首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Vaccine》2019,37(32):4533-4542
Both influenza A and B viruses cause outbreaks of seasonal influenza resulting in significant morbidity and mortality. There are two antigenically distinct lineages of influenza B virus, Yamagata lineage (YL) and Victoria lineage (VL). Since both B lineages have been co-circulating for years, more than 70% of influenza vaccines currently manufactured are quadrivalent consisting of influenza A (H1N1), influenza A (H3N2), influenza B (YL) and influenza B (VL) antigens. Although quadrivalent influenza vaccines tend to elevate immunity to both influenza B lineages, estimated overall vaccine efficacy against influenza B is still only around 42%. Thus, a more effective influenza B vaccine is needed.To meet this need, we generated BM2-deficient, single-replication (BM2SR) influenza B vaccine viruses that encode surface antigens from influenza B/Wisconsin/01/2010 (B/WI01, YL) and B/Brisbane/60/2008 (B/Bris60, VL) viruses. The BM2SR-WI01 and BM2SR-Bris60 vaccine viruses are replication-deficient in vitro and in vivo, and can only replicate in a cell line that expresses the complementing BM2 protein. Both BM2SR viruses were non-pathogenic to mice, and vaccinated animals showed elevated mucosal and serum antibody responses to both Yamagata and Victoria lineages in addition to cellular responses. Serum antibody responses included lineage-specific hemagglutinin inhibition antibody (HAI) responses as well as responses to the stem region of the hemagglutinin (HA). BM2SR vaccine viruses provided apparent sterilizing immunity to mice against intra- and inter-lineage drifted B virus challenge. The data presented here support the feasibility of BM2SR as a platform for next-generation trivalent influenza vaccine development.  相似文献   

2.
3.
《Vaccine》2021,39(14):1933-1942
The genetic and antigenic drift associated with the high pathogenicity avian influenza (HPAI) viruses of Goose/Guangdong (Gs/GD) lineage and the emergence of vaccine-resistant field viruses underscores the need for a broadly protective H5 influenza A vaccine. Here, we tested experimental vector herpesvirus of turkey (vHVT)-H5 vaccines containing either wild-type clade 2.3.4.4A-derived H5 inserts or computationally optimized broadly reactive antigen (COBRA) inserts with challenge by homologous and genetically divergent H5 HPAI Gs/GD lineage viruses in chickens. Direct assessment of protection was confirmed for all the tested constructs, which provided clinical protection against the homologous and heterologous H5 HPAI Gs/GD challenge viruses and significantly decreased oropharyngeal shedding titers compared to the sham vaccine. The cross reactivity was assessed by hemagglutinin inhibition (HI) and focus reduction assay against a panel of phylogenetically and antigenically diverse H5 strains. The COBRA-derived H5 inserts elicited antibody responses against antigenically diverse strains, while the wild-type-derived H5 vaccines elicited protection mostly against close antigenically related clades 2.3.4.4A and 2.3.4.4D viruses. In conclusion, the HVT vector, a widely used replicating vaccine platform in poultry, with H5 insert provides clinical protection and significant reduction of viral shedding against homologous and heterologous challenge. In addition, the COBRA-derived inserts have the potential to be used against antigenically distinct co-circulating viruses and future drift variants.  相似文献   

