首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
《Acta biomaterialia》2014,10(8):3463-3474
Nucleus pulposus (NP) tissue damage can induce detrimental mechanical stresses and strains on the intervertebral disc, leading to disc degeneration. This study demonstrates the potential of a novel, photo-curable, injectable, synthetic polymer hydrogel (pHEMA-co-APMA grafted with polyamidoamine (PAA)) to encapsulate and differentiate human mesenchymal stem cells (hMSC) towards a NP phenotype under hypoxic conditions which could be used to restore NP tissue function and mechanical properties. Encapsulated hMSC cultured in media (hMSC and chondrogenic) displayed good cell viability up to day 14. The genotoxicity effects of ultraviolet (UV) on hMSC activity confirmed the acceptability of 2.5 min of UV light exposure to cells. Cytotoxicity investigations revealed that hMSC cultured in media containing p(HEMA-co-APMA) grafted with PAA degradation product (10% and 20% v/v concentration) for 14 days significantly decreased the initial hMSC adhesion ability and proliferation rate from 24 hrs to day 14. Successful differentiation of encapsulated hMSC within hydrogels towards chondrogenesis was observed with elevated expression levels of aggrecan and collagen II when cultured in chondrogenic media under hypoxic conditions, in comparison with culture in hMSC media for 14 days. Characterization of the mechanical properties revealed a significant decrease in stiffness and modulus values of cellular hydrogels in comparison with acellular hydrogels at both day 7 and day 14. These results demonstrate the potential use of an in vivo photo-curable injectable, synthetic hydrogel with encapsulated hMSC for application in the repair and regeneration of NP tissue.  相似文献   

2.
Collagen (Col) hydrogels have poor physicochemical and mechanical properties and are susceptible to substantial shrinkage during cell culture, which limits their potential applications in hard tissue engineering. Here, we developed novel nanocomposite hydrogels made of collagen and mesoporous bioactive glass nanoparticles (mBGns) with surface amination, and addressed the effects of mBGn addition (Col:mBG = 2:1, 1:1 and 1:2) and its surface amination on the physicochemical and mechanical properties of the hydrogels. The amination of mBGn was shown to enable chemical bonding with collagen molecules. As a result, the nanocomposite hydrogels exhibited a significantly improved physicochemical and mechanical stability. The hydrolytic and enzymatic degradation of the Col–mBGn hydrogels were slowed down due to the incorporation of mBGn and its surface amination. The mechanical properties of the hydrogels, specifically the resistance to loading as well as the stiffness, significantly increased with the addition of mBGn and its aminated form, as assessed by a dynamic mechanical analysis. Mesenchymal stem cells cultivated within the Col–mBGn hydrogels were highly viable, with enhanced cytoskeletal extensions, due to the addition of surface aminated mBGn. While the Col hydrogel showed extensive shrinkage (down to ~20% of initial size) during a few days of culture, the shrinkage of the mBGn-added hydrogel was substantially reduced, and the aminated mBGn-added hydrogel had no observable shrinkage over 21 days. Results demonstrated the effective roles of aminated mBGn in significantly improving the physicochemical and mechanical properties of Col hydrogel, which are ultimately favorable for applications in stem cell culture for bone tissue engineering.  相似文献   

3.
This study investigates the potential of high density type I collagen gels as an injectable scaffold for tissue engineering of whole menisci, and compares these results with previous strategies using alginate as an injectable scaffold. Bovine meniscal fibrochondrocytes were mixed with collagen and injected into micro-computed tomography-based molds to create 10 and 20 mg ml?1 menisci that were cultured for up to 4 weeks and compared with cultured alginate menisci. Contraction, histological, confocal microscopy, biochemical and mechanical analysis were performed to determine tissue development. After 4 weeks culture, collagen menisci had preserved their shape and significantly improved their biochemical and mechanical properties. Both 10 and 20 mg ml?1 menisci maintained their DNA content while significantly improving the glycosaminoglycan and collagen content, at values significantly higher than the alginate controls. Collagen menisci matched the alginate control in terms of the equilibrium modulus, and developed a 3- to 6-fold higher tensile modulus than alginate by 4 weeks. Further fibrochondrocytes were able to reorganize the collagen gels into a more fibrous appearance similar to native menisci.  相似文献   

