首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 639 毫秒
1.
An aqueous solution of carboxylmethylcellulose with phenolic hydroxyl groups (CMC-Ph) is gellable within 1 min via a peroxidase-catalyzed oxidative reaction under mild conditions suitable for mammalian cells. In this research, we evaluated cellular adhesion and proliferation on the resultant hydrogel, and the feasibility of the hydrogel as a substrate for cell sheet technology. Within 4 h of seeding, 76.9% of L929 fibroblast cells adhered to the gel and showed similar morphology of spreading to that on cell culture dish. Subsequently, the adherent cells proliferated on the gel and formed a confluent monolayer after 168 h of culture. From the confluent monolayer we could harvest a cell sheet after about 5 min of digestion of the gel using cellulase dissolved in medium at 5 U ml?1. The cells in the cell sheet showed well-preserved morphology similar to that shown before they were detached from the gel. In addition, the harvested cell sheet readhered and proliferated after being transferred to another culture dish. These results demonstrate that CMC-Ph gel is a good candidate material for obtaining cell sheets.  相似文献   

2.
We have developed an injectable bone cement composed of nanocrystalline apatite and crosslinked hyaluronic acid–tyramine conjugates (HA–Tyr). This bone cement was formed via the oxidative coupling of tyramine moieties catalyzed by hydrogen peroxide (H2O2) and horseradish peroxidise (HRP). The bone cement set within 60 s after H2O2 and HRP were added to the apatite/HA–Tyr pastes. The mechanical strength of the apatite/HA–Tyr cement was tuned by varying the apatite loading and H2O2 concentration. This rapid enzyme-mediated setting of our bone cement results in minimal heat release (ΔH = ?11.39 J/g) as compared to conventional bone cements. The crystalline phase and crystallite size (20 nm) of the apatitic phase in our bone cement matched that of trabecular bone. The storage modulus (G′), yield stress (σy), and compressive stiffness (Ec) of our bone cement prepared with different apatite loadings and H2O2 concentrations were measured, and optimized at G = 40 MPa, σy = 0.308 MPa and Ec = 2.270 MPa when the cement was formed with 0.4 g/ml of apatite, 0.61 units/ml of HRP and 6.8 mm of H2O2. Our biocompatible bone cement also successfully healed small bone and joint defects in mice within 8 weeks.  相似文献   

3.
This study investigates the potential of high density type I collagen gels as an injectable scaffold for tissue engineering of whole menisci, and compares these results with previous strategies using alginate as an injectable scaffold. Bovine meniscal fibrochondrocytes were mixed with collagen and injected into micro-computed tomography-based molds to create 10 and 20 mg ml?1 menisci that were cultured for up to 4 weeks and compared with cultured alginate menisci. Contraction, histological, confocal microscopy, biochemical and mechanical analysis were performed to determine tissue development. After 4 weeks culture, collagen menisci had preserved their shape and significantly improved their biochemical and mechanical properties. Both 10 and 20 mg ml?1 menisci maintained their DNA content while significantly improving the glycosaminoglycan and collagen content, at values significantly higher than the alginate controls. Collagen menisci matched the alginate control in terms of the equilibrium modulus, and developed a 3- to 6-fold higher tensile modulus than alginate by 4 weeks. Further fibrochondrocytes were able to reorganize the collagen gels into a more fibrous appearance similar to native menisci.  相似文献   

4.
Calcium-alginate hydrogel has been widely studied as a material for cell encapsulation for tissue engineering. At present, the effect that cells have on the degradation of alginate hydrogel is largely unknown. We have shown that fibroblasts encapsulated at a density of 7.5 × 105 cells ml?1 in both 2% and 5% w/v alginate remain viable for at least 60 days. Rheological analysis was used to study how the mechanical properties exhibited by alginate hydrogel changed during 28 days in vitro culture. Alginate degradation was shown to occur throughout the study but was greatest within the first 7 days of culture for all samples, which correlated with a sharp release of calcium ions from the construct. Fibroblasts were shown to increase the rate of degradation during the first 7 days when compared with acellular samples in both 2% and 5% w/v gels, but after 28 days both acellular and cell-encapsulating samples retained disc-shaped morphologies and gel-like spectra. The results demonstrate that although at an early stage cells influence the mechanical properties of encapsulating alginate, over a longer period of culture, the hydrogels retain sufficient mechanical integrity to exhibit gel-like properties. This allows sustained immobilization of the cells at the desired location in vivo where they can produce extracellular matrix and growth factors to expedite the healing process.  相似文献   

