首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mitochondria are key organelles in eukaryotic cells that not only generate adenosine triphosphate but also perform such critical functions as hosting essential biosynthetic pathways, calcium buffering, and apoptotic signaling. In vivo, mitochondria form dynamic networks that undergo frequent morphologic changes through fission and fusion. In neurons, the imbalance of mitochondrial fission/fusion can influence neuronal physiology, such as synaptic transmission and plasticity, and affect neuronal survival. Core components of the mitochondrial fission/fusion machinery have been identified through genetic studies in model organisms. Mutations in some of these genes in humans have been linked to rare neurodegenerative diseases such as Charcot-Marie-Tooth subtype 2A and autosomal dominant optic atrophy. Recent studies also have implicated aberrant mitochondrial fission/fusion in the pathogenesis of more common neurodegenerative diseases such as Parkinson’s disease. These studies establish mitochondrial dynamics as a new paradigm for neurodegenerattve disease research. Compounds that modulate mitochondrial fission/fusion could have therapeutic value in disease intervention.  相似文献   

2.
The purpose of this article is to review the recent developments of abnormal mitochondrial dynamics, mitochondrial fragmentation, and neuronal damage in neurodegenerative diseases, including Alzheimer's, Parkinson's, Huntington's, and amyotrophic lateral sclerosis. The GTPase family of proteins, including fission proteins, dynamin related protein 1 (Drp1), mitochondrial fission 1 (Fis1), and fusion proteins (Mfn1, Mfn2 and Opa1) are essential to maintain mitochondrial fission and fusion balance, and to provide necessary adenosine triphosphate to neurons. Among these, Drp1 is involved in several important aspects of mitochondria, including shape, size, distribution, remodeling, and maintenance of mitochondria in mammalian cells. In addition, recent advancements in molecular, cellular, electron microscopy, and confocal imaging studies revealed that Drp1 is associated with several cellular functions, including mitochondrial and peroxisomal fragmentation, phosphorylation, SUMOylation, ubiquitination, and cell death. In the last two decades, tremendous progress has been made in researching mitochondrial dynamics, in yeast, worms, and mammalian cells; and this research has provided evidence linking Drp1 to neurodegenerative diseases. Researchers in the neurodegenerative disease field are beginning to recognize the possible involvement of Drp1 in causing mitochondrial fragmentation and abnormal mitochondrial dynamics in neurodegenerative diseases. This article summarizes research findings relating Drp1 to mitochondrial fission and fusion, in yeast, worms, and mammals. Based on findings from the Reddy laboratory and others', we propose that mutant proteins of neurodegenerative diseases, including AD, PD, HD, and ALS, interact with Drp1, activate mitochondrial fission machinery, fragment mitochondria excessively, and impair mitochondrial transport and mitochondrial dynamics, ultimately causing mitochondrial dysfunction and neuronal damage.  相似文献   

3.
The unique energy demands of neurons require well-orchestrated distribution and maintenance of mitochondria. Thus, dynamic properties of mitochondria, including fission, fusion, trafficking, biogenesis, and degradation, are critical to all cells, but may be particularly important in neurons. Dysfunction in mitochondrial dynamics has been linked to neuropathies and is increasingly being linked to several neurodegenerative diseases, but the evidence is particularly strong, and continuously accumulating, in Parkinson's disease (PD). The unique characteristics of neurons that degenerate in PD may predispose those neuronal populations to susceptibility to alterations in mitochondrial dynamics. In addition, evidence from PD-related toxins supports that mitochondrial fission, fusion, and transport may be involved in pathogenesis. Furthermore, rapidly increasing evidence suggests that two proteins linked to familial forms of the disease, parkin and PINK1, interact in a common pathway to regulate mitochondrial fission/fusion. Parkin may also play a role in maintaining mitochondrial homeostasis through targeting damaged mitochondria for mitophagy. Taken together, the current data suggests that mitochondrial dynamics may play a role in PD pathogenesis, and a better understanding of mitochondrial dynamics within the neuron may lead to future therapeutic treatments for PD, potentially aimed at some of the earliest pathogenic events.  相似文献   