4.
An aqueous solution of alginate possessing phenolic hydroxyl (Alg-Ph) groups is gellable via a horseradish peroxidase (HRP)-catalyzed oxidative crosslinking reaction between Ph groups, consuming H2O2 as an electron acceptor. This study evaluates the effect of H2O2 and HRP concentrations on cellular adhesiveness and proliferation on the resultant enzymatically crosslinked Alg-Ph gels. After 4 h of seeding, 81.1% of L929 fibroblast cells adhere to an Alg-Ph hydrogel prepared with 1 U ml?1 HRP and 1 mM H2O2. Increasing the concentration of H2O2 to 15 mM decreases the percentage of adhering cells to 28.4%. The cellular adhesion at this H2O2 concentration is increased to 82.6% by increasing the HRP concentration to 10 U ml?1. The cells adhering to the Alg-Ph hydrogels with higher cellular adhesiveness establish a confluent monolayer during 168 h of culture. A cell sheet can then be harvested within 5 min of immersion in a medium containing alginate lyase at 1.0 mg ml?1. The harvested cell sheet re-adhere, and the cells contained in the sheet proliferate after being transferred to another cell culture dish.  相似文献   

5.
Mg–4 wt.% Zn–0.5 wt.% Zr (ZK40) alloy was studied as a candidate material for biodegradable metallic implants in terms of its biocorrosion resistance, mechanical properties and cytocompatibility. The corrosion characteristics of ZK40 alloy were assessed by potentiodynamic polarization and immersion testing in DMEM + 10% FBS solution. Analysis of the degradation characteristics by potentiodynamic polarization measurements shows the corrosion rates of ZK40 alloy in as-cast and solution treatment (T4) condition were slightly higher than those of pure Mg or as-drawn AZ31. Determination of the corrosion rate by the weight loss technique reveals that the as-cast ZK40 resulted in slower degradation than other alloy specimens after 7 days of immersion but exhibited accelerated degradation after 14 and 21 days, respectively. T4-treated ZK40 exhibited stable degradation rates compared to as-cast ZK40 and close to those of pure Mg and AZ31 during immersion testing for 14 and 21 days. In order to examine the in vitro cytocompatibility of ZK40 alloy, live/dead cell viability assay and indirect MTT assay were performed using a murine osteoblast-like cell line (MC3T3). After 3 days of direct culture of MC3T3 on ZK40 alloys the live/dead assay indicated favorable cell viability and attachment. The degradation product of ZK40 also showed minimal cytotoxicity when assessed in indirect MTT assay. The mechanical properties of the as-cast and T4-treated ZK40 alloy were superior to those of pure Mg and comparable to as-drawn AZ31. Solution treatment did not significantly enhance the cytocompatibility and mechanical properties of ZK40 alloy. Overall, the ZK40 alloy exhibited favorable cytocompatibility, biocorrosion, and mechanical properties rendering it a potential candidate for degradable implant applications.  相似文献   

6.
Mesenchymal stromal cells residing in proteolytically responsive hydrogel scaffolds were subjected to changes in mechanical properties associated with their own three-dimensional (3-D) morphogenesis. In order to investigate this relationship the current study documents the transient degradation and restructuring of fibroblasts seeded in hydrogel scaffolds undergoing active cell-mediated reorganization over 7 days in culture. A semi-synthetic proteolytically degradable polyethylene glycol–fibrinogen (PF) hydrogel matrix and neonatal human dermal fibroblasts (NHDF) were used. Rheology (in situ and ex situ) measured stiffening of the gels and confocal laser scanning microscopy (CLSM) measured cell morphogenesis within the gels. The assumption that the matrix modulus systematically decreases as cells locally begin to enzymatically disassemble the PF hydrogel to become spindled in the material was not supported by the bulk mechanical property measurements. Instead, the PF hydrogels exhibited cell-mediated stiffening concurrent with their dynamic morphogenesis, as indicated by a four-fold increase in storage modulus after 1 week in culture. Fibrin hydrogels, which were used as the control biomaterial, proved similarly adaptive to cell-mediated remodeling only in the presence of the exogenous serine protease inhibitor aprotinin. Acellular and non-viable hydrogels also served as control groups to verify that transient matrix remodeling was entirely associated with cell-mediated events, including collagen deposition, cell-mediated proteolysis, and the formation of multicellular networks within the hydrogel constructs. The fact that cell network formation and collagen deposition both paralleled transient stiffening of the PF hydrogels, further reinforces the notion that cells actively balance between proteolysis and ECM synthesis when remodeling proteolytically responsive hydrogel scaffolds.  相似文献   