4.
《Vaccine》2023,41(38):5507-5517
Vaccines for avian influenza (AI) can protect poultry against disease, mortality, and virus transmission. Numerous factors, including: vaccine platform, immunogenicity, and relatedness to the field strain, are known to be important to achieving optimal AI vaccine efficacy. To better understand how these factors contribute to vaccine protection, a systematic meta-analysis was conducted to evaluate efficacy data for vaccines in chickens challenged with highly pathogenic (HP) AI. Data from a total of 120 individual trials from 25 publications were selected and evaluated. Two vaccine criteria were evaluated for their effects on two metrics of protection. The vaccine criteria were: 1) the relatedness of the vaccine antigen and challenge strain in the hemagglutinin 1 domain (HA1) protein sequence; 2) vaccine-induced antibody titers to the challenge virus (VIAC). The metrics of protection were: A) survival of vaccinated chickens vs unvaccinated controls; and B) reduction in oral virus-shedding by vaccinated vs unvaccinated controls 2–4 days post challenge. Three vaccine platforms were evaluated: oil-adjuvanted inactivated whole AI virus, recombinant herpes virus of turkeys (rHVT) vectored, and a non-replicating alpha-virus vectored RNA particle (RP) vaccine. Higher VIAC correlated with greater reduction of virus-shed and vaccine efficacy by all vaccine platforms. Both higher HA1 relatedness and higher VIAC using challenge virus as antigen correlated with better survival by inactivated vaccines and rHVT-vectored vaccines. However, rHVT-vectored and RP based vaccines were more tolerant of variation in the HA1; the relatedness of the HA1 of the vaccine and challenge virus did not significantly correlate with survival with rHVT-vectored vaccines. Protection was achieved with the lowest aa similarity for which there was data, 90–93 % for rHVT vaccines and 88 % for the RP vaccine.  相似文献   

5.
《Vaccine》2023,41(31):4625-4631
In Japan, the Ministry of Health, Labour and Welfare (MHLW) designates one specific virus strain for each component of the quadrivalent seasonal influenza vaccine, and four domestic manufacturers produce egg-based influenza vaccines with the same formulation (inactivated, split-virus) using uniform vaccine strains. Thus, discussions of the development of effective seasonal influenza vaccines so far has focused solely on the antigenic match between the vaccine strains and epidemic viruses. However, in 2017, the Japanese selection system of vaccine viruses demonstrated that even a candidate vaccine virus that is antigenically similar to the predicted circulating viruses is not necessarily suitable for vaccine production, given lower productivity of the vaccine. Taking this experience into account, the MHLW reformed the scheme of vaccine strain selection in 2018, and instructed the Vaccine Epidemiology Research Group created by the MHLW to probe how the virus strains for the seasonal influenza vaccine should be selected in Japan. In this context, a symposium, entitled “Issues of the Present Seasonal Influenza Vaccines and Future Prospects”, was held as part of the 22nd Annual Meeting of the Japanese Society for Vaccinology in 2018, and subjects related to the influenza vaccine viruses were discussed among relevant administrators, manufacturers, and researchers. This report summarizes the presentations given at that symposium in order to convey the present scheme of vaccine virus selection, the evaluation of the resulting vaccines, and the efforts at new vaccine formulation in Japan. Notably, from March 2022, the MHLW has launched a discussion of the merits of the seasonal influenza vaccines produced by foreign manufacturers.  相似文献   

6.
《Vaccine》2022,40(47):6767-6775
Avian influenza H7N9 virus has first emerged in 2013 and since then has spread in China in five seasonal waves. In humans, influenza H7N9 virus infection is associated with a high fatality rate; thus, an effective vaccine for this virus is needed. In the present study, we evaluated the usefulness of dissolving microneedles (MNs) loaded with influenza H7N9 vaccine in terms of the dissolution time, insertion capacity, insertion depth, and structural integrity of H7N9 virus in vitro. Our in vitro results showed MNs dissolved within 6 mins. The depth of skin penetration was 270 µm. After coating with a matrix material solution, the H7N9 proteins were agglomerated. We detected the H7N9 delivery time and humoral immune response in vivo. In a mouse model, the antigen retention time was longer for MNs than for intramuscular (IM) injection. The humoral response showed that similar to IM administration, MN administration increased the levels of functional and systematic antibodies and protection against the live influenza A/Anhui/01/2013 virus (Ah01/H7N9). The protection level was determined by the analysis of pathological sections of infected lungs. MN and IM administration yielded results superior to those in the control group. Taken together, these findings demonstrate that the use of dissolving MNs to deliver influenza H7N9 vaccines is a promising immunization approach.  相似文献   

