首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The aims of the current work included: development of a new production method for nanoparticles of water-insoluble drugs in combination with lipids, characterization of the nanoparticles and development of lipid nanosuspension formulations, and investigation of the feasibility of delivering the nanosuspensions as aerosols for inhalation using Aradigm's AERx Single Dose Platform (SDP) with micron-sized nozzles and the all mechanical AERx Essence with sub-micron-sized nozzles. The continuous SFEE method was used for particle precipitation of solid lipid nanoparticles (SLN). The method allowed for production of stable particulate aqueous suspensions of a narrow size distribution, with a volume mean diameter below 30 nm (D99% cumulative volume below 100 nm). Thus the particle size obtained was significantly smaller than previously has been achieved by other techniques. The residual solvent content in the final suspension was consistently below 20 ppm. Drug loading values between 10-20% w/w drug were obtained for model compounds ketoprofen and indomethacin in formulation with lipids such as tripalmitin, tristearin and Gelucire 50/13. It was observed that the loading capacity achieved was higher than the thermodynamic limit of the solubility of the drugs in molten lipids. Lipid nanosuspension formulations were successfully aerosolized using both of the AERx systems. As measured by both cascade impactor and laser diffraction, the aerosol fine particle fraction (FPF) was comparable to drug solution formulations typically used in these devices; i.e., greater than 90% of the aerosol mass resided in particles less than 3.5 mum aerodynamic diameter.  相似文献   

2.
The in vivo effect of particle agglomeration after drying of nanoparticles has not been extensively studied till date based on current literature review. The purpose of this research was to evaluate the feasibility of spray granulation as a processing method to convert a nanosuspension of a poorly water soluble drug into a solid dosage form and to evaluate the effect of the transformation into a solid powder on the in vivo exposure in beagle dogs. Formulation variables like the level of stabilizer in the nanosuspension formulation, granulation substrate and drug loading in the granulation were evaluated. The granules were characterized for moisture content, drug content, particle size, crystallinity and in vitro dissolution rate. Granulations with 10% drug loading showed dissolution profiles comparable to the nanosuspension, slightly slower dissolution profiles were observed at 20% drug loading. This can be attributed to an increase in the surface hydrophobicity at a higher drug loading and the formation of agglomerates that were harder to disintegrate, thereby compromising the dissolution rate. An in vivo PK study in beagle dogs showed an 8-fold increase and a 6-fold increase in the AUC(0-48) from the nanosuspension and dried nanosuspension formulations respectively compared to the coarse suspension. Also, the nanosuspension and dried nanosuspension formulations showed a 12-fold and 8-fold increase in the C(max) respectively compared to the coarse suspension. This shows the feasibility of using spray granulation as a processing method to convert a nanosuspension into a solid dosage form with improved in vivo exposure compared to the coarse suspension formulation.  相似文献   

3.
目的:制备阿托伐他汀钙纳米粒新剂型,对其性质进行研究,优选最佳工艺条件。方法:采用乳化-溶剂挥发法制备阿托伐他汀钙纳米粒溶液,通过对处方优化,以载体材料用量(X1)、有机溶剂用量(X2)、表面活性剂用量(X3)为自变量,利用Box Behnken设计响应面法以纳米粒粒径(Y)为响应值,优化了阿托伐他汀钙纳米粒的处方。用Malvern激光粒度分析仪测定了粒径分布和纳米粒的Zeta电位,扫描电镜分析了其形态,用高速冷冻离心法和紫外分光光度法测定了包封率和载药量。结果:采用乳化-溶剂挥发法制备阿托伐他汀钙纳米粒溶液是适合的。响应面优化最优值为阿托伐他汀钙20 mg、卵磷脂178 mg、乙酸乙酯15 mL、聚山梨酯80774 mg,所制备的阿托伐他汀钙纳米粒呈类球形,其平均粒径(71.99±13.62) nm,Zeta电位为(-31.48±2.46) mV,包封率为(91.27±1.7)%,载药量(9.58±0.22)%。结论:采用乳化-溶剂挥发法制备阿托伐他汀钙纳米粒处方及工艺适合,相关性质检测方法可行。  相似文献   