5.
Calcium hydroxide (Ca(OH)2) has been broadly used in endodontics, including apexification to obtain apical closure by mineralization. However, the detailed mechanism of mineralization induced by Ca(OH)2 is still unclear. This study focuses on the function of calcium and hydroxyl ions which dissociate from Ca(OH)2 during the mineralization process. Though primary osteoblasts cultured in the medium without or with 0.025 mg ml?1 Ca(OH)2 did not show mineralization, they did exhibit mineralization when they were cultured with a higher concentration of Ca(OH)2 (0.25 mg ml?1). Mineralization induced in the presence of 0.25 mg ml?1 Ca(OH)2 was greater at pH 7.4 than at pH 8.5. The high mineralization activity observed under neutral conditions was caused by the prolonged activation of p38 and JNK. Hydroxyl ions did not have any effect on the mineralization. The results demonstrate that calcium ions dissociated from Ca(OH)2 are critical for inducing the mineralization of osteoblasts.  相似文献   

6.
Liver targeted micelles were successfully constructed via self-assembly of glycyrrhetinic acid (GA)-modified poly(ethylene glycol)–b-poly(γ-benzyl l-glutamate) (GA–PEG–PBLG) block co-polymers, which were fabricated via ring opening polymerization of γ-benzyl l-glutamate N-carboxyanhydride monomer initiated by GA-modified PEG. The in vivo biodistribution and the in vitro cellular uptake of these micelles were investigated. The results showed that the relative uptake of doxorubicin (DOX)-loaded micelles (DOX/GA–PEG–PBLG) in liver was much higher than in other tissues, and the resulting DOX concentration in liver was about 2.2-fold higher than that from the micelles without modification by GA. Moreover, the cellular uptake study demonstrated that the introduction of GA to the micelles could significantly increase the affinity for human hepatic carcinoma 7703 cells, which induced a 3.7-fold higher endocytosis than unmodified ones. The cytotoxicity of DOX/GA–PEG–PBLG micelles (IC50 47 ng ml?1) was much higher than that of free DOX (IC50 90 ng ml?1). These results indicate that GA-modified micelles have great potential in liver targeting therapy.  相似文献   

7.
Polychlorinated biphenyls (PCBs) are environmental toxicants, which affect male fertility by altering the androgen and estrogen levels. PCB-induced toxic manifestations are associated with the production of reactive oxygen species. Vitamin E (α-tocopherol) is a major lipophilic chain breaking antioxidant, which protects polyunsaturated fatty acids in tissues against peroxidation, a property that could be beneficial in the male reproductive biology. The purpose of this study was to determine the impact of α-tocopherol on PCB (Aroclor 1254)-induced changes in androgen receptor (AR) and estrogen receptors (ERs) expression in Wistar rat ventral prostate. Rats were divided into 3 groups of 6 animals each. Group I rats were administered corn oil (vehicle) intraperitoneally (i.p.); Group II rats were treated with 2 mg kg?1 day?1 of PCB (i.p.); Group III rats were treated with 2 mg kg?1 day?1 of PCB (i.p.) along with simultaneous oral supplementation of 50 mg kg?1 day?1 of α-tocopherol. Serum testosterone and estradiol titers were assayed. Prostatic acid phosphatase activity (PAcP), citric acid concentration, generation of hydrogen peroxide (H2O2) and lipid peroxides (LPO) were estimated. mRNA and protein expression of AR, ER-α and ER-β in ventral prostate were quantified. Serum testosterone, estradiol, PAcP, citric acid levels, AR and ER-α expressions were significantly decreased while H2O2 generation, LPO, ER-β were increased in PCB-exposed animals. Simultaneous supplementation of α-tocopherol in PCB-exposed rats resulted in significant restoration of all the parameters to the control. The results suggest that α-tocopherol has definite protective effect against PCB-induced toxicity in ventral prostatic dysfunction.  相似文献   

