首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Most of the carotid plaque MR studies have been performed using black-blood protocols at 1.5 T without parallel imaging techniques. The purpose of this study was to evaluate a multi-sequence, black-blood MR protocol using parallel imaging and a dedicated 4-channel surface coil for vessel wall imaging of the carotid arteries at 3 T.

Materials and methods

14 healthy volunteers and 14 patients with intimal thickening as proven by duplex ultrasound had their carotid arteries imaged at 3 T using a multi-sequence protocol (time-of-flight MR angiography, pre-contrast T1w-, PDw- and T2w sequences in the volunteers, additional post-contrast T1w- and dynamic contrast enhanced sequences in patients). To assess intrascan reproducibility, 10 volunteers were scanned twice within 2 weeks.

Results

Intrascan reproducibility for quantitative measurements of lumen, wall and outer wall areas was excellent with Intraclass Correlation Coefficients >0.98 and measurement errors of 1.5%, 4.5% and 1.9%, respectively. Patients had larger wall areas than volunteers in both common carotid and internal carotid arteries and smaller lumen areas in internal carotid arteries (p < 0.001). Positive correlations were found between wall area and cardiovascular risk factors such as age, hypertension, coronary heart disease and hypercholesterolemia (Spearman''s r = 0.45-0.76, p < 0.05). No significant correlations were found between wall area and body mass index, gender, diabetes or a family history of cardiovascular disease.

Conclusion

The findings of this study indicate that high resolution carotid black-blood 3 T MR with parallel imaging is a fast, reproducible and robust method to assess carotid atherosclerotic plaque in vivo and this method is ready to be used in clinical practice.  相似文献   

2.

Background

To determine if black-blood 3 T cardiovascular magnetic resonance (bb-CMR) can depict differences between symptomatic and asymptomatic carotid atherosclerotic plaques in acute ischemic stroke patients.

Methods

In this prospective monocentric observational study 34 patients (24 males; 70 ±9.3 years) with symptomatic carotid disease defined as ischemic brain lesions in one internal carotid artery territory on diffusion weighted images underwent a carotid bb-CMR at 3 T with fat-saturated pre- and post-contrast T1w-, PDw-, T2w- and TOF images using surface coils and Parallel Imaging techniques (PAT factor = 2) within 10 days after symptom onset. All patients underwent extensive clinical workup (lab, brain MR, duplex sonography, 24-hour ECG, transesophageal echocardiography) to exclude other causes of ischemic stroke. Prevalence of American Heart Association lesion type VI (AHA-LT6), status of the fibrous cap, presence of hemorrhage/thrombus and area measurements of calcification, necrotic core and hemorrhage were determined in both carotid arteries in consensus by two reviewers who were blinded to clinical information. McNemar and Wilcoxon''s signed rank tests were use for statistical comparison. A p-value <0.05 was considered statistically significant.

Results

Symptomatic plaques showed a higher prevalence of AHA-LT6 (67.7% vs. 11.8%; p < 0.001; odds ratio = 12.5), ruptured fibrous caps (44.1% vs. 2.9%; p < 0.001; odds ratio = 15.0), juxtaluminal thrombus (26.5 vs. 0%; p < 0.01; odds ratio = 7.3) and intraplaque hemorrhage (58.6% vs. 11.8%; p = 0.01; odds ratio = 3.8). Necrotic core and hemorrhage areas were greater in symptomatic plaques (14.1 mm2 vs. 5.5 mm2 and 13.6 mm2 vs. 5.3 mm2; p < 0.01, respectively).

Conclusion

3 T bb-CMR is able to differentiate between symptomatic and asymptomatic carotid plaques, demonstrating the potential of bb-CMR to differentiate between stable and vulnerable lesions and ultimately to identify patients with low versus high risk for cardiovascular complications. Best predictors of the symptomatic side were a ruptured fibrous cap, AHA-LT 6, juxtaluminal hemorrhage/thrombus, and intraplaque hemorrhage.  相似文献   

3.