7.
Injectable hydrogels based on hyaluronic acid (HA) and poly(ethylene glycol) (PEG) were designed as biodegradable matrices for cartilage tissue engineering. Solutions of HA conjugates containing thiol functional groups (HA-SH) and PEG vinylsulfone (PEG-VS) macromers were cross-linked via Michael addition to form a three-dimensional network under physiological conditions. Gelation times varied from 14 min to less than 1 min, depending on the molecular weights of HA-SH and PEG-VS, degree of substitution (DS) of HA-SH and total polymer concentration. When the polymer concentration was increased from 2% to 6% (w/v) in the presence of 100 U ml?1 hyaluronidase the degradation time increased from 3 to 15 days. Hydrogels with a homogeneous distribution of cells were obtained when chondrocytes were mixed with the precursor solutions. Culturing cell–hydrogel constructs prepared from HA185k-SH with a DS of 28 and cross-linked with PEG5k-4VS for 3 weeks in vitro revealed that the cells were viable and that cell division took place. Gel–cell matrices degraded in approximately 3 weeks, as shown by a significant decrease in dry gel mass. At day 21 glycosaminoglycans and collagen type II were found to have accumulated in hydrogels. These results indicate that these injectable hydrogels have a high potential for cartilage tissue engineering.  相似文献   

8.
In order to produce hydrogel cell culture substrates that are fit for the purpose, it is important that the mechanical properties are well understood not only at the point of cell seeding but throughout the culture period. In this study the change in the mechanical properties of three biopolymer hydrogels alginate, low methoxy pectin and gellan gum have been assessed in cell culture conditions. Samples of the gels were prepared encapsulating rat bone marrow stromal cells which were then cultured in osteogenic media. Acellular samples were also prepared and incubated in standard cell culture media. The rheological properties of the gels were measured over a culture period of 28 days and it was found that the gels degraded at very different rates. The degradation occurred most rapidly in the order alginate > Low methoxy pectin > gellan gum. The ability of each hydrogel to support differentiation of bone marrow stromal cells to osteoblasts was also verified by evidence of mineral deposits in all three of the materials. These results highlight that the mechanical properties of biopolymer hydrogels can vary greatly during in vitro culture, and provide the potential of selecting hydrogel cell culture substrates with mechanical properties that are tissue specific.  相似文献   

9.
An aqueous solution of carboxylmethylcellulose with phenolic hydroxyl groups (CMC-Ph) is gellable within 1 min via a peroxidase-catalyzed oxidative reaction under mild conditions suitable for mammalian cells. In this research, we evaluated cellular adhesion and proliferation on the resultant hydrogel, and the feasibility of the hydrogel as a substrate for cell sheet technology. Within 4 h of seeding, 76.9% of L929 fibroblast cells adhered to the gel and showed similar morphology of spreading to that on cell culture dish. Subsequently, the adherent cells proliferated on the gel and formed a confluent monolayer after 168 h of culture. From the confluent monolayer we could harvest a cell sheet after about 5 min of digestion of the gel using cellulase dissolved in medium at 5 U ml?1. The cells in the cell sheet showed well-preserved morphology similar to that shown before they were detached from the gel. In addition, the harvested cell sheet readhered and proliferated after being transferred to another culture dish. These results demonstrate that CMC-Ph gel is a good candidate material for obtaining cell sheets.  相似文献   