7.
《Vaccine》2020,38(2):350-354
PurposeReceiving influenza vaccination may increase the risk of other respiratory viruses, a phenomenon known as virus interference. Test-negative study designs are often utilized to calculate influenza vaccine effectiveness. The virus interference phenomenon goes against the basic assumption of the test-negative vaccine effectiveness study that vaccination does not change the risk of infection with other respiratory illness, thus potentially biasing vaccine effectiveness results in the positive direction. This study aimed to investigate virus interference by comparing respiratory virus status among Department of Defense personnel based on their influenza vaccination status. Furthermore, individual respiratory viruses and their association with influenza vaccination were examined.ResultsWe compared vaccination status of 2880 people with non-influenza respiratory viruses to 3240 people with pan-negative results. Comparing vaccinated to non-vaccinated patients, the adjusted odds ratio for non-flu viruses was 0.97 (95% confidence interval (CI): 0.86, 1.09; p = 0.60). Additionally, the vaccination status of 3349 cases of influenza were compared to three different control groups: all controls (N = 6120), non-influenza positive controls (N = 2880), and pan-negative controls (N = 3240). The adjusted ORs for the comparisons among the three control groups did not vary much (range: 0.46–0.51).ConclusionsReceipt of influenza vaccination was not associated with virus interference among our population. Examining virus interference by specific respiratory viruses showed mixed results. Vaccine derived virus interference was significantly associated with coronavirus and human metapneumovirus; however, significant protection with vaccination was associated not only with most influenza viruses, but also parainfluenza, RSV, and non-influenza virus coinfections.  相似文献   

8.
《Vaccine》2021,39(48):6990-7000
The genus flavivirus of the Flaviridae family includes several human pathogens, like dengue, Zika, Japanese encephalitis, and yellow fever virus. These viruses continue to be a significant threat to human health. Vaccination remains the most useful approach to reduce the impact of flavivirus fever. However, currently available vaccines can induce severe side effects or have low effectiveness. An alternative is the use of recombinant vaccines, of which virus-like particles (VLP) and single-round infectious particles (SRIP) are of especial interest. VLP consist of the virus structural proteins produced in a heterologous system that self-assemble in a structure almost identical to the native virus. They are highly immunogenic and have been effective vaccines for other viruses for over 30 years. SRIP are promising vaccine candidates, as they induce both cellular and humoral responses, as viral proteins are expressed. Here, the state of the art to produce both types of particles and their use as vaccines against flaviviruses are discussed. We summarize the different approaches used for the design and production of flavivirus VLP and SRIP, the evidence for their safety and efficacy, and the main challenges for their use as commercial vaccines.  相似文献   

9.
《Vaccine》2020,38(39):6141-6152
Influenza vaccination is considered the most valuable means to prevent and control seasonal influenza infections, which causes various clinical symptoms, ranging from mild cough and fever to even death. Among various influenza vaccine types, the inactivated subunit type is known to provide improved safety with reduced reactogenicity. However, there are some drawbacks associated with inactivated subunit type vaccines, with the main ones being its low immunogenicity and the induction of Th2-biased immune responses. In this study, we investigated the role of a single-stranded RNA (ssRNA) derived from the intergenic region in the internal ribosome entry site of the Cricket paralysis virus as an adjuvant rather than the universal vaccine for a seasonal inactivated subunit influenza vaccine. The ssRNA adjuvant stimulated not only well-balanced cellular (indicated by IgG2a, IFN-γ, IL-2, and TNF-α) and humoral (indicated by IgG1 and IL-4) immune responses but also a mucosal immune response (indicated by IgA), a key protector against respiratory virus infections. It also increases the HI titer, the surrogate marker of influenza vaccine efficacy. Furthermore, ssRNA adjuvant confers cross-protective immune responses against heterologous influenza virus infection while promoting enhanced viral clearance. Moreover, ssRNA adjuvant increases the number of memory CD4+ and CD8+ T cells, which can be expected to induce long-term immune responses. Therefore, this ssRNA-adjuvanted seasonal inactivated subunit influenza vaccine might be the best influenza vaccine generating robust humoral and cellular immune responses and conferring cross-protective and long-term immunity.  相似文献   