8.
Microcapsules with a single, spherical hollow core less than 150 μm in diameter were developed to obtain multicellular spheroids with well-defined sizes of less than 150 μm in diameter. An aqueous solution of phenolic hydroxyl derivative of carboxymethylcellulose (CMC-Ph) containing human hepatoma cell line (HepG2) cells and horse radish peroxidase (HRP) was injected into a coflowing stream of liquid paraffin, containing H2O2, resulting in cell-enclosing CMC-Ph microparticles, 135 μm in diameter, via a peroxidase-catalyzed crosslinking reaction. The CMC-Ph microparticles were then coated with a phenolic hydroxyl derivative of alginate (Alg-Ph) gel membrane several dozen micrometers in thickness, crosslinked via the same enzymatic reaction process, followed by further crosslinking between the carboxyl groups of alginate by Sr2+. A hollow core structure was achieved by immersing the resultant microcapsules in a medium containing cellulase, which degrades the enclosed CMC-Ph microparticles. The HepG2 cells in the microcapsules then grew and completely filled the hollow core. Multicellular spheroids the same size as the CMC-Ph microparticles, with living cells at their outer surface, were collected within 1 min by soaking them in a medium containing alginate lyase to degrade the Alg-Ph gel microcapsule membrane.  相似文献   

9.
Recombinant human BMP-2 (rhBMP-2) was immobilized non-covalently and covalently as a monolayer on plasma vapour deposited (PVD) porous commercially pure titanium surfaces in amounts of 5–8 μg cm?2, providing a ca. 10-fold increase vs. previously reported values [37]. Dissociation of the immobilized [125I]rhBMP-2 from the surface occurred in a two-phase exponential decay: a first rapid phase (ca. 15% of immobilized BMP-2) with a half-life of 1–2 days and a second slow sustained release phase (ca. 85% of immobilized BMP-2) with a half-life of 40–60 days. Dissociation rate constants of sustained release of k?1 = 1.3–1.9 × 10?7 s?1 were determined, allowing an estimation of the binding constants (KA) for the adsorbed rhBMP-2 monolayer, to be around 1012 M?1. The rhBMP-2-coated surfaces showed a high level of biological activity, as demonstrated by in vitro epifluorescence tests for alkaline phosphatase with MC3T3-E1 cells and in vivo experiments. In vivo osteoinductivity of rhBMP-2-coated implants was investigated in a gap-healing model in the trabecular bone of the distal femur condylus of sheep. Healing occurred without inflammation or capsule formation. The calculated concentration of released rhBMP-2 in the 1 mm gap ranged from 20 to 98 nM – well above the half-maximal response concentration (K0.5) for inducing alkaline phosphatase in MC3T3-E1 cells. After 4, 9 and 12 weeks the bone density (BD) and bone-to-implant contact (BIC) of the explanted implants were assessed histomorphometrically. Implants with immobilized rhBMP-2 displayed a significant (2- to 4-fold) increase in BD and BIC values vs. negative controls after 4–9 weeks. Integration of implants by trabecular bone was achieved after 4 weeks, indicating a mean “gap-filling rate” of ~250 μm week?1. Integration of implants by cortical bone was observed after 9 weeks. Control implants without rhBMP-2 were not osseointegrated. This study demonstrates the feasibility of enhancing peri-implant osseointegration and gap bridging by immobilized rhBMP-2 on implant surfaces which may serve as a model for future clinical applications.  相似文献   