10.
In this study, an injectable calcium silicate (CS)/sodium alginate (SA) hybrid hydrogel was prepared using a novel material composition design. CS was incorporated into an alginate solution and internal in situ gelling was induced by the calcium ions directly released from CS with the addition of d-gluconic acid δ-lactone (GDL). The gelling time could be controlled, from about 30 s to 10 min, by varying the amounts of CS and GDL added. The mechanical properties of the hydrogels with different amounts of CS and GDL were systematically analyzed. The compressive strength of 5% CS/SA hydrogels was higher than that of 10% CS/SA for the same amount of GDL. The swelling behaviors of 5% CS/SA hydrogels with different contents of GDL were therefore investigated. The swelling ratios of the hydrogels decreased with increasing GDL, and 5% CS/SA hydrogel with 1% GDL swelled by only less than 5%. Scanning electron microscopy (SEM) observation of the scaffolds showed an optimal interconnected porous structure, with the pore size ranging between 50 and 200 μm. Fourier transform infrared spectroscopy and SEM showed that the CS/SA composite hydrogel induced the formation of hydroxyapatite on the surface of the materials in simulated body fluid. In addition, rat bone mesenchymal stem cells (rtBMSCs) cultured in the presence of hydrogels and their ionic extracts were able to maintain the viability and proliferation. Furthermore, the CS/SA composite hydrogel and its ionic extracts stimulated rtBMSCs to produce alkaline phosphatase, and its ionic extracts could also promote angiogenesis of human umbilical vein endothelial cells. Overall, all these results indicate that the CS/SA composite hydrogel efficiently supported the adhesion, proliferation and differentiation of osteogenic and angiogenic cells. Together with its porous three-dimensional structure and injectable properties, CS/SA composite hydrogel possesses great potential for bone regeneration and tissue engineering applications.  相似文献   

11.
A poly(vinyl alcohol) (PVA) hydrogel composite scaffold containing N,O-carboxymethylated chitosan (NOCC) was tested to assess its potential as a scaffold for cartilage tissue engineering in a weight-bearing environment. The mechanical properties under unconfined compression for different hydration periods were investigated. The effect of supplementing PVA with NOCC (20 wt.% PVA:5 vol.% NOCC) produced a porosity of 43.3% and this was compared against a non-porous PVA hydrogel (20 g PVA: 100 ml of water, control). Under non-hydrated conditions, the porous PVA–NOCC hydrogel behaved in a similar way to the control non-porous PVA hydrogel, with similar non-linear stress–strain response under unconfined compression (0–30% strain). After 7 days’ hydration, the porous hydrogel demonstrated a reduced stiffness (0.002 kPa, at 25% strain), resulting in a more linear stiffness relationship over a range of 0–30% strain. Poisson’s ratio for the hydrated non-porous and porous hydrogels ranged between 0.73 and 1.18, and 0.76 and 1.33, respectively, suggesting a greater fluid flow when loaded. The stress relaxation function for the porous hydrogel was affected by the hydration period (from 0 to 600 s); however the percentage stress relaxation regained by about 95%, after 1200 s for all hydration periods assessed. No significant differences were found between the different hydration periods between the porous hydrogels and control. The calculated aggregate modulus, HA, for the porous hydrogel reduced drastically from 10.99 kPa in its non-hydrated state to about 0.001 kPa after 7 days’ hydration, with the calculated shear modulus reducing from 30.92 to 0.14 kPa, respectively. The porous PVA–NOCC hydrogel conformed to a biphasic, viscoelastic model, which has the desired properties required for any scaffold in cartilage tissue engineering.  相似文献   

12.
Limiting cell proliferation without reducing cell viability for in vivo tissue engineering applications is important in co-culture applications where the growth of one cell type must be inhibited to prevent overgrowth of the scaffold at the expense of another cell type. Also, it is vital for maintaining viability of cells in large constructs before vascularisation occurs. In this study we have shown by means of the Thiazolyl blue (MTT) assay and immuno-staining for proliferating cell nuclear antigen (PCNA) that encapsulating fibroblasts in 2% and 5% w/v calcium-alginate at a density of 7.5 × 105 cells/ml as uniformly dispersed entities, enabled cells to maintain viability and caused a reversible mitotic inhibition. Alginate encapsulation also caused reversible metabolic inhibition as demonstrated by the MTT assay and fluorescent staining for mitochondrial membrane potential. Histological evaluation of the alginate constructs containing fibroblasts showed that mitotic and metabolic inhibition was possibly due to cell isolation during the first five weeks of culture. The alginate scaffold degraded with time releasing encapsulated fibroblasts. Upon implantation to a wound site this should ensure that encapsulated cells are able to replace the damaged tissue after sufficient proliferation of the co-cultured cell type or sufficient vascularisation of the construct.  相似文献   