10.
《Vaccine》2020,38(6):1526-1534
Despite decades of vaccination, surveillance, and biosecurity measures, H5N2 low pathogenicity avian influenza (LPAI) virus infections continue in Mexico and neighboring countries. One explanation for tenacity of H5N2 LPAI in Mexico is the antigenic divergence of circulating field viruses compared to licensed vaccines due to antigenic drift. Our phylogenetic analysis indicates that the H5N2 LPAI viruses circulating in Mexico and neighboring countries since 1994 have undergone antigenic drift away from vaccine seed strains. Here we evaluated the efficacy of a new recombinant fowlpox virus vector containing an updated H5 insert (rFPV-H5/2016), more relevant to the current strains circulating in Mexico. We tested the vaccine efficacy against a closely related subcluster 4 Mexican H5N2 LPAI (2010 H5/LP) virus and the historic H5N2 HPAI (1995 H5/HP) virus in White Leghorn chickens. The rFPV-H5/2016 vaccine provided hemagglutinin inhibition (HI) titers pre-challenge against viral antigens from both challenge viruses in almost 100% of the immunized birds, with no differences in number of birds seroconverting or HI titers among all tested doses (1.5, 2.0, and 3.1 log10 mean tissue culture infectious doses/bird). The vaccine conferred 100% clinical protection and a significant decrease in oral and cloacal virus shedding from 1995 H5/HP virus challenged birds when compared to the sham controls at all tested doses. Virus shedding titers from vaccinated 2010 H5/LP virus challenged birds significantly decreased compared to sham birds especially at earlier time points. Our results confirm the efficacy of the new rFPV-H5/2016 against antigenic drift of LPAI virus in Mexico and suggest that this vaccine would be a good candidate, likely as a primer in a prime-boost vaccination program.  相似文献   

11.
《Vaccine》2022,40(9):1271-1281
BackgroundNew influenza vaccines are needed to increase vaccine efficacy. Adjuvants may allow hemagglutinin (HA) dose-sparing with enhanced immunogenicity. MAS-1 is an investigational low viscosity, free-flowing, water-in-oil emulsion-based adjuvant/delivery system comprised of stable nanoglobular aqueous droplets.MethodsA phase 1, double-blind, safety and immunogenicity, HA dose escalation, randomized clinical trial was conducted. MAS-1 adjuvant with 1, 3, 5 or 9 µg per HA derived from licensed seasonal trivalent high dose inactivated influenza vaccine (IIV, Fluzone HD 60 µg per HA) in a 0.3 mL dose were compared to standard dose IIV (Fluzone SD, 15 µg per HA). Safety was measured by reactogenicity, adverse events, and clinical laboratory tests. Serum hemagglutination inhibition (HAI) antibody titers were measured for immunogenicity.ResultsSeventy-two subjects, aged 18–47 years, received one dose of either 0.3 mL adjuvanted vaccine or SD IIV intramuscularly. Common injection site and systemic reactions post-vaccination were mild tenderness, induration, pain, headache, myalgia, malaise and fatigue. All reactions resolved within 14 days post-vaccination. Safety laboratory measures were not different between groups. Geometric mean antibody titers, geometric mean fold increases in antibody titer, seroconversion rates and seroprotection rates against vaccine strains were in general higher and of longer duration (day 85 and 169 visits) with MAS-1-adjuvanted IIV at all doses of HA compared with SD IIV. Adjuvanted vaccine induced higher antibody responses against a limited number of non-study vaccine influenza B and A/H3N2 viruses including ones from subsequent years.ConclusionMAS-1 adjuvant in a 0.3 mL dose volume provided HA dose-sparing effects without safety concerns and induced higher HAI antibody and seroconversion responses through at least 6 months, demonstrating potential to provide greater vaccine efficacy throughout an influenza season in younger adults. In summary, MAS-1 may provide enhanced, more durable and broader protective immunity compared with non-adjuvanted SD IIV.Clinical Trial Registry: ClinicalTrials.gov # NCT02500680.  相似文献   