4.
Neurodegenerative diseases are a heterogeneous group of disorders that are incurable and characterized by the progressive degeneration of the function and structure of the central nervous system (CNS) for reasons that are not yet understood. Neurodegeneration is the umbrella term for the progressive death of nerve cells and loss of brain tissue. Because of their high energy requirements, neurons are especially vulnerable to injury and death from dysfunctional mitochondria. Widespread damage to mitochondria causes cells to die because they can no longer produce enough energy. Several lines of pathological and physiological evidence reveal that impaired mitochondrial function and dynamics play crucial roles in aging and pathogenesis of neurodegenerative diseases. As mitochondria are the major intracellular organelles that regulate both cell survival and death, they are highly considered as a potential target for pharmacological‐based therapies. The purpose of this review was to present the current status of our knowledge and understanding of the involvement of mitochondrial dysfunction in pathogenesis of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) and the importance of mitochondrial biogenesis as a potential novel therapeutic target for their treatment. Likewise, we highlight a concise overview of the key roles of mitochondrial electron transport chain (ETC.) complexes as well as mitochondrial biogenesis regulators regarding those diseases.  相似文献   

5.
Changes in dynamic properties of mitochondria are increasingly implicated in neurodegenerative diseases, particularly Parkinson's disease (PD). Static changes in mitochondrial morphology, often under acutely toxic conditions, are commonly utilized as indicators of changes in mitochondrial fission and fusion. However, in neurons, mitochondrial fission and fusion occur in a dynamic system of axonal/dendritic transport, biogenesis and degradation, and thus, likely interact and change over time. We sought to explore this using a chronic neuronal model (nonlethal low-concentration rotenone over several weeks), examining distal neurites, which may give insight into the earliest changes occurring in PD. Using this model, in live primary neurons, we directly quantified mitochondrial fission, fusion, and transport over time and integrated multiple aspects of mitochondrial dynamics, including morphology and growth/mitophagy. We found that rates of mitochondrial fission and fusion change as neurons age. In addition, we found that chronic rotenone exposure initially increased the ratio of fusion to fission, but later, this was reversed. Surprisingly, despite changes in rates of fission and fusion, mitochondrial morphology was minimally affected, demonstrating that morphology can be an inaccurate indicator of fission/fusion changes. In addition, we found evidence of subcellular compartmentalization of compensatory changes, as mitochondrial density increased in distal neurites first, which may be important in PD, where pathology may begin distally. We propose that rotenone-induced early changes such as in mitochondrial fusion are compensatory, accompanied later by detrimental fission. As evidence, in a dopaminergic neuronal model, in which chronic rotenone caused loss of neurites before cell death (like PD pathology), inhibiting fission protected against the neurite loss. This suggests that aberrant mitochondrial dynamics may contribute to the earliest neuropathologic mechanisms in PD. These data also emphasize that mitochondrial fission and fusion do not occur in isolation, and highlight the importance of analysis and integration of multiple mitochondrial dynamic functions in neurons.  相似文献   

6.
Mitochondria are highly dynamic organelles that undergo permanent fusion and fission, a process that is important for mitochondrial function and cellular survival. Emerging evidence suggests that oxidative stress disturbs mitochondrial morphology dynamics, resulting in detrimental mitochondrial fragmentation. In particular, such fatal mitochondrial fission has been detected in neurons exposed to oxidative stress, suggesting mitochondrial dynamics as a key feature in intrinsic death pathways. However, the regulation of mitochondrial fission in neurons exposed to lethal stress is largely unknown. Here, we used a model of glutamate toxicity in HT-22 cells for investigating mitochondrial fission and fusion in neurons exposed to oxidative stress. In these immortalized hippocampal neurons, glutamate induces glutathione depletion and increased formation of reactive oxygen species (ROS). Glutamate toxicity resulted in mitochondrial fragmentation and peri-nuclear accumulation of the organelles. Further, mitochondrial fission was associated with loss of mitochondrial outer membrane potential (MOMP). The Bid-inhibitor BI-6c9 prevented MOMP and mitochondrial fission, and protected the cells from cell death. In conclusion, oxidative stress induced by glutamate causes mitochondrial translocation of Bid thereby inducing mitochondrial fission and associated mitochondrial cell death pathways. Inhibiting regulators of pathological mitochondrial fragmentation is proposed as an efficient strategy of neuroprotection.  相似文献   