13.
Soft hydrogels with elasticity modulus values lower than 100 kPa that are tough and biodegradable are of great interest in medicine and in tissue engineering applications. We have developed a series of soft hydrogel structures from different methacrylate-functionalized triblock copolymers of poly(ethylene glycol) (PEG) with poly(trimethylene carbonate) (PTMC) by photo-crosslinking aqueous solutions of the macromonomers in 2.5 and 5 wt.% colloidal dispersions of clay nanoparticles (Laponite XLG). The length of the PTMC blocks of the macromonomers and the clay content determined the physicomechanical properties of the obtained hydrogels. While an increase in the PTMC block length in the macromonomers from 0.2 to 5 kg/mol resulted in a decrease in the gel content, the addition of 5 wt.% Laponite nanoclay to the crosslinking solution lead to very high gel contents of the hydrogels of more than 95%. The effect of PTMC block length on the mechanical properties of the hydrogels was not as pronounced, and soft gels with a compressive modulus of less than 15 kPa and toughness values of 25 kJ m?3 were obtained. However, the addition of 5 wt.% Laponite nanoclay to the formulations considerably increased the compressive modulus and resilience of the hydrogels; swollen nanocomposite networks with compressive modulus and toughness values of up to 67 kPa and 200 kJ m?3, respectively, could then be obtained. The prepared hydrogels were shown to be enzymatically degradable by cholesterol esterase and by the action of macrophages. With an increase in PTMC block length in the hydrogels, the rates of mass loss increased, while the incorporated Laponite nanoclay suppressed degradation. Nanocomposite hydrogel structures with a designed gyroid pore network architecture were prepared by stereolithography. Furthermore, in the swollen state the porous gyroid structures were mechanically stable and the pore network remained fully open and interconnected.  相似文献   

14.
A family of injectable, rapid gelling and highly flexible hydrogel composites capable of releasing insulin-like growth factor (IGF-1) and delivering mesenchymal stromal cell (MSC) were developed. Hydrogel composites were fabricated from Type I collagen, chondroitin sulfate (CS) and a thermosensitive and degradable hydrogel copolymer based on N-isopropylacrylamide, acrylic acid, N-acryloxysuccinimide and a macromer poly(trimethylene carbonate)-hydroxyethyl methacrylate. The hydrogel copolymer was gellable at body temperature before degradation and soluble at body temperature after degradation. Hydrogel composites exhibited LCSTs around room temperature. They could easily be injected through a 26-gauge needle at 4 °C, and were capable of gelling within 6 s at 37 °C to form highly flexible gels with moduli matching those of the rat and human myocardium. The hydrogel composites showed good oxygen permeability; the oxygen pressure within the hydrogel composites was similar to that in the air. The effects of collagen and CS contents on LCST, gelation time, injectability, mechanical properties and degradation properties were investigated. IGF-1 was loaded into the hydrogel composites for enhanced cell survival/growth. The released IGF-1 remained bioactive during a 2-week release period. Small fraction of CS in the hydrogel composites significantly decreased IGF-1 release rate. The release kinetics appeared to be controlled mainly by hydrogel composite water content, degradation and interaction with IGF-1. Human MSC adhesion on the hydrogel composites was comparable to that on the tissue culture plate. MSCs were encapsulated in the hydrogel composites and were found to grow inside during a 7-day culture period. IGF-1 loading significantly accelerated MSC growth. RT-PCR analysis demonstrated that MSCs maintained their multipotent differentiation potential in hydrogel composites with and without IGF-1. These injectable and rapid gelling hydrogel composites demonstrated attractive properties for serving as growth factor and cell carriers for cardiovascular tissue engineering applications.  相似文献   

