首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
VACTERL association, a relatively common condition with an incidence of approximately 1 in 20,000 -35,000 births, is a non-random association of birth defects that includes vertebral defects (V), anal atresia (A), cardiac defects (C), tracheo-esophageal fistula (TE), renal anomalies (R) and limb malformations (L). Although the?etiology is unknown in the majority of patients, there is evidence that it is causally heterogeneous. Several studies have shown evidence for inheritance in VACTERL, implying a role for genetic loci. Recently, patients with component features of VACTERL and a lethal developmental pulmonary disorder, alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV), were found to harbor deletions or mutations affecting FOXF1 and the FOX gene cluster on chromosome 16q24. We investigated this gene through direct sequencing and high-density SNP microarray in 12 patients with VACTERL association but without ACD/MPV. Our mutational analysis of FOXF1 showed normal sequences and no genomic imbalances affecting the FOX?gene cluster on chromosome 16q24 in the studied patients. Possible explanations for these results include the etiologic and clinical heterogeneity of VACTERL association, the possibility that mutations affecting this gene may occur only in more severely affected individuals, and insufficient study sample size.  相似文献   

2.
3.
Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a rare cause of pulmonary hypertension in newborns. Maternally inherited point mutations in Forkhead Box F1 gene (FOXF1), deletions of the gene, or its long‐range enhancers on the maternal allele are responsible for this neonatal lethal disorder. Here, we describe monozygotic twins and one full‐term newborn with ACD and gastrointestinal malformations caused by de novo mutations of FOXF1 on the maternal‐inherited alleles. Since this parental transmission is consistent with genomic imprinting, the parent‐of‐origin specific monoallelic expression of genes, we have undertaken a detailed analysis of both allelic expression and DNA methylation. FOXF1 and its neighboring gene FENDRR were both biallelically expressed in a wide range of fetal tissues, including lung and intestine. Furthermore, detailed methylation screening within the 16q24.1 regions failed to identify regions of allelic methylation, suggesting that disrupted imprinting is not responsible for ACDMPV.  相似文献   

4.
BACKGROUND—Rett syndrome is a neurodevelopmental disorder affecting only girls; 99.5% of Rett syndrome cases are sporadic, although several familial cases have been reported. Mutations in the MECP2 gene were identified in approximately 70-80% of sporadic Rett syndrome cases.
METHODS—We have screened the MECP2 gene coding region for mutations in five familial cases of Rett syndrome and studied the patterns of X chromosome inactivation (XCI) in each girl.
RESULTS—We found a mutation in MECP2 in only one family. In the four families without mutation in MECP2, we found that (1) all mothers exhibit a totally skewed pattern of XCI; (2) six out of eight affected girls also have a totally skewed pattern of XCI; and (3) it is the paternally inherited X chromosome which is active in the patients with a skewed pattern of XCI. Given that the skewing of XCI is inherited in our families, we genotyped the whole X chromosome using 32 polymorphic markers and we show that a locus potentially responsible for the skewed XCI in these families could be located on the short arm of the X chromosome.
CONCLUSION—These data led us to propose a model for familial Rett syndrome transmission in which two traits are inherited, an X linked locus abnormally escaping X chromosome inactivation and the presence of a skewed XCI in carrier women.


Keywords: Rett syndrome; skewed X chromosome inactivation; X chromosome; MECP2  相似文献   

5.
We have investigated a family in which three siblings with the autosomal dominant disorder tuberous sclerosis had unaffected parents. The family were typed for polymorphic markers spanning the two genes known to cause tuberous sclerosis located at 9q34 (TSC1) and 16p13.3 (TSC2). TSC1 markers showed different maternal and paternal haplotypes in affected children, excluding a mutation in TSC1 as the cause of the disease. For the TSC2 markers all the affected children had the same maternal and paternal haplotypes, as did three of their unaffected siblings. Mutation screening by RT-PCR and direct sequencing of the TSC2 gene identified a 4 bp insertion TACT following nucleotide 2077 in exon 18 which was present in the three affected children but not in five unaffected siblings or the parents. This mutation would cause a frameshift and premature termination at codon 703. Absence of the mutation in lymphocyte DNA from the parents was consistent with germline mosaicism and this was confirmed by our finding of identical chromosome 16 haplotypes in affected and unaffected siblings, providing unequivocal evidence of two different cell lines in the gametes. Molecular analysis of the TSC2 alleles present in the affected subjects showed that the mutation had been inherited from the mother. This is the first case of germline mosaicism in tuberous sclerosis proven by molecular genetic analysis and also the first example of female germline mosaicism for a characterized autosomal dominant gene mutation apparently not associated with somatic mosaicism.   相似文献   

