首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The human immunodeficiency virus type 1 (HIV-1) latent reservoir in resting CD4+ T cells represents a major barrier to viral eradication. Small compounds capable of latency reversal have not demonstrated uniform responses across in vitro HIV-1 latency cell models. Characterizing compounds that demonstrate latency-reversing activity in resting CD4+ T cells from aviremic patients ex vivo will help inform pilot clinical trials aimed at HIV-1 eradication. We have optimized a rapid ex vivo assay using resting CD4+ T cells from aviremic HIV-1+ patients to evaluate both the bioactivity and latency-reversing potential of candidate latency-reversing agents (LRAs). Using this assay, we characterize the properties of two candidate compounds from promising LRA classes, ingenol 3,20-dibenzoate (a protein kinase C agonist) and panobinostat (a histone deacetylase inhibitor), in cells from HIV-1+ antiretroviral therapy (ART)-treated aviremic participants, including the effects on cellular activation and cytotoxicity. Ingenol induced viral release at levels similar to those of the positive control (CD3/28 receptor stimulation) in cells from a majority of participants and represents an exciting LRA candidate, as it combines a robust viral reactivation potential with a low toxicity profile. At concentrations that blocked histone deacetylation, panobinostat displayed a wide range of potency among participant samples and consistently induced significant levels of apoptosis. The protein kinase C agonist ingenol 3,20-dibenzoate demonstrated significant promise in a rapid ex vivo assay using resting CD4+ T cells from treated HIV-1-positive patients to measure latent HIV-1 reactivation.  相似文献   

3.
The antiviral activity of azidothymidine (AZT), dideoxycytidine (ddC), and dideoxyinosine (ddI) against HIV-1 was comparatively evaluated in PHA-stimulated PBM. The mean drug concentration which yielded 50% p24 Gag negative cultures were substantially different: 0.06, 0.2, and 6 microM for AZT, ddC, and ddI, respectively. We found that AZT was preferentially phosphorylated to its triphosphate (TP) form in PHA-PBM rather than unstimulated, resting PBM (R-PBM), producing 10- to 17-fold higher ratios of AZTTP/dTTP in PHA-PBM than in R-PBM. The phosphorylation of ddC and ddI to their TP forms was, however, much less efficient in PHA-PBM, resulting in approximately 5-fold and approximately 15-fold lower ratios of ddCTP/dCTP and ddATP/dATP, respectively, in PHA-PBM than in R-PBM. The comparative order of PHA-induced increase in cellular enzyme activities examined was: thymidine kinase > uridine kinase > deoxycytidine kinase > adenosine kinase > 5'-nucleotidase. We conclude that AZT, ddC, and ddI exert disproportionate antiviral effects depending on the activation state of the target cells, i.e., ddI and ddC exert antiviral activity more favorably in resting cells than in activated cells, while AZT preferentially protects activated cells against HIV infection. Considering that HIV-1 proviral DNA synthesis in resting lymphocytes is reportedly initiated at levels comparable with those of activated lymphocytes, the current data should have practical relevance in the design of anti-HIV chemotherapy, particularly combination chemotherapy.  相似文献   

4.
5.
6.
BMS-200475 was recently shown to have potent antiviral activity against hepatitis B virus (50% effective concentration = 3.7 nM; 50% cytotoxic concentration = 30 μM). In metabolic studies in both HepG2 and hepatitis B virus-transfected 2.2.15 human hepatoma cell lines, the metabolism was similar, the primary products being the di- and triphosphates. The accumulation of triphosphate was rapid and detectable down to a 5 nM concentration of added drug. When cells were labeled at 25 μM, the intracellular triphosphate concentration attained 30 pmol/106 cells (~30 μM). The intracellular half-life of the triphosphate was about 15 h. Compared with five other nucleoside analogs of medical interest (lamivudine, penciclovir, ganciclovir, acyclovir, and lobucavir), BMS-200475 was most efficiently phosphorylated to the triphosphate in HepG2 cells.  相似文献   

7.
We report here that GRL-0739, a novel nonpeptidic HIV-1 protease inhibitor containing a tricycle (cyclohexyl-bis-tetrahydrofuranylurethane [THF]) and a sulfonamide isostere, is highly active against laboratory HIV-1 strains and primary clinical isolates (50% effective concentration [EC50], 0.0019 to 0.0036 μM), with minimal cytotoxicity (50% cytotoxic concentration [CC50], 21.0 μM). GRL-0739 blocked the infectivity and replication of HIV-1NL4-3 variants selected by concentrations of up to 5 μM ritonavir or atazanavir (EC50, 0.035 to 0.058 μM). GRL-0739 was also highly active against multidrug-resistant clinical HIV-1 variants isolated from patients who no longer responded to existing antiviral regimens after long-term antiretroviral therapy, as well as against the HIV-2ROD variant. The development of resistance against GRL-0739 was substantially delayed compared to that of amprenavir (APV). The effects of the nonspecific binding of human serum proteins on the anti-HIV-1 activity of GRL-0739 were insignificant. In addition, GRL-0739 showed a desirable central nervous system (CNS) penetration property, as assessed using a novel in vitro blood-brain barrier model. Molecular modeling demonstrated that the tricyclic ring and methoxybenzene of GRL-0739 have a larger surface and make greater van der Waals contacts with protease than in the case of darunavir. The present data demonstrate that GRL-0739 has desirable features as a compound with good CNS-penetrating capability for treating patients infected with wild-type and/or multidrug-resistant HIV-1 variants and that the newly generated cyclohexyl-bis-THF moiety with methoxybenzene confers highly desirable anti-HIV-1 potency in the design of novel protease inhibitors with greater CNS penetration profiles.  相似文献   

