) in renal tissue is not completely understood. Kidney function is closely related to ion reabsorption in the proximal tubule, the nephron segment responsible for the re-absorption of 70–80% of the filtrate. We studied the effect of compounds modulating the activity of cannabinoid (CB) receptors on the active re-absorption of Na+ in LLC-PK1 cells.

Experimental Approach

Changes in Na+/K+-ATPase activity were assessed after treatment with WIN55,212-2 (WIN), a non-selective lipid agonist, and haemopressin (HP), an inverse peptide agonist at CB1 receptors. Pharmacological tools were used to investigate the signalling pathways involved in the modulation of Na+ transport.

Key Results

In addition to CB1 and CB2 receptors and TRPV1 channels, the mRNAs encoding for enzymes of the ECS were also expressed in LLC-PK1. WIN (10−7 M) and HP (10−6 M) altered Na+ re-absorption in LLC-PK1 in a dual manner. They both acutely (after 1 min) increased Na+/K+-ATPase activity in a TRPV1 antagonist-sensitive way. WIN''s stimulating effect persisted for 30 min, and this effect was partially blocked by a CB1 antagonist or a PKC inhibitor. In contrast, HP inhibited Na+/K+-ATPase after 30 min incubation, and this effect was attenuated by a CB1 antagonist or a PKA inhibitor.

Conclusion and Implications

The ECS is expressed in LLC-PK1 cells. Both CB1 receptors and TRPV1 channels regulate Na+/K+-ATPase activity in these cells, and are modulated by lipid and peptide CB1 receptor ligands, which act via different signalling pathways.  相似文献   

20.
Aim: Metergoline is an ergot-derived psychoactive drug that acts as a ligand for serotonin and dopamine receptors. The aim of this study was to investigate the regulatory effects of metergoline on the neuronal Nav1.2 voltage-dependent Na^+ channels in vitro. Methods: Xenopus oocytes were injected with cRNAs encoding rat brain Nav1.2 α and β1 subunits. Voltage-activated Na^+ currents were recorded using two-electrode voltage clamp technique. Drugs were applied though perfusion. Results: Both metergoline and lidocaine reversibly and concentration-dependently inhibited the peak of Na^+ currents with IC50 values of 3.6±4.2 and 916.9±98.8 μmol/L, respectively. Metergoline (3 pmol/L) caused a 6.8±1.2 mV depolarizing shift of the steady-state activation curve of the Na^+ currents, and did not alter the inactivation curve. In contrast, lidocaine (3 μmol/L) caused a 12.7±1.2 mV hyperpolarizing shift of the inactivation curve of the Na^+ currents without changing the steady-state activation curve. Both metergoline and lidocaine produced tonic and use-dependent inhibition on the peak of Na^+ currents. Conclusion: Metergoline exerts potent inhibition on the activity of neuronal Nav1.2 channels, which may contribute to its actions on the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号