10.
We report here the in vitro cytotoxicity of mesoporous silicon (PSi) microparticles on the Caco-2 cells as a function of particle size fractions (1.2–75 μm), particle concentration (0.2–4 mg ml?1) and incubation times (3, 11 and 24 h). The particle size (smaller PSi particles showed higher cytotoxicity) and the surface chemistry treatment of the PSi microparticles were considered to be the key factors regarding the toxicity aspects. These effects were significant after the 11 and 24 h exposure times, and were explained by cell–particle interactions involving mitochondrial disruption resulting from ATP depletion and reactive oxygen species production induced by the PSi surface. These events further induced an increase in cell apoptosis and consequent cell damage and cell death in a dose-dependent manner and as a function of the PSi particle size. These effects were, however, less pronounced with thermally oxidized PSi particles. Under the experimental conditions tested and at particle sizes >25 μm, the non-toxic threshold concentration for thermally hydrocarbonized and carbonized PSi particles was <2 mg ml?1, and for thermally oxidized PSi microparticles was <4 mg ml?1.  相似文献   

11.
Mesoporous bioactive glass scaffolds (MBG_Scs), based on 80% SiO2–15% CaO–5% P2O5 (in mol.%) mesoporous sol–gel glasses substituted with Ce2O3, Ga2O3 (both 0.2% or 1.0%) and ZnO (0.4% or 2.0%), were synthesized by combination of evaporation-induced self-assembly and rapid prototyping techniques. Cerium, gallium and zinc trace elements were selected because of their inherent beneficial biological properties. Fabricated scaffolds were characterized and compared with unsubstituted scaffold (B_Sc). All of them contained well interconnected ultralarge pores (pores >400 μm) ideal for vascular ingrowth and proliferation of cells. Macropores of size 100–400 μm were present inside the scaffolds. In addition, low-angle X-ray diffraction showed that B_Sc and scaffolds with substituent contents up to 0.4% exhibited ordered mesoporosity useful for hosting molecules with biological activity. The textural properties of B_Sc were a surface area of 398 m2 g?1, a pore diameter of 4.3 nm and a pore volume of 0.43 cm3 g?1. A slight decrease in surface area and pore volume was observed upon substitution with no distinct effect on pore diameter. In addition, all the MBG_Scs except 2.0% ZnO_Sc showed quite quick in vitro bioactive response. Hence, the present study is a positive addition to ongoing research into preparing bone tissue engineering scaffolds from bioceramics containing elements of therapeutic significance.  相似文献   

12.
Ninety 1-day old broiler chicks of mixed gender (as hatched) procured from a local hatchery were randomly divided into five equal groups. All the treatments were given through crop tubing. Groups 1–4 received cypermethrin (CY) (600 mg kg?1 b. wt.) daily for 30 days. In addition to CY (group 1), groups 2–4 received Vit E (150 mg kg?1 b. wt.), Se (0.25 mg kg?1 b. wt.), and Vit E (150 mg kg?1 b. wt.)+Se (0.25 mg kg?1 b. wt.), respectively. Group 5 served as control andreceived normal saline (2 ml kg?1 b. wt.) for 30 days. Randomly selected six broiler chicks from each group were slaughtered at experimental days 10, 20 and 30 for the collection of serum/plasma and morbid tissues. Absolute organ weights were recorded. Total plasma proteins, fibrinogen and creatinine were significantly (P<0.05) increased while alkaline phosphatase (ALP), lactate dehydrogenase (LDH) and urea decreased significantly (P<0.05) in CY-treated group when compared with the control group. Kidneys were swollen grossly in treated broiler chicks. In liver, necrosis of hepatocytes, cytoplasmic vacuolation, bile duct hyperplasia and mononuclear cellular infiltration were observed. In kidneys, necrosis of tubular epithelial cells, cytoplasmic vacuolation, cellular infiltration and atrophy of glomeruli were observed. Sub-arachnoid space was much dilated in CY-treated broiler chicks. It can be concluded that CY induces biochemical and histopathological alterations in broilers chicks; however, these toxic effects can be ameliorated by Vit E or Se. Combination of Vit E and Se was more effective in ameliorating toxic effects of cypermethrin in broilers chicks.  相似文献   

