共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of anisotropic architecture on cell and tissue infiltration into tissue engineering scaffolds 总被引:4,自引:0,他引:4
Silva MM Cyster LA Barry JJ Yang XB Oreffo RO Grant DM Scotchford CA Howdle SM Shakesheff KM Rose FR 《Biomaterials》2006,27(35):5909-5917
A common phenomenon in tissue engineering is rapid tissue formation on the outer edge of the scaffold which restricts cell penetration and nutrient exchange to the scaffold centre, resulting in a necrotic core. To address this problem, we generated scaffolds with both random and anisotropic open porous architectures to enhance cell and subsequent tissue infiltration throughout the scaffold for applications in bone and cartilage engineering. Hydroxyapatite (HA) and poly(D,L-lactic acid) (P(DL)LA) scaffolds with random open porosity were manufactured, using modified slip-casting and by supercritical fluid processing respectively, and subsequently characterised. An array of porous aligned channels (400 microm) was incorporated into both scaffold types and cell (human osteoblast sarcoma, for HA scaffolds; ovine meniscal fibrochondrocytes, for P(DL)LA scaffolds) and tissue infiltration into these modified scaffolds was assessed in vitro (cell penetration) and in vivo (tissue infiltration; HA scaffolds only). Scaffolds were shown to have an extensive random, open porous structure with an average porosity of 85%. Enhanced cell and tissue penetration was observed both in vitro and in vivo demonstrating that scaffold design alone can influence cell and tissue infiltration into the centre of tissue engineering scaffolds. 相似文献
2.
An ideal tissue-engineering scaffold should provide suitable pores and appropriate pore surface to induce desired cellular activities and to guide 3D tissue regeneration. In the present work, we have developed macroporous polymer scaffolds with varying pore wall architectures from smooth (solid), microporous, partially nanofibrous, to entirely nanofibrous ones. All scaffolds are designed to have well-controlled interconnected macropores, resulting from leaching sugar sphere template. We examine the effects of material composition, solvent, and phase separation temperature on the pore surface architecture of 3D scaffolds. In particular, phase separation of PLLA/PDLLA or PLLA/PLGA blends leads to partially nanofibrous scaffolds, in which PLLA forms nanofibers and PDLLA or PLGA forms the smooth (solid) surfaces on macropore walls, respectively. Specific surface areas are measured for scaffolds with similar macroporosity but different macropore wall architectures. It is found that the pore wall architecture predominates the total surface area of the scaffolds. The surface area of a partially nanofibrous scaffold increases linearly with the PLLA content in the polymer blend. The amounts of adsorbed proteins from serum increase with the surface area of the scaffolds. These macroporous scaffolds with adjustable pore wall surface architectures may provide a platform for investigating the cellular responses to pore surface architecture, and provide us with a powerful tool to develop superior scaffolds for various tissue-engineering applications. 相似文献
3.
The repair of articular cartilage defects poses a continuing challenge. Cartilage tissue engineering through the culture of chondrocytes seeded in 3D porous scaffolds has the potential for generating constructs that repair successfully. It also provides a platform to study scaffold-cell and cell-cell interactions. The scaffold affects the growth and morphology of cells growing on it, and concomitantly, cells affect the properties of the resultant tissue construct. Silk fibroin protein from Antheraea mylitta, a non-mulberry Indian tropical tasar silkworm, is a potential biomaterial for diverse applications due to its widespread versatility as a mechanically robust, biocompatible, tissue engineering material. Analysis of silk fibroin scaffolds seeded with varying initial densities (25, 50 and 100 million cells/ml) and cultured for 2 weeks showed that thickness and wet weight increased by 60-70% for the highest cell density, and DNA, GAG and collagen content of the cartilaginous constructs increased with increasing cell density. Mechanical characterization of the constructs elucidated that the highest density constructs had compressive stiffness and modulus 4-5 times that of cell-free scaffolds. The present results indicate the importance of cell seeding density in the rapid formation of a functional cartilaginous tissue. 相似文献
4.