4.
Solid lipid microparticles were investigated as a taste-masking approach for a lipophilic weak base in a suspension. The idea was that the drug concentration in the aqueous phase of a suspension might be reduced by its partitioning into the solid lipid particles. Loratadine, as a model drug, was used to prepare Precirol® ATO 5 microparticles by a Micromixer. The effects of three process variables: drug loading, PVA concentration and water/lipid ratio on the microparticle size, encapsulation efficiency, surface appearance, in-vitro release and drug partitioning in a suspension were studied. Loratadine release was slow in simulated saliva and very fast at the pH of stomach. In suspension of loratadine lipid microparticles, drug was released into the aqueous phase to the same concentration as in a drug suspension. Therefore, the usefulness of these microparticles for taste-masking in liquids is limited. However, they might be useful for taste-masking in solid dosage forms.  相似文献   

5.
Drug delivery system focuses on the regulation of the in vivo dynamics, in order to improve the effectiveness and safety of the incorporated drugs by use of novel drug formulation technologies. Lipids such as fatty acids, triglycerides, vegetable oils and their derivatives, used for developing multiparticulate dosage forms, may be available in solid, semi-solid or liquid state. Solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs) and lipid drug conjugate (LDCs) nanoparticles are novel lipid drug delivery systems. They were devised to address some of the challenges of conventional drug delivery systems ranging from low drug encapsulation efficiency to low bioavailability of Biopharmaceutical Classification Systems (BCS) class II and class IV drugs. SLNs are based on melt-emulsified lipids, which are solid at room temperature and consist of physiologically well tolerated ingredients often generally recognised as safe. NLCs are colloidal carriers characterized by a solid lipid core consisting of a mixture of solid and liquid lipids, and having a mean particle size in the nanometer range. LDC are nanoparticles contain drugs linked to lipid particles. This minireview highlights these three different but related technologies in lipid drug delivery. The objectives of their introduction, current applications, major challenges and some patented formulations are highlighted.  相似文献   

6.
A new process, evaporative precipitation into aqueous solution (EPAS) has been developed to coat poorly water soluble drugs, in this case carbamazepine, with hydrophilic stabilizers to enhance dissolution rates. A heated organic solution of the drug in dichloromethane is sprayed though a fine nozzle into a heated aqueous solution. The rapid evaporation of the organic solvent produces high supersaturation and rapid precipitation of the drug in the form of a colloidal suspension that is stabilized by a variety of low molecular weight and polymeric surfactants. The stabilizer adsorbs to the drug surface and prevents particle growth and crystallization during the spray process. The suspensions are dried by spray drying or ultra-rapid freezing. The high dissolution rates are a consequence of the following advantages of the EPAS process: a small primary particle size, a hydrophilic coating on the particles that enhances wetting, and low crystallinity.  相似文献   

7.
MK-0869 (aprepitant), a potent substance P antagonist, is the active ingredient of EMEND which has recently been approved by the FDA for the prevention of chemotherapy-induced nausea and vomiting. Early clinical tablet formulations of MK-0869 showed significant food effects on absorption, suggesting that formulation could have a significant role in improving bioavailability. A Beagle dog model was developed in an effort to guide novel formulation development. Using the suspension of the micronized bulk drug used for the tablet formulations, the food effect on absorption was confirmed in the dog at a similar magnitude to that observed in humans. Further dog studies demonstrated a clear correlation between particle size and in vivo exposures, with the nanoparticle (NanoCrystal) colloidal dispersion formulation providing the highest exposure, suggesting dissolution-limited absorption. The NanoCrystal dispersion also eliminated the food effect on oral absorption in the dog at a dose of 2mg/kg. Regional absorption studies using triport dogs indicated that the absorption of MK-0869 was limited to the upper gastrointestinal tract. These results provided strong evidence that the large increase in surface areas of the drug nanoparticles could overcome the narrow absorption window and lead to rapid in vivo dissolution, fast absorption, and increased bioavailability. In addition, the dog model was used for optimizing formulation processes in which the nanoparticles were incorporated into solid dosage forms, and for selecting excipients to effectively re-disperse the nanoparticles from the dosage units. The human pharmacokinetic data using the nanoparticle formulation showed excellent correlations with those generated in the dog.  相似文献   

8.
Solid lipid microparticles were investigated as a taste-masking approach for a lipophilic weak base in a suspension. The idea was that the drug concentration in the aqueous phase of a suspension might be reduced by its partitioning into the solid lipid particles. Loratadine, as a model drug, was used to prepare Precirol ATO 5 microparticles by a Micromixer. The effects of three process variables: drug loading, PVA concentration and water/lipid ratio on the microparticle size, encapsulation efficiency, surface appearance, in-vitro release and drug partitioning in a suspension were studied. Loratadine release was slow in simulated saliva and very fast at the pH of stomach. In suspension of loratadine lipid microparticles, drug was released into the aqueous phase to the same concentration as in a drug suspension. Therefore, the usefulness of these microparticles for taste-masking in liquids is limited. However, they might be useful for taste-masking in solid dosage forms.  相似文献   