7.
Traumatic injury to the mammalian spinal cord is a highly dynamic process characterized by a complex pattern of pervasive and destructive biochemical and pathophysiological events that limit the potential for functional recovery. Currently, there are no effective therapies for the treatment of spinal cord injury (SCI) and this is due, in part, to the widespread impact of the secondary injury cascades, including edema, ischemia, excitotoxicity, inflammation, oxidative damage, and activation of necrotic and apoptotic cell death signaling events. In addition, many of the signaling pathways associated with these cascades intersect and initiate other secondary injury events. Therefore, it can be argued that therapeutic strategies targeting a specific biochemical cascade may not provide the best approach for promoting functional recovery. A “systems approach” at the subcellular level may provide a better strategy for promoting cell survival and function and, as a consequence, improve functional outcomes following SCI. One such approach is to study the impact of SCI on the biology and function of mitochondria, which serve a major role in cellular bioenergetics, function, and survival. In this review, we will briefly describe the importance and unique properties of mitochondria in the spinal cord, and what is known about the response of mitochondria to SCI. We will also discuss a number of strategies with the potential to promote mitochondrial function following SCI.  相似文献   

8.
9.
Huntington’s disease (HD) as an inherited neurodegenerative disorder leads to neuronal loss in striatum. Progressive motor dysfunction, cognitive decline, and psychiatric disturbance are the main clinical symptoms of the HD. This disease is caused by expansion of the CAG repeats in exon 1 of the huntingtin which encodes Huntingtin protein (Htt). Various cellular and molecular events play role in the pathology of HD. Mitochondria as important organelles play crucial roles in the most of neurodegenerative disorders like HD. Critical roles of the mitochondria in neurons are ATP generation, Ca2+ buffering, ROS generation, and antioxidant activity. Neurons as high-demand energy cells closely related to function, maintenance, and dynamic of mitochondria. In the most neurological disorders, mitochondrial activities and dynamic are disrupted which associate with high ROS level, low ATP generation, and apoptosis. Accumulation of mutant huntingtin (mHtt) during this disease may evoke mitochondrial dysfunction. Here, we review recent findings to support this hypothesis that mHtt could cause mitochondrial defects. In addition, by focusing normal huntingtin functions in neurons, we purpose mitochondria and Huntingtin association in normal condition. Moreover, mHtt affects various cellular signaling which ends up to mitochondrial biogenesis. So, it could be a potential candidate to decline ATP level in HD. We conclude how mitochondrial biogenesis plays a central role in the neuronal survival and activity and how mHtt affects mitochondrial trafficking, maintenance, integrity, function, dynamics, and hemostasis and makes neurons vulnerable to degeneration in HD.  相似文献   