12.
《Vaccine》2019,37(48):7155-7164
Although West Nile virus (WNV) causes annual cases of neurological disease and deaths in humans, a vaccine has not been licensed for human use. Several WNV genes have been targeted for mutagenesis in attempts to generate live attenuated vaccine candidates, including the non-structural protein NS5. Specifically, mutation of WNV NS5-K61A or NS5-E218A in the catalytic tetrad of the methyltransferase decreases enzyme activity of the NS5 protein and correspondingly attenuates the virus in mice. In this report, NS5-K61A, NS5-E218A, and a double mutant encoding both mutations (NS5-K61A/E218A) were compared both in vitro and in vivo. Each single mutant was strongly attenuated in highly susceptible outbred mice, whereas the double mutant unexpectedly was not attenuated. Sequencing analysis demonstrated that the double mutant was capable of reversion at both residues NS5-61 and NS5-218, whereas the genotype of the single mutants did not show evidence of reversion. Overall, either NS5-K61A or NS5-E218A methyltransferase mutations could be potential mutations to include in a candidate live WNV vaccine; however, multiple mutations in the catalytic tetrad of the methyltransferase are not tolerated.  相似文献   

13.
Vaccines will be an important element in mitigating the impact of an influenza pandemic. While research towards developing universal influenza vaccines is ongoing, the current strategy for vaccine supply in a pandemic relies on seasonal influenza vaccine production to be switched over to pandemic vaccines. Understanding how much vaccine could be produced, in which regions of the world and in what timeframe is critical to informing influenza pandemic preparedness. Through the Global Action Plan for Influenza Vaccines, 2006–2016, WHO promoted an increase in vaccine production capacity and monitors the landscape through periodically surveying influenza vaccine manufacturers. This study compares global capacity for production of influenza vaccines in 2019 with estimates from previous surveys; provides an overview of countries with established production facilities; presents vaccine production by type and manufacturing process; and discusses limitations to these estimates. Results of the current survey show that estimated annual seasonal influenza vaccine production capacity changed little since 2015 increasing from 1.47 billion to 1.48 billion doses with potential maximum annual influenza pandemic vaccine production capacity increasing from 6.37 billion to 8.31 billion doses. However, this figure should be interpreted with caution as it presents a best-case scenario with several assumptions which may impact supply. Further, pandemic vaccines would not be immediately available and could take four to six months for first supplies with several more months needed to reach maximum capacity. A moderate-case scenario is also presented of 4.15 billion doses of pandemic vaccine in 12 months. It is important to note that two doses of pandemic vaccine are likely to be required to elicit an adequate immune response. Continued efforts are needed to ensure the sustainability of this production and to conduct research for vaccines that are faster to produce and more broadly protective taking into account lessons learned from COVID-19 vaccine development.  相似文献   

14.
《Vaccine》2019,37(23):3006-3021
Clinical and post-licensure data have demonstrated that AS03-adjuvanted inactivated split virion vaccines, many with reduced antigen content, are effective against influenza infection. The objective of this review is to provide a comprehensive assessment of the safety of trivalent seasonal, monovalent pre-pandemic and pandemic AS03-adjuvanted influenza vaccines, based on non-clinical, clinical and post-licensure data in various populations. Non-clinical studies on local tolerance, toxicology and safety pharmacology did not raise any safety concerns with AS03 administered alone or combined with various influenza antigens. Data from clinical trials with over 55,000 vaccinated subjects showed that AS03-adjuvanted influenza vaccines were generally well tolerated and displayed an acceptable safety profile, although the power to detect rare events was limited. Approximately 90 million doses of A/H1N1pdm09 pandemic influenza vaccines (Pandemrix and Arepanrix H1N1) were administered worldwide, which contributed post-licensure data to the collective safety data for AS03-adjuvanted influenza vaccines. An association between Pandemrix and narcolepsy was observed during the A/H1N1pdm09 pandemic, for which a role of a CD4 T cell mimicry sequence in the haemagglutinin protein of A/H1N1pdm09 cannot be excluded. Provided that future AS03-adjuvanted influenza vaccines do not contain this putative mimicry sequence, this extensive safety experience supports the further development and use of AS03-adjuvanted inactivated split virion candidate vaccines against seasonal and pandemic influenza infections.  相似文献   