15.
《Acta biomaterialia》2014,10(5):2200-2208
The major risks of pacemaker and implantable cardioverter defibrillator extraction are attributable to the fibrotic tissue that encases them in situ, yet little is known about the cellular and functional properties of this response. In the present research, we performed a histological and mechanical analysis of human tissue collected from the lead–tissue interface to better understand this process and provide insights for the improvement of lead design and extraction. The lead–tissue interface consisted of a thin cellular layer underlying a smooth, acellular surface, followed by a circumferentially organized collagen-rich matrix. 51.8 ± 4.9% of cells were myofibroblasts via immunohistochemistry, with these cells displaying a similar circumferential organization. Upon mechanical testing, samples exhibited a triphasic force–displacement response consisting of a toe region during initial tensioning, a linear elastic region and a yield and failure region. Mean fracture load was 5.6 ± 2.1 N, and mean circumferential stress at failure was 9.5 ± 4.1 MPa. While the low cellularity and fibrotic composition of tissue observed herein is consistent with a foreign body reaction to an implanted material, the significant myofibroblast response provides a mechanical explanation for the contractile forces complicating extractions. Moreover, the tensile properties of this tissue suggest the feasibility of circumferential mechanical tissue disruption, similar to balloon angioplasty devices, as a novel approach to assist with lead extraction.  相似文献   

16.
Cellularized collagen gels are a common model in tissue engineering, but the relationship between the microstructure and bulk mechanical properties is only partially understood. Multiphoton microscopy (MPM) is an ideal non-invasive tool for examining collagen microstructure, cellularity and crosslink content in these gels. In order to identify robust image parameters that characterize microstructural determinants of the bulk elastic modulus, we performed serial MPM and mechanical tests on acellular and cellularized (normal human lung fibroblasts) collagen hydrogels, before and after glutaraldehyde crosslinking. Following gel contraction over 16 days, cellularized collagen gel content approached that of native connective tissues (~200 mg ml–1). Young’s modulus (E) measurements from acellular collagen gels (range 0.5–12 kPa) exhibited a power-law concentration dependence (range 3–9 mg ml–1) with exponents from 2.1 to 2.2, similar to other semiflexible biopolymer networks such as fibrin and actin. In contrast, cellularized collagen gel stiffness (range 0.5–27 kPa) produced concentration-dependent exponents of 0.7 uncrosslinked and 1.1 crosslinked (range ~5–200 mg ml–1). The variation in E of cellularized collagen hydrogels can be explained by a power-law dependence on robust image parameters: either the second harmonic generation (SHG) and two-photon fluorescence (TPF) (matrix component) skewness (R2 = 0.75, exponents of -1.0 and -0.6, respectively); or alternatively the SHG and TPF (matrix component) speckle contrast (R2 = 0.83, exponents of ?0.7 and ?1.8, respectively). Image parameters based on the cellular component of TPF signal did not improve the fits. The concentration dependence of E suggests enhanced stress relaxation in cellularized vs. acellular gels. SHG and TPF image skewness and speckle contrast from cellularized collagen gels can predict E by capturing mechanically relevant information on collagen fiber, cell and crosslink density.  相似文献   

17.
Injectable hydrogel allows irregular surgical defects to be completely filled, lessens the risk of implant migration, and minimizes surgical defects due to the solution–gel state transformation. Here, we first propose a method for preparing oxidized hyaluronic acid/adipic acid dihydrazide (oxi-HA/ADH) injectable hydrogel by chemical cross-linking under physiological conditions. Fourier transform infrared spectrometry and trinitrobenzene sulfonate assay were used to confirm the oxidation of hyaluronic acid. Rheological properties were measured to evaluate the working ability of the hydrogel for further clinical application. The oxi-HA/ADH in situ forming hydrogel can transform from liquid form into a gel-like matrix within 3–8 min, depending on the operational temperature. Furthermore, hydrogel degradation and cell assessment is also a concern for clinical application. Injectable oxi-HA/ADH8 hydrogel can maintain its gel-like state for at least 5 weeks with a degradation percentage of 40%. Importantly, oxi-HA/ADH8 hydrogel can assist in nucleus pulposus cell synthesis of type II collagen and aggrecan mRNA gene expression according to the results of real-time PCR analysis, and shows good biocompatibility based on cell viability and cytotoxicity assays. Based on the results of the current study, oxi-HA/ADH hydrogel may possess several advantages for future application in nucleus pulposus regeneration.  相似文献   