10.
With fusion or fission, mitochondria alter their morphology in response to various physiological and pathological stimuli, resulting in elongated, tubular, interconnected, or fragmented forms. Immunohistochemistry and Western blot analysis were performed at 2 days, 7 days, 14 days, and 28 days after 90 min of transient middle cerebral artery occlusion (tMCAO) in mice. This study showed that mitochondrial fission protein dynamin-related protein 1 (Drp1) and fusion protein optic atrophy 1 (Opa1) were both upregulated in the ischemic penumbra, with the peak at 2 days after tMCAO, whereas phosphorylated-Drp1 (P-Drp1) progressively increased with a peak at 14 days after tMCAO. Double-immunofluorescence analysis showed many Drp1/cytochrome c oxidase subunit l (COX1) double-positive cells and Opa1/COX1 double-positive cells in the ischemic penumbra and also showed some double-positive cells with Drp1/terminal deoxynucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling (TUNEL) and Opa1/TUNEL in the ischemic penumbra. In contrast, both Drp1 and Opa1 showed progressive decreases until 2 days after tMCAO in the ischemic core because of necrotic brain damage. The present study suggests that there was a continuous mitochondrial fission and fusion during these periods in the ischemic penumbra after tMCAO, probably in an effort toward mitophagy and cellular survival.  相似文献   

11.
Mitochondria are dynamic organelles which are essential for many cellular processes, such as ATP production by oxidative phosphorylation, lipid metabolism, assembly of iron sulfur clusters, regulation of calcium homeostasis, and cell death pathways. The dynamic changes in mitochondrial morphology, connectivity, and subcellular distribution are critically dependent on a highly regulated fusion and fission machinery. Mitochondrial function, dynamics, and quality control are vital for the maintenance of neuronal integrity. Indeed, there is mounting evidence that mitochondrial dysfunction plays a central role in several neurodegenerative diseases. In particular, the identification of genes linked to rare familial variants of Parkinson’s disease has fueled research on mitochondrial aspects of the disease etiopathogenesis. Studies on the function of parkin and PINK1, which are associated with autosomal recessive parkinsonism, provided compelling evidence that these proteins can functionally interact to maintain mitochondrial integrity and to promote clearance of damaged and dysfunctional mitochondria. In this review we will summarize current knowledge about the impact of parkin and PINK1 on mitochondria.  相似文献   

12.
Mitochondria play a central role in the pathophysiological processes of acute ischemic stroke. Disruption of the cerebral blood flow during acute ischemic stroke interrupts oxygen and glucose delivery, leading to the dysfunction of mitochondrial oxidative phosphorylation and cellular bioenergetic stress. Cells can respond to such stress by activating mitochondrial quality control mechanisms, including the mitochondrial unfolded protein response, mitochondrial fission and fusion, mitophagy, mitochondrial biogenesis, and intercellular mitochondrial transfer. Collectively, these adaptive response strategies contribute to retaining the integrity and function of the mitochondrial network, thereby helping to recover the homeostasis of the neurovascular unit. In this review, we focus on mitochondrial quality control mechanisms occurring in acute ischemic stroke. A better understanding of how these regulatory pathways work in maintaining mitochondrial homeostasis will provide a rationale for developing innovative neuroprotectants when these mechanisms fail in acute ischemic stroke.  相似文献   

13.
Mitochondria exist as dynamic networks that are constantly remodeled through the opposing actions of fusion and fission proteins. Changes in the expression of these proteins alter mitochondrial shape and size, and may promote or inhibit the propagation of apoptotic signals. Using mitochondrially targeted EGFP or DsRed2 to identify mitochondria, we observed a short, distinctly tubular mitochondrial morphology in postnatal cortical neurons in culture and in retinal ganglion cells in vivo, whereas longer, highly interconnected mitochondrial networks were detected in cortical astrocytes in vitro and non-neuronal cells in the retina in vivo. Differential expression patterns of fusion and fission proteins, in part, appear to determine these morphological differences as neurons expressed markedly high levels of Drp1 and OPA1 proteins compared to non-neuronal cells. This finding was corroborated using optic tissue samples. Moreover, cortical neurons expressed several splice variants of Drp1 including a neuron-specific isoform which incorporates exon 3. Knockdown or dominant-negative interference of endogenous Drp1 significantly increased mitochondrial length in both neurons and non-neuronal cells, but caused cell death only in cortical neurons. Conversely, depletion of the fusion protein, Mfn2, but not Mfn1, caused extensive mitochondrial fission and cell death. Thus, Drp1 and Mfn2 in normal cortical neurons not only regulate mitochondrial morphology, but are also required for cell survival. The present findings point to unique patterns of Drp1 expression and selective vulnerability to reduced levels of Drp1 expression/activity in neurons, and demonstrate that the regulation of mitochondrial dynamics must be tightly regulated in neurons.  相似文献   