15.
《Vaccine》2021,39(45):6573-6584
Improved influenza vaccines are urgently needed to reduce the burden of seasonal influenza and to ensure a rapid and effective public-health response to future influenza pandemics. The Influenza Vaccines Research and Development (R&D) Roadmap (IVR) was created, through an extensive international stakeholder engagement process, to promote influenza vaccine R&D. The roadmap covers a 10-year timeframe and is organized into six sections: virology; immunology; vaccinology for seasonal influenza vaccines; vaccinology for universal influenza vaccines; animal and human influenza virus infection models; and policy, finance, and regulation. Each section identifies barriers, gaps, strategic goals, milestones, and additional R&D priorities germane to that area. The roadmap includes 113 specific R&D milestones, 37 of which have been designated high priority by the IVR expert taskforce. This report summarizes the major issues and priority areas of research outlined in the IVR. By identifying the key issues and steps to address them, the roadmap not only encourages research aimed at new solutions, but also provides guidance on the use of innovative tools to drive breakthroughs in influenza vaccine R&D.  相似文献   

16.
《Vaccine》2022,40(33):4732-4741
The virus-like particles (VLPs) of porcine circovirus type 2 (PCV2) is an attractive vaccine candidate that retains the natural conformation of the virion but lacks the viral genome to replicate, thus balancing safety and immunogenicity. However, the assembly of VLPs requires cumbersome subsequent processes, hindering the development of related vaccines. In addition, as a subunit antigen, VLPs are defective in inducing cellular and mucosal immune responses. In this study, the capsid (Cap) protein of PCV2 was synthesized and self-assembled into VLPs in the recombinant attenuated S. Choleraesuis vector, rSC0016(pS-Cap). Furthermore, rSC0016(pS-Cap) induced a Cap-specific Th1-dominant immune response, mucosal immune responses, and neutralizing antibodies against PCV2. Finally, the virus genome copies in mice immunized with the rSC0016(pS-Cap) were significantly lower than those of the empty vector control group after challenge with PCV2. In conclusion, our study demonstrates the potential of using S. Choleraesuis vectors to delivery VLPs, providing new ideas for the development of PCV2 vaccines.  相似文献   

17.
《Vaccine》2019,37(42):6208-6220
Seasonal influenza vaccines represent a positive intervention to limit the spread of the virus and protect public health. Yet continual influenza evolution and its ability to evade immunity pose a constant threat. For these reasons, vaccines with improved potency and breadth of protection remain an important need. We previously developed a next-generation influenza vaccine that displays the trimeric influenza hemagglutinin (HA) on a ferritin nanoparticle (NP) to optimize its presentation. Similar to other vaccines, HA-nanoparticle vaccine efficacy is increased by the inclusion of adjuvants during immunization. To identify the optimal adjuvants to enhance influenza immunity, we systematically analyzed TLR agonists for their ability to elicit immune responses. HA-NPs were compatible with nearly all adjuvants tested, including TLR2, TLR4, TLR7/8, and TLR9 agonists, squalene oil-in-water mixtures, and STING agonists. In addition, we chemically conjugated TLR7/8 and TLR9 ligands directly to the HA-ferritin nanoparticle. These TLR agonist-conjugated nanoparticles induced stronger antibody responses than nanoparticles alone, which allowed the use of a 5000-fold-lower dose of adjuvant than traditional admixtures. One candidate, the oil-in-water adjuvant AF03, was also tested in non-human primates and showed strong induction of neutralizing responses against both matched and heterologous H1N1 viruses. These data suggest that AF03, along with certain TLR agonists, enhance strong neutralizing antibody responses following influenza vaccination and may improve the breadth, potency, and ultimately vaccine protection in humans.  相似文献   