Perfusion culture systems have proven to be effective bioreactors for constructing tissue engineered bone in vitro, but existing circuit-based perfusion systems are complicated and costly for conditioned culture due to the large medium volume required. A compact perfusion system for artificial bone fabrication using oscillatory flow is described here. Mouse osteoblast-like MC 3T3-E1 cells were seeded at 1.5 x 10(6) cells/100 microL and cultured for 6 days in porous ceramic beta-tricalcium phosphate scaffolds (10 mm in diameter, 8 mm in height) by only 1.5 mL culture media per scaffold. The seeding efficiency, cell proliferation, distribution and viability, and promotion of early osteogenesis by both a static and an oscillatory perfusion method were evaluated. The oscillatory perfusion method generated higher seeding efficiency, alkaline phosphatase activity, and scaffold cellularity (by DNA content) after 6 days of culture. Stereomicroscopic observation of 3(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide staining and Calcein-AM/propidium iodide double staining also demonstrated homogeneous seeding, proliferation, and viability of cells throughout the scaffolds in the oscillatory perfusion system. By contrast, the static culture yielded polarized seeding and proliferation favoring the outer and upper scaffold surfaces, with only dead cells in the center of the scaffolds. Thus, these results suggest that the oscillatory flow condition not only allow a better seeding efficiency and homogeneity, but also facilitates uniform culture and early osteogenic differentiation. The oscillatory perfusion system could be a simple and effective bioreactor for bone tissue engineering. 相似文献
5.
Smooth muscle cell adhesion to tissue engineering scaffolds 总被引:4,自引:0,他引:4
Synthetic polyesters of lactic and glycolic acid, and the extracellular matrix molecule collagen are among the most widely-utilized scaffolding materials in tissue engineering. However, the mechanism of cell adhesion to these tissue engineering scaffolds has not been extensively studied. In this paper, the mechanism of adhesion of smooth muscle cells to these materials was investigated. Vitronectin was found to be the predominant matrix protein adsorbed from serum-containing medium onto polyglycolic acid, poly(lactic co-glycolic) acid, and collagen two-dimensional films and three-dimensional scaffolds. Fibronectin adsorbed to both materials as well, although to a much lower density. Smooth muscle cell adhesion was mediated through specific integrin receptors interacting with these adsorbed proteins, as evidenced by both immunostaining and blocking studies. The receptors involved in adhesion included the alpha(v)beta5 to vitronectin, the alpha5beta1 to fibronectin and the alpha2beta1 to collagen I. Identification of the specific receptors used to adhere to these polymers clarifies why smooth muscle tissue development differs on these scaffolds, and may allow one to design tissue formation by controlling the surface chemistry of tissue engineering scaffolds. 相似文献
6.
Chen Y Bloemen V Impens S Moesen M Luyten FP Schrooten J 《Tissue engineering. Part C, Methods》2011,17(12):1211-1221
Cell seeding into scaffolds plays a crucial role in the development of efficient bone tissue engineering constructs. Hence, it becomes imperative to identify the key factors that quantitatively predict reproducible and efficient seeding protocols. In this study, the optimization of a cell seeding process was investigated using design of experiments (DOE) statistical methods. Five seeding factors (cell type, scaffold type, seeding volume, seeding density, and seeding time) were selected and investigated by means of two response parameters, critically related to the cell seeding process: cell seeding efficiency (CSE) and cell-specific viability (CSV). In addition, cell spatial distribution (CSD) was analyzed by Live/Dead staining assays. Analysis identified a number of statistically significant main factor effects and interactions. Among the five seeding factors, only seeding volume and seeding time significantly affected CSE and CSV. Also, cell and scaffold type were involved in the interactions with other seeding factors. Within the investigated ranges, optimal conditions in terms of CSV and CSD were obtained when seeding cells in a regular scaffold with an excess of medium. The results of this case study contribute to a better understanding and definition of optimal process parameters for cell seeding. A DOE strategy can identify and optimize critical process variables to reduce the variability and assists in determining which variables should be carefully controlled during good manufacturing practice production to enable a clinically relevant implant. 相似文献
7.
神经组织工程运用于中枢神经损伤与疾病治疗,用以恢复病变或损伤的中枢神经系统的解剖结构与功能,神经支架材料发挥支撑与营养作用。对神经组织工程中支架材料的研究现状进行综述,并提出面临的问题及今后的研究方向。 相似文献
8.