14.
Following severe traumatic brain injury (TBI), a complex interplay of pathomechanism, such as exitotoxicity, oxidative stress, inflammatory events, and mitochondrial dysfunction occurs. This leads to a cascade of neuronal and axonal pathologies, which ultimately lead to axonal failure, neuronal energy metabolic failure, and neuronal death, which in turn determine patient outcome. For mild and moderate TBI, the pathomechanism is similar but much less frequent and ischemic cell death is unusual, except with mass lesions. Involvement of mitochondria in acute post-traumatic neurodegeneration has been extensively studied during the last decade, and there are a number of investigations implicating the activation of the mitochondrial permeability transition pore (mPTP) as a “critical switch” which determines cell survival after TBI. Opening of the mPTP is modulated by several factors occurring after a severe brain injury. Modern neuroprotective strategies for prevention of the neuropathological squeal of traumatic brain injury have now begun to address the issue of mitochondrial dysfunction, and drugs that protect mitochondrial viability and prevent apoptotic cascade induced by mPTP opening are about to begin phase II and III clinical trials. Cyclosporin A, which has been reported to block the opening of mPTP, showed a significant decrease in mitochondrial damage and intra-axonal cytoskeletal destruction thereby protecting the axonal shaft and blunting axotomy. This review addresses an important issue of mPT activation after severe head injury, its role in acute post-traumatic neurodegeneration, and the rationale for targeting the mPTP in experimental and clinical TBI studies.  相似文献   

15.
Mitochondria dynamically change their shape by repeated fission and fusion in response to physiological and pathological conditions. Recent studies have uncovered significant roles of mitochondrial fission and fusion in neuronal functions, such as neurotransmission and spine formation. However, the contribution of mitochondrial fission to the development of dendrites remains controversial. We analyzed the function of the mitochondrial fission GTPase Drp1 in dendritic arborization in cerebellar Purkinje cells. Overexpression of a dominant-negative mutant of Drp1 in postmitotic Purkinje cells enlarged and clustered mitochondria, which failed to exit from the soma into the dendrites. The emerging dendrites lacking mitochondrial transport remained short and unstable in culture and in vivo. The dominant-negative Drp1 affected neither the basal respiratory function of mitochondria nor the survival of Purkinje cells. Enhanced ATP supply by creatine treatment, but not reduced ROS production by antioxidant treatment, restored the hypomorphic dendrites caused by inhibition of Drp1 function. Collectively, our results suggest that Drp1 is required for dendritic distribution of mitochondria and thereby regulates energy supply in growing dendritic branches in developing Purkinje cells.  相似文献   

16.
Mitochondrial dysfunction contributes to the pathophysiology of acute neurologic disorders and neurodegenerative diseases. Bioenergetic failure is the primary cause of acute neuronal necrosis, and involves excitotoxicity-associated mitochondrial Ca(2+) overload, resulting in opening of the inner membrane permeability transition pore and inhibition of oxidative phosphorylation. Mitochondrial energy metabolism is also very sensitive to inhibition by reactive O(2) and nitrogen species, which modify many mitochondrial proteins, lipids, and DNA/RNA, thus impairing energy transduction and exacerbating free radical production. Oxidative stress and Ca(2+)-activated calpain protease activities also promote apoptosis and other forms of programmed cell death, primarily through modification of proteins and lipids present at the outer membrane, causing release of proapoptotic mitochondrial proteins, which initiate caspase-dependent and caspase-independent forms of cell death. This review focuses on three classifications of mitochondrial targets for neuroprotection. The first is mitochondrial quality control, maintained by the dynamic processes of mitochondrial fission and fusion and autophagy of abnormal mitochondria. The second includes targets amenable to ischemic preconditioning, e.g., electron transport chain components, ion channels, uncoupling proteins, and mitochondrial biogenesis. The third includes mitochondrial proteins and other molecules that defend against oxidative stress. Each class of targets exhibits excellent potential for translation to clinical neuroprotection.  相似文献   