Background

Multi-contrast vessel wall cardiovascular magnetic resonance (CMR) has demonstrated its capability for atherosclerotic plaque morphology measurement and component characterization in different vasculatures. However, limited coverage and partial volume effect with conventional two-dimensional (2D) techniques might cause lesion underestimation. The aim of this work is to evaluate the performance in a) blood suppression and b) vessel wall delineation of three-dimensional (3D) multi-contrast joint intra- and extracranial vessel wall imaging at 3T.

Methods

Three multi-contrast 3D black blood (BB) sequences with T1, T2 and heavy T1 weighting and a custom designed 36-channel neurovascular coil covering the entire intra- and extracranial vasculature have been used and investigated in this study. Two healthy subjects were recruited for sequence parameter optimization and twenty-five patients were consecutively scanned for image quality and blood suppression assessment. Qualitative image scores of vessel wall delineation as well as quantitative Signal-to-Noise Ratio (SNR) and Contrast-to-Noise Ratio (CNR) were evaluated at five typical locations ranging from common carotid arteries to middle cerebral arteries.

Results

The 3D multi-contrast images acquired within 15mins allowed the vessel wall visualization with 0.8 mm isotropic spatial resolution covering intra- and extracranial segments. Quantitative wall and lumen SNR measurements for each sequence showed effective blood suppression at all selected locations (P < 0.0001). Although the wall-lumen CNR varied across measured locations, each sequence provided good or adequate image quality in both intra- and extracranial segments.

Conclusions

The proposed 3D multi-contrast vessel wall technique provides isotropic resolution and time efficient solution for joint intra- and extracranial vessel wall CMR.  相似文献   

4.

Background

Restenosis of the carotid artery is common following carotid endarterectomy, but analysis of lesion composition has mostly been based on histological study of explanted restenotic lesions. This study investigated the ability of 3T cardiovascular magnetic resonance (CMR) to determine the components of recurrent carotid artery disease and examined whether these differed from primary atherosclerotic plaque.

Methods

50 patients underwent 3T CMR of both carotid arteries using a standard multicontrast protocol: time-of-flight (TOF), T1-weighted (T1W), T2-weighted (T2W), and PD-weighted (PDW) Turbo-Spin-Echo (TSE) sequences. 25 patients had previously undergone carotid endarterectomy (mean time since surgery 1580 days, range 45–6560 days), and 25 with primary asymptomatic atherosclerotic plaques served as controls. Two experienced reviewers analysed the multicontrast CMR images according to the presence or absence of major plaque features and assigned an overall classification type.

Results

In patients with recurrent carotid disease following endarterectomy, the mean degree of restenosis was 51% (range 30–90%). Three distinct types of restenosis were identified: 5 patients (20%) showed CMR characteristics of fibro-atheromatous tissue, 11 patients (44%) had plaque features consistent with possible myointimal (fibromuscular) hyperplasia, and 6 patients (24%) had recurrent plaque suggestive of further lipid accumulation. Three patients (12%) showed evidence of post-surgical dissection of the carotid intima. Compared to primary atherosclerotic plaques, restenotic plaques were more likely to contain fibro-atheromatous tissue (p = 0.05) and smooth muscle (p < 0.01), and less likely to contain lipid (p < 0.01). Composition did not differ significantly between patients with early and late restenosis.

Conclusions

As defined by CMR, restenotic lesions of the carotid artery fall into three distinct types and differ in composition from primary atherosclerotic plaques. If validated by subsequent histological studies, these findings could suggest a role for CMR in detecting high-risk (i.e. lipid-rich) restenotic lesions.  相似文献   

5.

Background

Cardiovascular magnetic resonance (CMR) allows volumetric carotid plaque measurement that has advantage over 2-dimensional ultrasound (US) intima-media thickness (IMT) in evaluating treatment response. We tested the hypothesis that 6-month statin treatment in patients with carotid plaque will lead to plaque regression when measured by 3 Tesla CMR but not by IMT.

Methods

Twenty-six subjects (67 ± 2 years, 7 females) with known carotid plaque (> 1.1 mm) and coronary or cerebrovascular atherosclerotic disease underwent 3T CMR (T1, T2, proton density and time of flight sequences) and US at baseline and following 6 months of statin therapy (6 had initiation, 7 had increase and 13 had maintenance of statin dosing). CMR plaque volume (PV) was measured in the region 12 mm below and up to 12 mm above carotid flow divider using software. Mean posterior IMT in the same region was measured. Baseline and 6-month CMR PV and US IMT were compared. Change in lipid rich/necrotic core (LR/NC) and calcification plaque components from CMR were related to change in PV.