8.
9.
10.
Bis(isopropyloxymethylcarbonyl) 9-R-(2-phosphonomethoxypropyl)adenine [bis(POC)PMPA] has been identified as a novel prodrug of PMPA. The anti-human immunodeficiency virus activity of bis(POC)PMPA was >100-fold greater than that of PMPA in both an established T-cell line and primary peripheral blood lymphocytes. This improved efficacy was shown to be due to a rapid intracellular uptake of the prodrug resulting in an increased intracellular accumulation of PMPA diphosphate (PMPApp), the pharmacologically active metabolite. PMPApp levels in bis(POC)PMPA-treated cells exceeded by >1,000-fold the levels seen in cells treated with unmodified PMPA in both resting and activated peripheral blood lymphocytes. Significant differences in the intracellular catabolism of PMPA metabolites were noted between the resting and activated lymphocytes. The half-life for the disappearance of PMPApp, derived from either bis(POC)PMPA or PMPA, was 12 to 15 h in the activated lymphocytes and 33 to 50 h in the resting lymphocytes. This long persistence of PMPApp, particularly in resting lymphocytes, may be unique to the nucleoside phosphonate analogs and indicates that effective levels of the active metabolite can be achieved and maintained with relatively infrequent administration of the parent drug.  相似文献   

11.
Although combined antiretroviral therapy (cART) successfully decreases plasma viremia to undetectable levels, the complete eradication of human immunodeficiency virus type 1 (HIV-1) remains impractical because of the existence of a viral reservoir, mainly in resting memory CD4+ T cells. Various cytokines, protein kinase C activators, and histone deacetylase inhibitors (HDACi) have been used as latency-reversing agents (LRAs), but their unacceptable side effects or low efficiencies limit their clinical use. Here, by a mutation accumulation strategy, we generated an attenuated HIV-1 Tat protein named Tat-R5M4, which has significantly reduced cytotoxicity and immunogenicity, yet retaining potent transactivation and membrane-penetration activity. Combined with HDACi, Tat-R5M4 activates highly genetically diverse and replication-competent viruses from resting CD4+ T lymphocytes isolated from HIV-1-infected individuals receiving suppressive cART. Thus, Tat-R5M4 has promising potential as a safe, efficient, and specific LRA in HIV-1 treatment.  相似文献   

12.
Tick-borne encephalitis virus (TBEV) is a leading cause of human neuroinfections in Europe and Northeast Asia. There are no antiviral therapies for treating TBEV infection. A series of nucleoside analogues was tested for the ability to inhibit the replication of TBEV in porcine kidney cells and human neuroblastoma cells. The interactions of three nucleoside analogues with viral polymerase were simulated using advanced computational methods. The nucleoside analogues 7-deaza-2′-C-methyladenosine (7-deaza-2′-CMA), 2′-C-methyladenosine (2′-CMA), and 2′-C-methylcytidine (2′-CMC) inhibited TBEV replication. These compounds showed dose-dependent inhibition of TBEV-induced cytopathic effects, TBEV replication (50% effective concentrations [EC50]of 5.1 ± 0.4 μM for 7-deaza-2′-CMA, 7.1 ± 1.2 μM for 2′-CMA, and 14.2 ± 1.9 μM for 2′-CMC) and viral antigen production. Notably, 2′-CMC was relatively cytotoxic to porcine kidney cells (50% cytotoxic concentration [CC50] of ∼50 μM). The anti-TBEV effect of 2′-CMA in cell culture diminished gradually after day 3 posttreatment. 7-Deaza-2′-CMA showed no detectable cellular toxicity (CC50 > 50 μM), and the antiviral effect in culture was stable for >6 days posttreatment. Computational molecular analyses revealed that compared to the other two compounds, 7-deaza-2′-CMA formed a large cluster near the active site of the TBEV polymerase. High antiviral activity and low cytotoxicity suggest that 7-deaza-2′-CMA is a promising candidate for further investigation as a potential therapeutic agent in treating TBEV infection.  相似文献   