6.
β-Thalassaemia is one of the most common autosomal recessive single-gene disorder worldwide, with a carrier frequency of 12% in Cyprus. Prenatal tests for at risk pregnancies use invasive methods and development of a non-invasive prenatal diagnostic (NIPD) method is of paramount importance to prevent unnecessary risks inherent to invasive methods. Here, we describe such a method by assessing a modified version of next generation sequencing (NGS) using the Illumina platform, called ‘targeted sequencing'', based on the detection of paternally inherited fetal alleles in maternal plasma. We selected four single-nucleotide polymorphisms (SNPs) located in the β-globin locus with a high degree of heterozygosity in the Cypriot population. Spiked genomic samples were used to determine the specificity of the platform. We could detect the minor alleles in the expected ratio, showing the specificity of the platform. We then developed a multiplexed format for the selected SNPs and analysed ten maternal plasma samples from pregnancies at risk. The presence or absence of the paternal mutant allele was correctly determined in 27 out of 34 samples analysed. With haplotype analysis, NIPD was possible on eight out of ten families. This is the first study carried out for the NIPD of β-thalassaemia using targeted NGS and haplotype analysis. Preliminary results show that NGS is effective in detecting paternally inherited alleles in the maternal plasma.  相似文献   

7.
8.
Primary cutaneous amyloidosis (PCA) is an itchy skin disorder associated with amyloid deposits in the superficial dermis. The disease is relatively common in Southeast Asia and South America. Autosomal dominant PCA has been mapped earlier to 5p13.1–q11.2 and two pathogenic missense mutations in the OSMR gene, which encodes the interleukin-6 family cytokine receptor oncostatin M receptor beta (OSMRβ), were reported. Here, we investigated 29 Taiwanese pedigrees with PCA and found that 10 had heterozygous missense mutations in OSMR: p.D647V (one family), p.P694L (six families), and p.K697T (three families). The mutation p.P694L was associated with the same haplotype in five of six families and also detected in two sporadic cases of PCA. Of the other 19 pedigrees that lacked OSMR pathology, 8 mapped to the same locus on chromosome 5, which also contains the genes for 3 other interleukin-6 family cytokine receptors, including interleukin-31 receptor A (IL31RA), which can form a heterodimeric receptor with OSMRβ through interleukin-31 signaling. In one family, we identified a point mutation in the IL31RA gene, c.1562C>T that results in a missense mutation, p.S521F, which is also sited within a fibronectin type III-like repeat domain as observed in the OSMR mutations. PCA is a genetically heterogeneous disorder but our study shows that it can be caused by mutations in two biologically associated cytokine receptor genes located on chromosome 5. The identification of OSMR and IL31RA gene pathology provides an explanation of the high prevalence of PCA in Taiwan as well as new insight into disease pathophysiology.  相似文献   

9.
Fragile X syndrome is a common inherited form of intellectual disability and autism spectrum disorder. Most patients exhibit a massive CGG-repeat expansion mutation in the FMR1 gene that silences the locus. In over two decades since the discovery of FMR1, only a single missense mutation (p.(Ile304Asn)) has been reported as causing fragile X syndrome. Here we describe a 16-year-old male presenting with fragile X syndrome but without the repeat expansion mutation. Rather, we find a missense mutation, c.797G>A, that replaces glycine 266 with glutamic acid (p.(Gly266Glu)). The Gly266Glu FMR protein abolished many functional properties of the protein. This patient highlights the diagnostic utility of FMR1 sequencing.  相似文献   

10.
11.
The 3M syndrome is a rare autosomal recessive disorder recently ascribed to mutations in the CUL7 gene and characterized by severe pre- and postnatal growth retardation. Studying a series of 33 novel cases of 3M syndrome, we have identified deleterious CUL7 mutations in 23/33 patients, including 19 novel mutations and one paternal isodisomy of chromosome 6 encompassing a CUL7 mutation. Lack of mutations in 10/33 cases and exclusion of the CUL7 locus on chromosome 6p21.1 in six consanguineous families strongly support the genetic heterogeneity of the 3M syndrome.  相似文献   