Results

Low-density lipoprotein cholesterol decreased (86 ± 6 to 74 ± 4 mg/dL, p = 0.046). CMR PV decreased 5.8 ± 2% (1036 ± 59 to 976 ± 65 mm3, p = 0.018). Mean IMT was unchanged (1.12 ± 0.06 vs. 1.14 ± 0.06 mm, p = NS). Patients with initiation or increase of statins had -8.8 ± 2.8% PV change (p = 0.001) while patients with maintenance of statin dosing had -2.7 ± 3% change in PV (p = NS). There was circumferential heterogeneity in CMR plaque thickness with greatest thickness in the posterior carotid artery, in the region opposite the flow divider. Similarly there was circumferential regional difference in change of plaque thickness with significant plaque regression in the anterior carotid region in region of the flow divider. Change in LR/NC (R = 0.62, p = 0.006) and calcification (R = 0.45, p = 0.03) correlated with PV change.

Conclusions

Six month statin therapy in patients with carotid plaque led to reduced plaque volume by 3T CMR, but ultrasound posterior IMT did not show any change. The heterogeneous spatial distribution of plaque and regional differences in magnitude of plaque regression may explain the difference in findings and support volumetric measurement of plaque. 3T CMR has potential advantage over ultrasound IMT to assess treatment response in individuals and may allow reduced sample size, duration and cost of clinical trials of plaque regression.  相似文献   

6.

Background

Cardiovascular magnetic resonance (CMR) of the vessel wall is highly reproducible and can evaluate both changes in plaque burden and composition. It can also measure aortic compliance and endothelial function in a single integrated examination. Previous studies have focused on patients with pre-identified carotid atheroma. We define these vascular parameters in patients presenting with coronary artery disease and test their relations to its extent and severity.

Methods and Results

100 patients with CAD [single-vessel (16%); two-vessel (39%); and three-vessel (42%) non-obstructed coronary arteries (3%)] were studied. CAD severity and extent was expressed as modified Gensini score (mean modified score 12.38 ± 5.3). A majority of carotid plaque was located in the carotid bulb (CB). Atherosclerosis in this most diseased segment correlated modestly with the severity and extent of CAD, as expressed by the modified Gensini score (R = 0.251, P < 0.05). Using the AHA plaque classification, atheroma class also associated with CAD severity (rho = 0.26, P < 0.05). The distal descending aorta contained the greatest plaque, which correlated with the degree of CAD (R = 0.222; P < 0.05), but with no correlation with the proximal descending aorta, which was relatively spared (R = 0.106; P = n. s.). Aortic distensibility varied along its length with the ascending aorta the least distensible segment. Brachial artery FMD was inversely correlated with modified Gensini score (R = -0.278; P < 0.05). In multivariate analysis, distal descending aorta atheroma burden, distensibility of the ascending aorta, carotid atheroma class and FMD were independent predictors of modified Gensini score.

Conclusions

Multimodal vascular CMR shows regional abnormalities of vascular structure and function that correlate modestly with the degree and extent of CAD.  相似文献   

7.

Background:

Gait disorders are common in individuals with Parkinson''s Disease (PD) and the concurrent performance of motor and cognitive tasks can have marked effects on gait. The Gait Profile Score (GPS) and the Movement Analysis Profile (MAP) were developed in order to summarize the data of kinematics and facilitate understanding of the results of gait analysis.

Objective:

To investigate the effectiveness of the GPS and MAP in the quantification of changes in gait during a concurrent cognitive load while walking in adults with and without PD.

Method:

Fourteen patients with idiopathic PD and nine healthy subjects participated in the study. All subjects performed single and dual walking tasks. The GPS/MAP was computed from three-dimensional gait analysis data.

Results:

Differences were found between tasks for GPS (P<0.05) and Gait Variable Score (GVS) (pelvic rotation, knee flexion-extension and ankle dorsiflexion-plantarflexion) (P<0.05) in the PD group. An interaction between task and group was observed for GPS (P<0.01) for the right side (Cohen''s ¯d=0.99), left side (Cohen''s ¯d=0.91), and overall (Cohen''s ¯d=0.88). No interaction was observed only for hip internal-external rotation and foot internal-external progression GVS variables in the PD group.