9.
Hexyl cyanoacrylate nanoparticles loaded with vincamine as a drug model were prepared. Disposition kinetics and oral bioavailability of vincamine in rabbits were compared after administration of an aqueous solution of the drug and an aqueous colloidal suspension of nanoparticles. After intravenous administration, total body clearance of vincamine was equal for both dosage forms, but a longer half-life (X 2) and larger distribution volume (X 2) were observed with the suspension of nanoparticles. After oral administration, the bioavailability of vincamine was considerably greater for the drug loaded onto nanoparticles.  相似文献   

10.
Aqueous colloidal dispersions of amorphous cyclosporin A (CsA) nanoparticles, intended for pulmonary delivery, were formed by antisolvent precipitation and stabilized with 10% polysorbate 80. Dissolution of the dispersion of CsA nanoparticles produced supersaturation values 18 times the aqueous equilibrium solubility. Nebulization of the dispersion to mice produced therapeutic lung levels and systemic concentrations below toxic limits. The sizes of the aerosolized aqueous droplets are optimal for deep lung deposition, whereas the amorphous drug nanoparticles facilitate rapid dissolution. A dissolution/permeation model was developed to characterize the effects of particle size, solubility, and drug dose on the absorption half-lives of poorly water soluble drugs in the alveolar epithelium. For crystalline 3 microm particles with a solubility of 1 microg/mL, the half-life for absorption was estimated to be 500 min. The half-life may be reduced to less than 1 min by increasing the solubility by a factor of 100 with an amorphous form as well as by decreasing the particle size 10-fold. The in vitro and in vivo data, as well as the dissolution/permeation model, indicate that nebulization of amorphous nanoparticle suspensions has the potential to enhance lung epithelial absorption markedly for poorly water soluble drugs, relative to respiratory delivery of crystalline, micron-sized particles.  相似文献   

11.
目的 采用Box-Behnken效应面法筛选姜黄素正负离子固体脂质纳米粒的最优处方.方法 采用乳化蒸发-低温固化法制备姜黄素的固体脂质纳米粒,以固体脂质的质量、卵磷脂的质量和混合表面活性剂为考察对象,以包封率和脂质载药量为考察指标,利用3因素3水平Box-Behnken效应面设计法筛选姜黄素固体脂质纳米粒的最优处方.结果 按最优处方制备固体脂质纳米粒的包封率为94.20% ±2.55%、脂质载药量为3.49%±0.11%,平均粒径为194.9 ±12.0 nm,Zeta电位为-28.15 ±2.72 mV.结论 采用Box-Behnken效应面法优化姜黄素正负固体脂质纳米粒的处方是有效、可行的.  相似文献   

12.
Formulating poorly soluble molecules as amorphous solid dispersions (ASDs) is an effective strategy to improve drug release. However, drug release rate and extent tend to rapidly diminish with increasing drug loading (DL). The poor release at high DLs has been postulated to be linked to the process of amorphous-amorphous phase separation (AAPS), although the exact connection between phase separation and release properties remains somewhat unclear. Herein, release profiles of ASDs formulated with ritonavir (RTV) and polyvinylpyrrolidone/vinyl acetate (PVPVA) at different DLs were determined using surface normalized dissolution. Surface morphologies of partially dissolved ASD compacts were evaluated with confocal fluorescence microscopy, using Nile red and Alexa Fluor 488 as fluorescence markers to track the hydrophobic and hydrophilic phases respectively. ASD phase behavior during hydration and release of components were also visualized in real time using a newly developed in situ confocal fluorescence microscopy method. RTV-PVPVA ASDs showed complete and rapid drug release below 30% DL, partial drug release at 30% DL and no drug release above 30% DL. It was observed that formation of discrete drug-rich droplets at lower DLs led to rapid and congruent release of both drug and polymer, whereas formation of continuous drug-rich phase at the ASD matrix-solution interface was the cause of poor release above certain DLs. Thus, the domain size and interconnectivity of phase separated drug-rich domains appear to be critical factors impacting drug release from RTV-PVPVPA ASDs.  相似文献   