18.
《Vaccine》2020,38(5):1001-1008
BackgroundQuadrivalent live attenuated influenza vaccine (LAIV4) showed reduced effectiveness against the A/H1N1 component in the 2013–2014 and 2015–2016 influenza seasons. The most likely cause of reduced LAIV effectiveness against A(H1N1)pdm09 strains was poor intranasal replication.ObjectivesTo compare the immunogenicity and shedding of a new A/H1N1 strain (A/Slovenia), to a A/H1N1 strain known to have reduced effectiveness (A/Bolivia).Patients/methodsThis was a randomized, double-blind, multicenter study. Children aged 24–<48 months of age were randomized 1:1:1 to receive two doses of LAIV4 2017–2018 (LAIV4A/Slovenia), or LAIV4 2015–2016 or trivalent LAIV (LAIV3) 2015–2016 formulations (LAIV4A/Bolivia or LAIV3A/Bolivia, respectively) on days 1 and 28. The primary endpoint was strain-specific hemagglutination inhibition (HAI) antibody seroresponse at 28 days post each dose, and secondary endpoints included immunogenicity, shedding, and safety. Solicited symptoms, adverse events (AEs), and serious AEs (SAEs) were recorded. Pre-specified statistical testing was limited to the primary endpoint of HAI antibody responses.ResultsA total of 200 children were randomized (median age 35.3 months; 53% male; 57% had previously received influenza vaccine). Significantly higher HAI antibody responses for the A/Slovenia strain were observed after Dose 1 and Dose 2. Neutralizing antibodies and nasal immunoglobulin A antibody responses were higher for A/Slovenia versus A/Bolivia. More children shed the A/Slovenia vaccine strain than the A/Bolivia strain on Days 4–7 after Dose 1. No deaths, SAEs, or discontinuations from vaccine occurred.ConclusionsThe new A(H1N1)pdm09 A/Slovenia LAIV strain demonstrated improved immunogenicity compared with a previous strain with reduced effectiveness and induced immune responses comparable to a highly efficacious pre-pandemic H1N1 LAIV strain. These results support the use of LAIV4 containing A/Slovenia as a vaccine option in clinical practice.  相似文献   

19.
20.
《Vaccine》2020,38(18):3411-3421
BackgroundTo optimize vaccine implementation visits for young children, it could be efficient to administer the first RTS,S/AS01 malaria vaccine dose during the Expanded Programme on Immunization (EPI) visit at 6 months of age together with Vitamin A supplementation and the third RTS,S/AS01 dose on the same day as yellow fever (YF), measles and rubella vaccines at 9 months of age. We evaluated the safety and immunogenicity of RTS,S/AS01 when co-administered with YF and combined measles-rubella (MR) vaccines.MethodsIn this phase 3b, open-label, controlled study (NCT02699099), 709 Ghanaian children were randomized (1:1:1) to receive RTS,S/AS01 at 6, 7.5 and 9 months of age, and YF and MR vaccines at 9 or 10.5 months of age (RTS,S coad and RTS,S alone groups, respectively). The third group received YF and MR vaccines at 9 months of age and will receive RTS,S/AS01 at 10.5, 11.5 and 12.5 months of age (Control group). All children received Vitamin A at 6 months of age. Non-inferiority of immune responses to the vaccine antigens was evaluated 1 month following co-administration versus RTS,S/AS01 or EPI vaccines (YF and MR vaccines) alone using pre-defined non-inferiority criteria. Safety was assessed until Study month 4.5.ResultsNon-inferiority of antibody responses to the anti-circumsporozoite and anti-hepatitis B virus surface antigens when RTS,S/AS01 was co-administered with YF and MR vaccines versus RTS,S/AS01 alone was demonstrated. Non-inferiority of antibody responses to the measles, rubella, and YF antigens when RTS,S/AS01 was co-administered with YF and MR vaccines versus YF and MR vaccines alone was demonstrated. The safety profile of all vaccines was clinically acceptable in all groups.ConclusionsRTS,S/AS01 can be co-administered with Vitamin A at 6 months and with YF and MR vaccines at 9 months of age during EPI visits, without immune response impairment to any vaccine antigen or negative safety effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号