12.
Trichorhinophalangeal syndrome type I (TRPSI) is a genetic disorder characterized by sparse hair, a bulbous nasal tip, short stature with severe generalized shortening of all phalanges, metacarpal and metatarsal bones and cone-shaped epiphyses. This syndrome is caused by autosomal dominant mutations in the TRPS1 gene. However, because recurrence has been observed in siblings from healthy parents, an autosomal recessive mode of inheritance has also been suggested. We report on a male patient, born to healthy unrelated parents, with TRPSI. Using Sanger sequencing, we identified a mutation in the TRPS1 gene (c.2735 G>A, P.Cys912Tyr). The same mutation was detected as a 10% mosaic mutation by Pyrosequencing in blood-derived DNA from his healthy mother. To our knowledge, this is the first time that somatic mosaicism has been identified in TRPSI. This data combined with the observations of recurrences in siblings from healthy parents modifies the genetic counseling for TRPSI, which should discuss a 5–10 percent recurrence risk for healthy parents with an affected child because of the possibility of germinal mosaicism.  相似文献   

13.
14.
We report clinical findings that extend the phenotype of the ∼550 kb 16p11.2 microdeletion syndrome to include a rare, severe, and persistent pediatric speech sound disorder termed Childhood Apraxia of Speech (CAS). CAS is the speech disorder identified in a multigenerational pedigree (‘KE'') in which half of the members have a mutation in FOXP2 that co-segregates with CAS, oromotor apraxia, and low scores on a nonword repetition task. Each of the two patients in the current report completed a 2-h assessment protocol that provided information on their cognitive, language, speech, oral mechanism, motor, and developmental histories and performance. Their histories and standard scores on perceptual and acoustic speech tasks met clinical and research criteria for CAS. Array comparative genomic hybridization analyses identified deletions at chromosome 16p11.2 in each patient. These are the first reported cases with well-characterized CAS in the 16p11.2 syndrome literature and the first report of this microdeletion in CAS genetics research. We discuss implications of findings for issues in both literatures.  相似文献   

15.
Complement C7 deficiency is an autosomal recessive disorder well known to be associated with increased susceptibility to meningococcal infection and has mostly been reported in Caucasians. In the Korean population, no case of C7 deficiency has been reported to date. Recently we experienced an 11-yr-old girl with meningococcal meningitis who was diagnosed as having C7 deficiency based upon the undetectable serum C7 protein on radial immunodiffusion and the undetectable serum total and C7 hemolytic activities. To identify the genetic basis of the C7 deficiency of the patient, we performed a mutation analysis for the C7 gene and found two novel mutations; a point mutation at the 3'' splice acceptor site of intron 4 (c.281-1G>T) and a large deletion mutation encompassing almost the whole C7 gene from exon 1 to exon 17 (c.1-?_2350+?del). A haplotype analysis showed that the large deletion mutation was inherited from the patient''s father. To the best of our knowledge, this is the first confirmed case of C7 deficiency in Korea.  相似文献   

16.
Germline mutations in telomere biology genes cause dyskeratosis congenita (DC), an inherited bone marrow failure and cancer predisposition syndrome. DC is a clinically heterogeneous disorder diagnosed by the triad of dysplastic nails, abnormal skin pigmentation, and oral leukoplakia; Hoyeraal-Hreidarsson syndrome (HH), a clinically severe variant of DC, also includes cerebellar hypoplasia, immunodeficiency, and intrauterine growth retardation. Approximately 70% of DC cases are associated with a germline mutation in one of nine genes, the products of which are all involved in telomere biology. Using exome sequencing, we identified mutations in Adrenocortical Dysplasia Homolog (ACD) (encoding TPP1), a component of the telomeric shelterin complex, in one family affected by HH. The proband inherited a deletion from his father and a missense mutation from his mother, resulting in extremely short telomeres and a severe clinical phenotype. Characterization of the mutations revealed that the single-amino-acid deletion affecting the TEL patch surface of the TPP1 protein significantly compromises both telomerase recruitment and processivity, while the missense mutation in the TIN2-binding region of TPP1 is not as clearly deleterious to TPP1 function. Our results emphasize the critical roles of the TEL patch in proper stem cell function and demonstrate that TPP1 is the second shelterin component (in addition to TIN2) to be implicated in DC.  相似文献   