13.
Curcumin has very broad spectrum of biological activities; however, photodegradation, short half-life and low bioavailability have limited its clinical application. Curcumin-loaded solid lipid nanoparticles were studied to overcome these problems. The aim of this study was to optimize the best formulation on curcumin-loaded solid lipid nanoparticles. Emulsion-evaporation and low temperature-solidification technique was applied with monostearin as lipid carriers. The single factor analysis and orthogonal design were used to optimize formulation and various parameters were investigate. By the optimisation of a single factor analysis and orthogonal test, the particles size, polydispersity index, zeta potential, encapsulation efficiency and drug loading capacity of the optimised formulation were 99.99 nm, 0.158, −19.9 mV, 97.86%, and 4.35%, respectively. The differential scanning calorimetry and X-ray diffraction analysis results demonstrated new structure was formed in nanoparticles. The release kinetics in vitro demonstrated curcumin-loaded solid lipid nanoparticles can control drug release. These studies confirmed that curcumin-loaded solid lipid nanoparticles could be prepared successfully with high drug entrapment efficiency and loading capacity. Curcumin-loaded solid lipid nanoparticles may be a promising drug delivery system to control drug release and improve bioavailability.  相似文献   

14.
Aqueous dispersions of solid lipid nanoparticles (SLN) show some interesting features in topical drug delivery. However, to get a semisolid carrier having the appropriate consistency for topical application, the liquid SLN dispersions have to be incorporated in convenient topical dosage forms like hydrogels or creams. This is a time-consuming production process with several disadvantages. A new one-step production process delivering a semisolid topical formulation including SLN is presented avoiding these disadvantages. The semisolid SLN dispersions were produced by high-pressure homogenization using an APV Lab 40 homogenizer. The resulting dispersions were characterized concerning their particle size and rheological properties. Despite the high lipid content of the SLN dispersions, they retained their colloidal particle size. Viscoelastic measurements proved the existence of a gel-like structure with a prevailing elastic component.  相似文献   

15.
目的 制备香叶木素固体脂质纳米粒并对其进行质量评价。方法 采用溶剂注入法制备香叶木素固体脂质纳米粒,用 Box-Benhnken效应面法优化处方,并通过包封率、微观形态、粒径分布和Zeta电位对香叶木素固体脂质纳米粒的质量进行评价。 结果 香叶木素固体脂质纳米粒最优处方组成:表面活性剂浓度3.39%,棕榈酸浓度0.116%,脂药质比为21:100,制备的香叶木素 固体脂质纳米粒外观澄清透明,带淡蓝色乳光;平均粒径为(91.73±3.18)nm(n=3),PDI为0.228,电位为(-11.46±0.74)mV(n=3);包 封率为95.13%,载药量为9.04%;透射电镜照片显示纳米粒大小均一,呈球形或类球形。 结论 该处方可用于香叶木素固体脂 质纳米粒的制备,工艺简单,稳定可行。  相似文献   

16.
Purpose  Drying of nanosuspensions can cause destabilization of the particles, leading to irreversible aggregation. In order to prepare an effective solid dosage form for a nanosuspension, it is imperative that the spray-dried nanoparticles should go back to their original particle size when reconstituted in an aqueous system. This case study examines impact of various formulation and processing parameters on redispersibility of the spray dried nanoparticles. Methods  Nanosuspensions were prepared using the microprecipitation–homogenization process. Spray drying of nanosuspensions was achieved using a lab-scale Buchi spray dryer. Results  Formulation components appeared to have the most significant impact on redispersibility of spray dried particles. Absence of surface charge led to particles that could not be redispersed. On the other hand, charged particles stabilized with an appropriate sugar led to spray dried powders that were flowable and easily redispersible. Dissolution testing showed the presence of two phases—a lag phase that represented dispersion of the loose aggregates, and dissolution of the dispersed nanoparticles. Conclusions  Nanosuspensions of a poorly soluble drug could be spray dried to obtain flowable powders that could be easily redispersed. These optimized powders also showed significantly improved dissolution rates as compared to the micronized drug, or unoptimized nanosuspensions.  相似文献   