Ng KW Tham W Lim TC Werner Hutmacher D 《Journal of biomedical materials research. Part A》2005,75(2):425-438
Cell sheets can be used to produce neo-tissue with mature extracellular matrix. However, extensive contraction of cell sheets remains a problem. We devised a technique to overcome this problem and applied it to tissue engineer a dermal construct. Human dermal fibroblasts were cultured with poly(lactic-co-glycolic acid)-collagen meshes and collagen-hyaluronic acid foams. Resulting cell sheets were folded over the scaffolds to form dermal constructs. Human keratinocytes were cultured on these dermal constructs to assess their ability to support bilayered skin regeneration. Dermal constructs produced with collagen-hyaluronic acid foams showed minimal contraction, while those with poly(lactic-co-glycolic acid)-collagen meshes curled up. Cell proliferation and metabolic activity profiles were characterized with PicoGreen and AlamarBlue assays, respectively. Fluorescent labeling showed high cell viability and F-actin expression within the constructs. Collagen deposition was detected by immunocytochemistry and electron microscopy. Transforming Growth Factor-alpha and beta1, Keratinocyte Growth Factor and Vascular Endothelial Growth Factor were produced at various stages of culture, measured by RT-PCR and ELISA. These results indicated that assimilating cell sheets with mechanically stable scaffolds could produce viable dermal-like constructs that do not contract. Repeated enzymatic treatment cycles for cell expansion is unnecessary, while the issue of poor cell seeding efficiency in scaffolds is eliminated. 相似文献
9.
Claase MB Grijpma DW Mendes SC De Bruijn JD Feijen J 《Journal of biomedical materials research. Part A》2003,64(2):291-300
The preparation, characterization, and in vitro bone marrow cell culturing on porous PEOT/PBT copolymer scaffolds are described. These scaffolds are meant for use in bone tissue engineering. Previous research has shown that PEOT/PBT copolymers showed in vivo degradation, calcification, and bone bonding. Despite this, several of these copolymers do not support bone marrow cell growth in vitro. Surface modification, such as gas-plasma treatment, is needed to improve the in vitro cell attachment. Porous structures were prepared using a freeze-drying and a salt-leaching technique, the latter one resulting in highly porous interconnected structures of large pore size. Gas-plasma treatment with CO(2) generated a surface throughout the entire structure that enabled bone marrow cells to attach. The amount of DNA was determined as a measure for the amount of cells present on the scaffolds. No significant effect of pore size on the amount of DNA present was seen for scaffolds with pore sizes between 250-1000 microm. Light microscopy data showed cells in the center of the scaffolds, more cells were observed in the scaffolds of 425-500 microm and 500-710 microm pore size compared to the ones with 250-425 microm and 710-1000 microm pores. 相似文献
10.
11.
支架材料作为组织工程的生物学植入替代物,对细胞移植与引导新组织生长有重要的作用.几丁聚糖可制成无毒性、无刺激性、生物相容性和生物可降解性良好的生物医用材料,在人工皮肤、骨修复材料、手术缝线等方面已广泛应用.本文分析了纯几丁聚糖支架结构和它与其他天然或合成材料复合后的支架结构的物理、化学性质及其独特的生物学功能,同时还进一步介绍了其应用的范例并探讨了发展前景. 相似文献
12.
The extracellular matrix (ECM) plays important roles in influencing cellular behavior such as attachment, differentiation, and proliferation. However, in conventional culture and tissue engineering strategies, single proteins are frequently utilized, which do not mimic the complex extracellular microenvironment seen in vivo. In this study we report a method to decellularize brain tissue using detergents. This decellularized brain matrix is rich in glycosaminoglycans and contains collagen I, collagen III, collagen IV, collagen V, collagen VI, perlecan, and laminin. By further processing the material into a liquid form, the brain matrix can be used as a cell culture coating. Neurons derived from human induced pluripotent stem cells plated on the brain matrix express neuronal markers and assume neuronal morphology. Additionally, the same material can potentially be used as a scaffold for tissue engineering as it reassembles upon injection in vivo to form a gel. Thus, our work demonstrates the ability to use decellularized brain ECM for cell culture and tissue engineering applications. 相似文献
13.