17.
Mitochondria not only supply the energy for cell function, but also take part in cell signaling. This review describes the dysfunctions of mitochondria in aging and neurodegenerative diseases, and the signaling pathways leading to mitochondrial biogenesis (including PGC‐1 family proteins, SIRT1, AMPK) and mitophagy (parkin‐Pink1 pathway). Understanding the regulation of these mitochondrial pathways may be beneficial in finding pharmacological approaches or lifestyle changes (caloric restrict or exercise) to modulate mitochondrial biogenesis and/or to activate mitophagy for the removal of damaged mitochondria, thus reducing the onset and/or severity of neurodegenerative diseases.  相似文献   

18.
Cumulative evidence suggests that apoptosis plays a pivotal role in cell deathin vitro after hypoxia. Apoptotic cell death pathways have also been implicated in ischemic cerebral injury inin vivo ischemia models. Experimental ischemia and reperfusion models, such as transient focal/global ischemia in rodents, have been thoroughly studied and the numerous reports suggest the involvement of cell survival/death signaling pathways in the pathogenesis of apoptotic cell death in ischemic lesions. In these models, reoxygenation during reperfusion provides a substrate for numerous enzymatic oxidation reactions. Oxygen radicals damage cellular lipids, proteins and nucleic acids, and initiate cell signaling pathways after cerebral ischemia. Genetic manipulation of intrinsic antioxidants and factors in the signaling pathways has provided substantial understanding of the mechanisms involved in cell death/survival signaling pathways and the role of oxygen radicals in ischemic cerebral injury. Future studies of these pathways may provide novel therapeutic strategies in clinical stroke.  相似文献   

19.
Parkinson's disease (PD), the most frequent movement disorder, is caused by the progressive loss of the dopamine neurons within the substantia nigra pars compacta (SNc) and the associated deficiency of the neurotransmitter dopamine in the striatum. Most cases of PD occur sporadically with unknown cause, but mutations in several genes have been linked to genetic forms of PD (α-synuclein, Parkin, DJ-1, PINK1, and LRRK2). These genes have provided exciting new avenues to study PD pathogenesis and the mechanisms underlying the selective dopaminergic neuron death in PD. Epidemiological studies in humans, as well as molecular studies in toxin-induced and genetic animal models of PD show that mitochondrial dysfunction is a defect occurring early in the pathogenesis of both sporadic and familial PD. Mitochondrial dynamics (fission, fusion, migration) is important for neurotransmission, synaptic maintenance and neuronal survival. Recent studies have shown that PINK1 and Parkin play crucial roles in the regulation of mitochondrial dynamics and function. Mutations in DJ-1 and Parkin render animals more susceptible to oxidative stress and mitochondrial toxins implicated in sporadic PD, lending support to the hypothesis that some PD cases may be caused by gene–environmental factor interactions. A small proportion of α-synuclein is imported into mitochondria, where it accumulates in the brains of PD patients and may impair respiratory complex I activity. Accumulation of clonal, somatic mitochondrial DNA deletions has been observed in the substantia nigra during aging and in PD, suggesting that mitochondrial DNA mutations in some instances may pre-dispose to dopamine neuron death by impairing respiration. Besides compromising cellular energy production, mitochondrial dysfunction is associated with the generation of oxidative stress, and dysfunctional mitochondria more readily mediate the induction of apoptosis, especially in the face of cellular stress. Collectively, the studies examined and summarized here reveal an important causal role for mitochondrial dysfunction in PD pathogenesis, and suggest that drugs and genetic approaches with the ability to modulate mitochondrial dynamics, function and biogenesis may have important clinical applications in the future treatment of PD.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号