13.
Highly active antiretroviral therapy (HAART), although effective in ameliorating the quality of life of HIV-1-infected individuals and their survival, has not been able to eradicate HIV-1. In fact, when HAART is interrupted, HIV-1 plasma viral load rebounds from viral reservoirs such as resting CD4+ T lymphocytes, monocytes and macrophages, remaining a major obstacle in attempting HIV eradication. Different therapeutic strategies have been attempted, such as structured treatment interruption (STI), immunotherapy (interleukin [IL]-2 and anti-CD3 antibodies [e.g., OKT3]), to try to stimulate HIV-1 out of latency along with antiretroviral intensification therapy. IL-7, a pleiotropic cytokine, bears diverse immune properties and plays a major role in T cell homeostasis. Moreover, IL-7 has recently been investigated as a possible immune adjuvant as well as a viral strain-specific inducer of HIV-1 replication. In fact, IL-7 was shown not only to be more effective than IL-2 in stimulating HIV-1 replication from resting CD4+ T lymphocytes ex vivo, but also to selectively induce a specific HIV-1 viral strain as compared with IL-2, suggesting the potential need for different viral inducers if complete eradication is to be achieved. In this present review, different immunological and virological properties of IL-7 are discussed, along with the possibility of its use as part of a combined antiretroviral-immune rationally based HIV-1 eradication approach.  相似文献   

14.
HIV-1 persists in a latent state in resting CD4+ T lymphocytes of infected adults despite prolonged highly active antiretroviral therapy (HAART). To determine whether a latent reservoir for HIV-1 exists in infected children, we performed a quantitative viral culture assay on highly purified resting CD4+ T cells from 21 children with perinatally acquired infection. Replication-competent HIV-1 was recovered from all 18 children from whom sufficient cells were obtained. The frequency of latently infected resting CD4+ T cells directly correlated with plasma virus levels, suggesting that in children with ongoing viral replication, most latently infected cells are in the labile preintegration state of latency. However, in each of 7 children who had suppression of viral replication to undetectable levels for 1–3 years on HAART, latent replication-competent HIV-1 persisted with little decay, owing to a stable reservoir of infected cells in the postintegration stage of latency. Drug-resistance mutations generated by previous nonsuppressive regimens persisted in this compartment despite more than 1 year of fully suppressive HAART, rendering untenable the idea of recycling drugs that were part of failed regimens. Thus the latent reservoir for HIV-1 in resting CD4+ T cells will be a major obstacle to HIV-1 eradication in children.  相似文献   

15.
16.
The development of a permissive small animal model for the study of human immunodeficiency virus type (HIV)-1 pathogenesis and the testing of antiviral strategies has been hampered by the inability of HIV-1 to infect primary rodent cells productively. In this study, we explored transgenic rats expressing the HIV-1 receptor complex as a susceptible host. Rats transgenic for human CD4 (hCD4) and the human chemokine receptor CCR5 (hCCR5) were generated that express the transgenes in CD4(+) T lymphocytes, macrophages, and microglia. In ex vivo cultures, CD4(+) T lymphocytes, macrophages, and microglia from hCD4/hCCR5 transgenic rats were highly susceptible to infection by HIV-1 R5 viruses leading to expression of abundant levels of early HIV-1 gene products comparable to those found in human reference cultures. Primary rat macrophages and microglia, but not lymphocytes, from double-transgenic rats could be productively infected by various recombinant and primary R5 strains of HIV-1. Moreover, after systemic challenge with HIV-1, lymphatic organs from hCD4/hCCR5 transgenic rats contained episomal 2-long terminal repeat (LTR) circles, integrated provirus, and early viral gene products, demonstrating susceptibility to HIV-1 in vivo. Transgenic rats also displayed a low-level plasma viremia early in infection. Thus, transgenic rats expressing the appropriate human receptor complex are promising candidates for a small animal model of HIV-1 infection.  相似文献   

17.
GRL007 and GRL008, two structurally related nonpeptidic human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) containing 3(R),3a(S),6a(R)-bis-tetrahydrofuranylurethane (bis-THF) as the P2 moiety and a sulfonamide isostere consisting of benzene carboxylic acid and benzene carboxamide as the P2′ moiety, respectively, were evaluated for their antiviral activity and interactions with wild-type protease (PRWT). Both GRL007 (Ki of 12.7 pM with PRWT) and GRL008 (Ki of 8.9 pM) inhibited PRWT with high potency in vitro. X-ray crystallographic analysis of PRWT in complex with GRL007 or GRL008 showed that the bis-THF moiety of both compounds has three direct polar contacts with the backbone amide nitrogen atoms of Asp29 and Asp30 of PRWT. The P2′ moiety of both compounds showed one direct contact with the backbone of Asp30′ and a bridging polar contact with Gly48′ through a water molecule. Cell-based antiviral assays showed that GRL007 was inactive (50% effective concentration [EC50] of >1 μM) while GRL008 was highly active (EC50 of 0.04 μM) against wild-type HIV-1. High-performance liquid chromatography (HPLC)/mass spectrometry-based cellular uptake assays showed 8.1- and 84-fold higher intracellular concentrations of GRL008 than GRL007 in human MT-2 and MT-4 cell extracts, respectively. Thus, GRL007, in spite of its favorable enzyme-inhibitory activity and protease binding profile, exhibited a lack of antiviral activity in cell-based assays, most likely due to its compromised cellular uptake associated with its P2′ benzene carboxylic acid moiety. The anti-HIV-1 potency, favorable toxicity, and binding profile of GRL008 suggest that further optimization of the P2′ moiety may improve its antiretroviral features.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号