背景:基于石墨烯纳米片的化学成分和物理结构,可形成与细胞外生物基质十分相似的微观环境。目的:综述近年来基于石墨烯构筑三维支架的制备、细胞相容性及与细胞的相互作用。方法:应用计算机检索中国知网CNKI数据库、ACS-ACS Publications、Elsevier Science, Nature及PNAS美国国家科学院院刊等,有关生物医用石墨烯材料的种类和制备方法及其在组织工程中的应用研究。结果与结论:将石墨烯及其衍生物作为模块,利用石墨烯二维平面结构特点或氧化石墨烯含有丰富的官能团特性,不仅能够将石墨烯纳米片以不同的方式组装构筑三维宏观结构,而且易于复合其他功能性材料。与单个石墨烯片或传统的碳纳米材料相比,三维宏观石墨烯及复合材料将有可能形成更为新奇独特的结构及性能,具有更加实际的应用价值,包括拥有组织工程支架的功能。中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程 相似文献
14.
背景:不同形状工程骨支架负载种子细胞修复骨缺损的研究效果评价不一,而负载细胞数量的多少是影响疗效的重要因素之一,目前该方面研究证据不多。
目的:自制瓦楞状组织工程骨支架和其他3种形状的支架,比较4种不同形状支架负载种子细胞的数量,以及瓦楞状组织工程骨支架体内成骨时凹槽的优势及特点。
方法:①体外实验:将体积和样本数相同的4组支架分为单纯瓦楞状支架组、无瓦楞支架组、圆柱状支架组和带中空管柱状支架组,分别以相同密度、相同容积的成骨诱导兔骨髓间充质干细胞悬液接种于支架表面,孵育、培养、消化、收集,进行细胞计数、吸光度值检测以及碱性磷酸酶和茜素红染色。②体内实验:将兔随机分为重组人骨形态发生蛋白2/瓦楞状自固化磷酸钙人工骨组,瓦楞状自固化磷酸钙人工骨组和松质骨组,将体积相同的3组支架植入兔L5-6两侧横突间,植入后4,8,12周行大体、组织学观察。
结果与结论:体外实验显示,瓦楞状工程骨支架上滴注的细胞液能充分停留在表面,由于表面瓦楞状凹槽和液体的表面张力以及支架本身的无孔隙性使得细胞液不向培养皿流失,每个样本平均消化下来的正常形态的细胞数量高于其他3组(P < 0.05),吸光度值差异无显著性意义(P > 0.05)。体内实验显示,各时间点重组人骨形态发生蛋白2/瓦楞状自固化磷酸钙人工骨组的成骨量比瓦楞状自固化磷酸钙人工骨组明显多(P < 0.05),与松质骨组之间比较差异无显著性意义(P > 0.05)。结果证实,实验自制的瓦楞状工程骨支架的形状特点有利于种子细胞负载,从数量上保证了接种种子细胞的有效性,可促进支架大量成骨和段状骨缺损的愈合。中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程全文链接: 相似文献
15.
Effects of gamma-irradiation on physical and biologic properties of crosslinked hyaluronan tissue engineering scaffolds 总被引:1,自引:0,他引:1
Hydrogels containing divinyl sulfone (DVS)-crosslinked hyaluronan (HA) (hylans) are potentially useful implant biomaterials because of their non-cytotoxicity and -antigenicity. However, to successfully fulfill their intended role in vivo, their properties (e.g., mechanics, pore size, surface topography, hydrophilicity, swelling) must be modulated to match the demands of the target application. This study explored whether controlled irradiation with gamma (gamma) can strengthen hylans and modulate their physical and biologic properties, as has previously been shown to be possible with other natural and synthetic polymers. Hydrated hylans containing two different amounts of DVS were irradiated in vacuum to increasing doses of gamma (0-13.5 kGy). The properties of the irradiated gels were compared with those of non-irradiated controls. Changes to bulk structure were evaluated using swelling tests, surface topography and pore structure were evaluated using scanning electron microscopy, mechanics were evaluated using unconfined compression tests, and surface hydrophilicity was evaluated by measuring contact angle changes. Irradiated gels exhibited lower swelling capacity, structural weakening, increase in elasticity, surface texturing, increased pore size, and decreased surface hydrophilicity in direct correlation with received dose. Cells adhered and proliferated readily on the irradiated gel surfaces but not on control gels. The irradiated gels, however, deteriorated during long-term (<60 days) storage. Irradiation of hylans in a lyophilized state instead resulted in gels that were more compact, swelled less, and exhibited smaller pores than their hydrated counterparts. The results show that gamma-irradiation, although useful to modulate hylan gel properties, presents challenges of degradation that may be associated with its generation of free-radicals, HA chain fragmentation, and disruption of DVS crosslinks, particularly when the gels are irradiated in their native hydrated state (>98% water content). Future studies will optimize parameters for gamma-mediated modulation of hylan properties through irradiation under water-free conditions. 相似文献
16.