17.
Our aim was to explore the influence of micelles and microparticles emerging in aqueous dispersions of amorphous solid dispersions (ASDs) on molecular/apparent solubility and Caco-2 permeation. The ASD, prepared by hot-melt extrusion, contained the poorly soluble model drug ABT-102, a hydrophilic polymer, and three surfactants. Aqueous dispersions of the ASD were investigated at two concentrations, one above and one close to the critical micelle concentration of the surfactants blend in the extrudate. Micelles were detected at the higher concentration and no micelles at the lower concentration. Apparent solubility of ABT-102 was 20-fold higher in concentrated than in diluted dispersions, because of micelles. In contrast, Caco-2 permeation of ABT-102 was independent of the ASD concentration, but three times faster than that of crystalline suspensions. Molecular solubility of ABT-102 (equilibrium dialysis) was also independent of the ASD concentration, but by a factor 2 higher than crystalline ABT-102. The total amount of ABT-102 accumulated in the acceptor during Caco-2 experiments exceeded the initial amount of molecularly dissolved drug in the donor. This may indicate that dissolution of amorphous microparticles present in aqueous dispersions induces lasting supersaturation maintaining enhanced permeation. The hypothesis is supported by a slower drug permeation when the microparticles were removed. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:1779–1786, 2014  相似文献   

18.
BackgroundCurcumin and Thymoquinone are very well-known phytochemicals for their potent anti-inflammatory and anticancer properties. The major challenges for curcumin is its poor aqueous solubility and erratic oral bioavailability.ObjectiveTo develop a novel liquid self-nanoemulsifying drug delivery system (SNEDDS) containing curcumin and thymoquinone and further converted into a solid dosage form using adsorbents Syloid® and Neusilin® as the solid carrier.MethodsThe characterization of the liquid and solid SNEDDS was performed by particle size & zeta potential analysis, scanning electron microscopy, differential scanning calorimetry, fourier transform infrared spectroscopy and X-ray powder diffraction. The drug loading, and in vitro release studies were carried out to investigate the efficiency of curcumin release from SNEDDS.ResultsThe liquid SNEDDS containing black seed oil showed excellent self-emulsification performance with transparent appearance. The results of characterization studies showed that solidification using 50% (w/w) Syloid® and Neusilin® in the liquid formulation yield free flowing powder with no agglomeration but Neusilin® produced smooth granules than Syloid® and kept the drugs stable in amorphous state. In vitro dissolution studies indicated that liquid SNEDDS formulations of F4 and its solid SNEDDS using Neusilin® provided high dissolution efficiency and reproducibility for curcumin and thymoquinone. However, Neusilin® showed higher rate of dissolution (more than 65%, p < 0.05) compared to Syloid® for curcumin.ConclusionsCurcumin loaded-SNEDDS formulation containing thymoquinone in liquid & solid dosage forms were successfully developed with an increased drug loading and dissolution rate, which could be the potential combined delivery system for various anti-inflammatory and anti-cancer treatments.  相似文献   

19.
The objective of present study was to prepare positively charged ciprofloxacin-loaded nanoparticles providing a controlled release formulation. The particles were prepared by water-in-oil-in-water (w/o/w) emulsification and solvent evaporation, followed by high-pressure homogenisation. Two non-biodegradable positively charged polymers, Eudragit RS100 and RL100, and the biodegradable polymer poly(lactic-co-glycolic acid) or PLGA were used alone or in combination, with varying ratios. The formulations were evaluated in terms of particle size and zeta potential. Differential scanning calorimetry measurements were carried out on the nanoparticles and on the pure polymers Eudragit and PLGA. Drug loading and release properties of the nanoparticles were examined. The antimicrobial activity against Pseudomonas aeruginosa and Staphylococcus aureus was determined. During solvent evaporation, the size and zeta potential of the nanoparticles did not change significantly. The mean diameter was dependent on the presence of Eudragit and on the viscosity of the organic phase. The zeta potential of all Eudragit containing nanoparticles was positive in ultrapure water (around +21/+25 mV). No burst effect but a prolonged drug release was observed from all formulations. The particles' activity against P. aeruginosa and S. aureus was comparable with an equally concentrated ciprofloxacin solution.  相似文献   

20.
陈延杰  陈卫东 《中国药业》2011,20(21):36-38
目的制备新藤黄酸固体脂质纳米粒并进行质量考察。方法采用正交试验设计优化处方,以高温乳化-低温固化的方法制备新藤黄酸固体脂质纳米粒。并对其包封率、形态等进行研究。结果所制得的新藤黄酸固体脂质纳米粒外观形态圆整,粒度分布均匀,平均粒径为163.3 nm,包封率为(60.1±1.1)%。结论高温乳化-低温固化的方法适用于新藤黄酸-固体脂质纳米粒的制备。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号