13.
This study was carried out to investigate the preventive effects of galactoglucomannan (GGM), a homogeneous polysaccharide from Dendrobium huoshanense, on liver injury and fibrosis induced by sodium selenite. Sprague–Dawley rats injected subcutaneously with sodium selenite at the dosage of 3.28 mg kg?1 b. wt. were set as the model groups. Rats treated with sodium selenite at the dosage of 3.28 mg kg?1 b. wt. and GGM at 50–200 mg kg?1 b. wt. were set as the prevention groups. Biochemical and histological analysis showed that GGM significantly ameliorated selenite-induced liver injury and fibrosis in rats. Oral administration of GGM effectively attenuated the toxicity of selenite to liver tissue, which was judged both by the decreased activities of serum hepatic enzymes, including alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH), and by liver histopathological examination. Meanwhile, GGM also reduced the levels of H2O2 and malondialdehyde (MDA), elevated the levels of GSH, restored the fluidity of hepatic plasma membrane, and retained the activities of endogenous enzymes including superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST). The prevention of selenite-induced liver injury and fibrosis by GGM was further supported by the reduced expression of transforming growth factor-β1 (TGF-β1) and type I collagen. These results suggested that GGM may be developed into a novel antifibrotic agent for the prevention of liver injury and fibrosis.  相似文献   

14.
15.
Iron-based materials could constitute an interesting option for cardiovascular biodegradable stent applications due to their superior ductility compared to their counterparts – magnesium alloys. Since the predicted degradation rate of pure iron is considered slow, manganese (35% w/w), an alloying element for iron, was explored to counteract this problem through the powder metallurgy process (Fe–35 Mn). However, manganese presents a high cytotoxic potential; thus its effect on cells must first be established. Here, we established the gene expression profile of mouse 3T3 fibroblasts exposed to Fe–35 Mn degradation products in order to better understand cell response to potentially cytotoxic degradable metallic material (DMM). Mouse 3T3 cells were exposed to degradation products eluting through tissue culture insert filter (3 μm pore size) containing cytostatic amounts of 3.25 mg ml?1 of Fe–35 Mn powder, 0.25 mg ml?1 of pure Mn powder or 5 mg ml?1 of pure iron powder for 24 h. We then conducted a gene expression profiling study from these cells. Exposure of 3T3 cells to Fe–35 Mn was associated with the up-regulation of 75 genes and down-regulation of 59 genes, while 126 were up-regulated and 76 down-regulated genes in the presence of manganese. No genes were found regulated for the iron powder. When comparing the GEP of 3T3 fibroblasts in the presence of Fe–35 Mn and Mn, 68 up-regulated and 54 down-regulated genes were common. These results were confirmed by quantitative RT-PCR for a subset of these genes. This GEP study could provide clues about the mechanism behind degradation products effects on cells of the Fe–35 Mn alloy and may help in the appraisal of its potential for DMM applications.  相似文献   

16.
17.
Commonly, to determine osteoclastic resorption of biomaterials only the resorbed area is measured. The depth of the resorption pit, however, may also be important for the performance of a material. To generate such data we used two calcium phosphate ceramics (Ca10 and Ca2). The solubility of the materials was determined according to DIN EN ISO 10993-14. They were scanned three-dimensionally using infinite focus microscopy and subsequently cultivated for 4 weeks in simulated body fluid without (control) or with human osteoclasts. After this cultivation period osteoclasts number was determined and surface changes were evaluated two- and three-dimensionally. Ca10 and Ca2 showed solubilities of 11.0 ± 0.5 and 23.0 ± 2.2 mg g?1, respectively. Both materials induced a significant increase in osteoclast number. While Ca10 did not show osteoclastic resorption, Ca2 showed an increased pit area and pit volume due to osteoclastic action. This was caused by an increased average pit depth and an increased number of pits, while the average area of single pits did not change significantly. The deduced volumetric osteoclastic resorption rate (vORR) of Ca2 (0.01–0.02 μm3 μm?2 day?1) was lower than the remodelling speed observed in vivo (0.08 μm3 μm?2 day?1), which is in line with the observation that implanted resorbable materials remain in the body longer than originally expected. Determination of volumetric indices of osteoclastic resorption might be valuable in obtaining additional information about cellular resorption of bone substitute materials. This may help facilitate the development of novel materials for bone substitution.  相似文献   