Beckstead BL Pan S Bhrany AD Bratt-Leal AM Ratner BD Giachelli CM 《Biomaterials》2005,26(31):6217-6228
As an initial step towards a tissue-engineered esophagus, rat esophageal epithelial cells (REEC) were isolated and characterized for epithelial identity, adhesion protein preference, and in vitro interaction with natural and synthetic scaffolds. The scaffolds consisted of AlloDerm (LifeCell Corporation, Branchburg, NJ), poly(L-lactic acid) (PLLA), poly(lactic-co-glycolic) acid (75:25) (PLGA75), poly(lactic-co-glycolic) acid (50:50) (PLGA50), and polycaprolactone/poly(L-lactic acid) (50:50) (PCL/PLLA). Various factors-including calcium concentration, scaffold composition, and pore size--were evaluated for their influence on epithelial growth and differentiation. By day 18, keratinocytes seeded on AlloDerm cultured under high Ca(++) (1.5mm) conditions showed a proliferating basal cell layer, epithelial stratification (5--6 layers) and a thick keratin layer. The synthetic scaffolds (PLGA, PLLA, PCL/PLLA) also showed complete surface coverage, regions of proliferating basal cells, and evidence of stratification (2--3 layers) and keratinization. The highly porous nature of the synthetic scaffolds, however, limited the formation of a continuous epithelial layer and resulted in a lack of overall spatially-defined differentiation. In conclusion, rat esophageal epithelial cells were successfully isolated and characterized, with cells seeded on AlloDerm showing superior epithelial organization and stratification compared to synthetic scaffolds. Modification of the synthetic scaffold's surface properties and pore size may be necessary to mimic epithelial behavior on natural scaffolds. 相似文献
17.
Biomaterials and scaffolds for ligament tissue engineering 总被引:3,自引:0,他引:3
Ge Z Yang F Goh JC Ramakrishna S Lee EH 《Journal of biomedical materials research. Part A》2006,77(3):639-652
Tissue engineering has achieved much progress in an attempt to improve and recover impaired functions of tissues and organs. Although many studies have been done, progress for tissue-engineered anterior cruciate ligaments (ACLs) has been slow due to their complex structures and mechanical properties. In this review, the ACL anatomical structure, progresses achieved, material selection, structure design, and future direction have been discussed, while the challenges and requirements from materials and scaffolds are highlighted. There is a considerably huge amount work that needs to be carried out; as such, future direction in ligament tissue engineering is proposed in hope that this review will give information on future ligament tissue engineering. 相似文献
18.
3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties 总被引:6,自引:0,他引:6
One of the main issues in tissue engineering is the fabrication of scaffolds that closely mimic the biomechanical properties of the tissues to be regenerated. Conventional fabrication techniques are not sufficiently suitable to control scaffold structure to modulate mechanical properties. Within novel scaffold fabrication processes 3D fiber deposition (3DF) showed great potential for tissue engineering applications because of the precision in making reproducible 3D scaffolds, characterized by 100% interconnected pores with different shapes and sizes. Evidently, these features also affect mechanical properties. Therefore, in this study we considered the influence of different structures on dynamic mechanical properties of 3DF scaffolds. Pores were varied in size and shape, by changing fibre diameter, spacing and orientation, and layer thickness. With increasing porosity, dynamic mechanical analysis (DMA) revealed a decrease in elastic properties such as dynamic stiffness and equilibrium modulus, and an increase of the viscous parameters like damping factor and creep unrecovered strain. Furthermore, the Poisson's ratio was measured, and the shear modulus computed from it. Scaffolds showed an adaptable degree of compressibility between sponges and incompressible materials. As comparison, bovine cartilage was tested and its properties fell in the fabricated scaffolds range. This investigation showed that viscoelastic properties of 3DF scaffolds could be modulated to accomplish mechanical requirements for tailored tissue engineered applications. 相似文献
19.