17.
Mitochondrial DNA (mtDNA) depletion syndromes (MDS) are severe autosomal recessive disorders associated with decreased mtDNA copy number in clinically affected tissues. The hepatocerebral form (mtDNA depletion in liver and brain) has been associated with mutations in the POLG, PEO1 (Twinkle), DGUOK and MPV17 genes, the latter encoding a mitochondrial inner membrane protein of unknown function. The aims of this study were to clarify further the clinical, biochemical, cellular and molecular genetic features associated with MDS due to MPV17 gene mutations. We identified 12 pathogenic mutations in the MPV17 gene, of which 11 are novel, in 17 patients from 12 families. All patients manifested liver disease. Poor feeding, hypoglycaemia, raised serum lactate, hypotonia and faltering growth were common presenting features. mtDNA depletion in liver was demonstrated in all seven cases where liver tissue was available. Mosaic mtDNA depletion was found in primary fibroblasts by PicoGreen staining. These results confirm that MPV17 mutations are an important cause of hepatocerebral mtDNA depletion syndrome, and provide the first demonstration of mosaic mtDNA depletion in human MPV17 mutant fibroblast cultures. We found that a severe clinical phenotype was associated with profound tissue-specific mtDNA depletion in liver, and, in some cases, mosaic mtDNA depletion in fibroblasts.  相似文献   

18.
Hirschsprung''s disease (HSCR), a congenital complex disorder of intestinal innervation, is often associated with other inherited syndromes. Identifying genes involved in syndromic HSCR cases will not only help understanding the specific underlying diseases, but it will also give an insight into the development of the most frequent isolated HSCR. The association between hydrocephalus and HSCR is not surprising as a large number of patients have been reported to show the same clinical association, most of them showing mutations in the L1CAM gene, encoding a neural adhesion molecule often involved in isolated X-linked hydrocephalus. L1 defects are believed to be necessary but not sufficient for the occurrence of the intestinal phenotype in syndromic cases. In this paper, we have carried out the molecular characterization of a patient affected with Hirschsprung''s disease and X-linked hydrocephalus, with a de novo reciprocal balanced translocation t(3;17)(p12;q21). In particular, we have taken advantage of this chromosomal defect to gain access to the predisposing background possibly leading to Hirschsprung''s disease. Detailed analysis of the RET and L1CAM genes, and molecular characterization of MYO18A and TIAF1, the genes involved in the balanced translocation, allowed us to identify, besides the L1 mutation c.2265delC, different additional factors related to RET-dependent and -independent pathways which may have contributed to the genesis of enteric phenotype in the present patient.  相似文献   

19.
Spondylocostal dysostosis (SCD) is an inherited disorder with abnormal vertebral segmentation that results in extensive hemivertebrae, truncal shortening and abnormally aligned ribs. It arises during embryonic development by a disruption of formation of somites (the precursor tissue of the vertebrae, ribs and associated tendons and muscles). Four genes causing a subset of autosomal recessive forms of this disease have been identified: DLL3 (SCDO1: MIM 277300), MESP2 (SCDO2: MIM 608681), LFNG (SCDO3: MIM609813) and HES7 (SCDO4). These genes are all essential components of the Notch signalling pathway, which has multiple roles in development and disease. Previously, only a single SCD-causative missense mutation was described in HES7. In this study, we have identified two new missense mutations in the HES7 gene in a single family, with only individuals carrying both mutant alleles being affected by SCD. In vitro functional analysis revealed that one of the mutant HES7 proteins was unable to repress gene expression by DNA binding or protein heterodimerization.  相似文献   

20.
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder. About 10% of ALS cases are familial (FALS) and the genetic defect is known only in approximately 20%-30% of these cases. The most common genetic cause of ALS is SOD1 (superoxide dismutase 1) mutation. Very recently, mutations of the optineurin gene (OPTN), which is involved in open-angle glaucoma, were identified in 3 Japanese patients/families with ALS, and subsequently in a few FALS patients of European descent. We found a heterozygous nonsense mutation (c.493C>T, p.Gln165X, exon 6) in the OPTN gene in a Danish patient with ALS, and the mutation segregated from his affected father. The p.Gln165X mutation could not be detected in 1070 healthy Danish controls, in 1000 Danish individuals with metabolic phenotypes or in 64 sporadic ALS (SALS) cases. The p.Gln165X mutation described in this study is the first mutation reported in a Danish family and is likely involved in disease pathogenesis. Until now, only few OPTN mutations have been associated with ALS. As the underlying genetic defect is known only in approximately 20%-30% of FALS families, further screening of these cases is necessary for establishing the contribution of OPTN mutations in disease pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号