18.
A polymeric crosslinker was developed to promote the formation of cellular spheroids. Our approach was based on the crosslinking of cell membrane using a polymeric crosslinker that worked via hydrophobic interaction. The crosslinker, a poly(ethylene glycol) derivative with oleyl groups as a hydrophobic group at both ends, was synthesized and characterized by gel permeation chromatography and Fourier-transform infrared spectroscopy. Cell culture experiments were then performed to confirm spheroid formation. The rat pancreatic islet β-cell line RIN, which possesses the ability to secrete insulin, was cultured with the crosslinker in a round-bottomed 96-well plate. The formation of a spheroid was achieved when the crosslinker was added to the cell suspension, especially in the absence of serum. The size of the spheroid decreased with time and with increasing crosslinker concentration, and depended on the number of cells plated in each well. The number of cells cultured with crosslinker was almost constant during 7 days and hardly proliferated in crosslinker concentrations of 0–2.5 mg ml?1, while the number of cells showed a decrease in the 25 mg ml?1 crosslinker concentration. It was shown that the insulin protein secretion in the spheroid cultured with crosslinker for 1 week was enhanced. The cell adhesion protein E-cadherin mRNA expression of the resulting spheroid was also enhanced. These results indicate that the promoted cell function was due to the cell–cell and cell–matrix interactions in the spheroid, suggesting that this polymeric crosslinker was useful for the formation of cell spheroids.  相似文献   

19.
Elastin breakdown in vascular aneurysms is mediated by cytokines such as tumor necrosis factor α (TNF-α, which induces vascular smooth muscle cell (SMC) activation and regulates their deposition of matrix. We previously demonstrated that exogenous supplementation with TGF-β1 (1 ng ml?1) and hyaluronan oligomers (0.786 kDa, 0.2 μg ml?1) cues the upregulation of elastin matrix synthesis by healthy cultured SMCs. Here, we determine whether these cues likewise enhance elastin matrix synthesis and assembly by TNF-α-stimulated SMCs, while restoring their healthy phenotype. Adult rat aortic SMCs were treated with TNF-α alone or together with TGF-β1/hyaluronan oligomeric cues and the release of inflammatory markers were monitored during over a 21 day culture. Biochemical analysis was used to quantify cell proliferation, matrix protein synthesis and cross-linking efficiency, while immunofluorescence and electron microscopy were used to analyze the elastin matrix quality. It was observed that SMC activation with TNF-α (10 ng ml?1) induced matrix calcification and promoted production of elastolytic MMP-2 and MMP-9. However, these effects were attenuated by the addition of TGF-β1 and HA oligomer cues to TNF-α-stimulated cultures, which also enhanced tropoelastin and collagen production, improved elastin matrix yield and cross-linking, promoted elastin fiber formation and suppressed elastase activity, although the release of MMP-2 and MMP-9 was not affected. Overall, the results suggest that TGF-β1 and HA oligomers are potentially useful in suppressing SMC activation and inducing regenerative elastin repair within aneurysms.  相似文献   

20.
Sterile calcium hydrogenophosphate dihydrate (DCPD) (CaHPO4·2H2O), calcium oxide and strontium carbonate powders were mixed in various liquid phases. Among these, ammonium phosphate buffer (0.75 M, pH 6.9) led to a novel strontium-containing calcium phosphate cement. At a 6/2.5/1.5 M ratio and for a liquid to powder ratio (L/P) of 0.5 ml g?1, the initial paste was fluid and remained injectable for 12 min at 25 °C. It was easily obtained by mixing sterile powders and the liquid phase using the push–pull technique, avoiding complex mixing apparatus. The cement set after 15 min at 37 °C and was hard after 1 h. The compressive strength was in the 20 MPa range, a value higher than that generally assigned to trabecular bone (5–15 MPa). This strength appeared sufficient for repairing non-loading sites or reinforcing osteoporotic vertebrae (vertebroplasty). After setting, the initial mixture formed a strontium–calcium-deficient carbonate apatite. The radio-opacity of the resulting cement was three times greater than that of cortical bone because of the presence of strontium ions, a feature that complies with the requirements for vertebroplasty. Furthermore, the cement powder remained stable and retained its properties for at least 4 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号