The engineering of dermal skin substitutes, using autologous fibroblasts, requires high seeding efficiencies, a homogeneous cell distribution in the scaffolds, and optimal culture conditions. Dynamic seeding in spinner flasks was used to seed and subsequently culture fibroblasts in three-dimensional scaffolds. Several seeding and culture variables were investigated. Simulation of medium movement with microspheres showed that three different regions existed in medium (outer, middle, and inner), where overall particle movement was different. In the middle region the flow was turbulent and scaffolds were best placed in this region. After fibroblast seeding, methylene blue staining and scanning electron microscopy analysis of the scaffolds showed that at a low stirring speed (20 rpm) fibroblasts attached mainly onto the upper part of the scaffold, and at 40 and 60 rpm fibroblasts attached and spread throughout the scaffolds. Measurements of total DNA content per scaffold showed that lower stirring speeds (20 and 40 rpm) resulted in significantly higher cell-seeding efficiencies (20 rpm, 99.8 +/- 11.3%; 40 rpm, 93.8 +/- 10.5%) compared with 60 rpm (85.9 +/- 5.3%). Seeding kinetics were comparable for all three speeds investigated. In subsequent studies, 40 rpm was chosen for seeding. Using initial cell numbers ranging from 0.3 x 10(6) to 1.5 x 10(6) fibroblasts per scaffold, seeding efficiencies higher than 85% were consistently found (n = 4). The culture of fibroblast-seeded scaffolds at different stirring speeds (10-80 rpm) showed that stirring speeds higher than 10 rpm significantly stimulated fibroblast proliferation and glycosaminoglycan and collagen deposition as compared with 10 rpm. After 21 days, scaffolds cultured at 80 rpm showed significantly more collagen deposition as compared with those maintained at lower speeds. In conclusion, to achieve high seeding efficiencies, uniform fibroblast distribution and tissue formation in a three-dimensional scaffold, fibroblasts can be dynamically seeded at 40 rpm and subsequently cultured at a stirring speed of 60-80 rpm in spinner flasks. This flexible system shows that it is feasible to tissue engineer autologous dermal substitutes in a clinically acceptable time frame. 相似文献
20.
Engineering functionally graded tissue engineering scaffolds 总被引:3,自引:0,他引:3
K.F. Leong C.K. Chua N. Sudarmadji W.Y. Yeong 《Journal of the Mechanical Behavior of Biomedical Materials》2008,1(2):140-152
Tissue Engineering (TE) aims to create biological substitutes to repair or replace failing organs or tissues due to trauma or ageing. One of the more promising approaches in TE is to grow cells on biodegradable scaffolds, which act as temporary supports for the cells to attach, proliferate and differentiate; after which the scaffold will degrade, leaving behind a healthy regenerated tissue. Tissues in nature, including human tissues, exhibit gradients across a spatial volume, in which each identifiable layer has specific functions to perform so that the whole tissue/organ can behave normally. Such a gradient is termed a functional gradient. A good TE scaffold should mimic such a gradient, which fulfils the biological and mechanical requirements of the target tissue. Thus, the design and fabrication process of such scaffolds become more complex and the introduction of computer-aided tools will lend themselves well to ease these challenges. This paper reviews the needs and characterization of these functional gradients and the computer-aided systems used to ease the complexity of the scaffold design stage. These include the fabrication techniques capable of building functionally graded scaffolds (FGS) using both conventional and rapid prototyping (RP) techniques. They are able to fabricate both continuous and discrete types of FGS. The challenge in fabricating continuous FGS using RP techniques lies in the development of suitable computer aided systems to facilitate continuous FGS design. What have been missing are the appropriate models that relate the scaffold gradient, e.g. pore size, porosity or material gradient, to the biological and mechanical requirements for the regeneration of the target tissue. The establishment of these relationships will provide the foundation to develop better computer-aided systems to help design a suitable customized FGS. 相似文献