18.
A major barrier to the development of a clinically useful small diameter tissue engineered vascular graft (TEVG) is the scaffold component. Scaffold requirements include matching the mechanical and structural properties with those of native vessels and optimizing the microenvironment to foster cell integration, adhesion and growth. We have developed a small diameter, bilayered, biodegradable, elastomeric scaffold based on a synthetic, biodegradable elastomer. The scaffold incorporates a highly porous inner layer, allowing cell integration and growth, and an external, fibrous reinforcing layer deposited by electrospinning. Scaffold morphology and mechanical properties were assessed, quantified and compared with those of native vessels. Scaffolds were then seeded with adult stem cells using a rotational vacuum seeding device to obtain a TEVG, cultured under dynamic conditions for 7 days and evaluated for cellularity. The scaffold showed firm integration of the two polymeric layers with no delamination. Mechanical properties were physiologically consistent, showing anisotropy, an elastic modulus (1.4 ± 0.4 MPa) and an ultimate tensile stress (8.3 ± 1.7 MPa) comparable with native vessels. The compliance and suture retention forces were 4.6 ± 0.5 × 10?4 mmHg?1 and 3.4 ± 0.3 N, respectively. Seeding resulted in a rapid, uniform, bulk integration of cells, with a seeding efficiency of 92 ± 1%. The scaffolds maintained a high level of cellular density throughout dynamic culture. This approach, combining artery-like mechanical properties and a rapid and efficient cellularization, might contribute to the future clinical translation of TEVGs.  相似文献   

19.
Due to the high demand for donor corneas and their low supply, autologous corneal endothelial cell (CEC) culture and transplantation for treatment of corneal endothelial dysfunction would be highly desirable. Many studies have shown the possibility of culturing CECs in vitro, but lack potential robust substrates for transplantation into the cornea. In this study, we investigate the properties of novel ultrathin chitosan–poly(ethylene glycol) (PEG) hydrogel films (CPHFs) for corneal tissue engineering applications. Cross-linking of chitosan films with diepoxy-PEG and cystamine was employed to prepare 50 μm (hydrated) hydrogel films. Through variation of the PEG content (1.5–5.9 wt.%) it was possible to tailor the CPHFs to have tensile strains and ultimate stresses identical to or greater than those of human corneal tissue while retaining similar tensile moduli. Light transmission measurements in the visible spectrum (400–700 nm) revealed that the films were >95% optically transparent, above that of the human cornea (maximum ~90%), whilst in vitro degradation studies with lysozyme revealed that the CPHFs maintained the biodegradable characteristics of chitosan. Cell culture studies demonstrated the ability of the CPHFs to support the attachment and proliferation of sheep CECs. Ex vivo surgical trials on ovine eyes demonstrated that the CPHFs displayed excellent characteristics for physical manipulation and implantation purposes. The ultrathin CPHFs display desirable mechanical, optical and degradation properties whilst allowing attachment and proliferation of ovine CECs, and as such are attractive candidates for the regeneration and transplantation of CECs, as well as other corneal tissue engineering applications.  相似文献   

20.
An advanced manufacturing technique, selective laser sintering (SLS), was utilized to fabricate a porous polycaprolactone (PCL) scaffold designed with an automated algorithm in a parametric library system named the “computer-aided system for tissue scaffolds” (CASTS). Tensile stiffness of the sintered PCL strut was in the range of 0.43 ± 0.15 MPa when a laser power of 3 W and scanning speed of 150 in s?1 was used. A series of compressive mechanical characterizations was performed on the parametric scaffold design and an empirical formula was presented to predict the compressive stiffness of the scaffold as a function of total porosity. In this work, the porosity of the scaffold was selected to be 85%, with micropores (40–100 μm) throughout the scaffold. The compressive stiffness of the scaffold was 345 kPa. The feasibility of using the scaffold for cardiac tissue engineering was investigated by culturing C2C12 myoblast cells in vitro for 21 days. Fluorescence images showed cells were located throughout the scaffold. High density of cells at 1.2 × 106 cells ml?1 was recorded after 4 days of culture. Fusion and differentiation of C2C12 were observed as early as 6 days in vitro and was confirmed with myosin heavy chain immunostaining after 11 days of cell culture. A steady population of cells was then maintained throughout 21 days of culturing. This work demonstrated the feasibility of tailoring the mechanical property of the scaffold for soft tissue engineering using CASTS and SLS. The macroarchitecture of the scaffold can be modified efficiently to fabricate scaffolds with different macropore sizes or changing the elemental cell design in CASTS. Further process and design optimization could be carried out in the future to fabricate scaffolds that match the tensile strength of native myocardium, which is of the order of tens of kPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号