Conclusions:

The results showed gait impairment during the dual task and suggest that GPS/MAP may be used to evaluate the effects of concurrent cognitive load while walking in patients with PD.  相似文献   

8.

Background

Atherothrombosis remains a major health problem in the western world, and carotid atherosclerosis is an important contributor to embolic ischemic strokes. It remains a clinical challenge to identify rupture-prone atherosclerotic plaques before clinical events occur. Inflammation, endothelial injury and angiogenesis are features of vulnerable plaques and may all be associated with plaque edema. Therefore, vessel wall edema, which can be detected by 2D T2-weighted cardiovascular magnetic resonance (CMR), may be used as a dynamic marker of disease activity in the atherosclerotic plaque. However, 2D imaging is limited by low spatial resolution in the slice-select direction compared to 3D imaging techniques. We sought to investigate the ability of novel 3D techniques to detect edema induced in porcine carotid arteries by acute balloon injury compared to conventional 2D T2-weighted black-blood CMR.

Methods

Edema was induced unilaterally by balloon overstretch injury in the carotid artery of nine pigs. Between one to seven hours (average four hours) post injury, CMR was performed using 2D T2-weighted short-tau inversion recovery (T2-STIR), 3D volumetric isotropic turbo spin echo acquisition (VISTA) and 3D T2 prepared gradient-echo (T2prep-GE). The CMR images were compared in terms of signal-to-noise ratio (SNR) and contrast-to-noise (CNR) ratio. Furthermore, the presence of vessel wall injury was validated macroscopically by means of Evans Blue dye that only enters the injured vessel wall.

Results

All three imaging sequences classified the carotid arteries correctly compared to Evans Blue and all sequences demonstrated a significant increase in SNR of the injured compared to the non-injured carotid vessel wall (T2-STIR, p = 0.002; VISTA, p = 0.004; and T2prep-GE, p = 0.003). There was no significant difference between sequences regarding SNR and CNR.

Conclusion

The novel 3D imaging sequences VISTA and T2prep-GE perform comparably to conventional 2D T2-STIR in terms of detecting vessel wall edema. The improved spatial coverage of these 3D sequences may facilitate visualization of vessel wall edema to enable detection and monitoring of vulnerable carotid atherosclerotic plaques.  相似文献   

9.

Background

Carotid atherosclerotic ulceration is a significant source of stroke. This study evaluates the efficacy of adding longitudinal black-blood (BB) cardiovascular magnetic resonance (CMR) angiography to cross-sectional CMR images in the identification of carotid atherosclerotic ulceration.

Methods

Thirty-two subjects (30 males and two females with ages between 48 and 83 years) scheduled for carotid endarterectomy were imaged on a 1.5T GE Signa scanner using multisequence [3D time-of-flight, T1, proton density, T2, contrast enhanced T1], cross-sectional CMR images and longitudinal BB CMR angiography (0.625 × 0.625 mm/pixel). Two rounds of review (round 1: cross-sectional CMR images alone and round 2: cross-sectional CMR images plus longitudinal BB CMR angiography) were conducted for the presence and volume measurements of ulceration. Ulceration was defined as a distinct depression into the plaque containing blood flow signal on cross-sectional CMR and longitudinal BB CMR angiography.

Results

Of the 32 plaques examined by histology, 17 contained 21 ulcers. Using the longitudinal BB CMR angiography sequence in addition to the cross-sectional CMR images in round 2, the sensitivity improved to 80% for ulcers of at least 6 mm3 in volume by histology and 52.4% for all ulcers, compared to 30% and 23.8% in round 1, respectively. There was a slight decline in specificity from 88.2% to 82.3%, though both the positive and negative predictive values increased modestly from 71.4% to 78.6% and from 48.4% to 58.3%, respectively.

Conclusion

The addition of longitudinal BB CMR angiography to multisequence cross-sectional CMR images increases accuracy in the identification of carotid atherosclerotic ulceration.  相似文献   

10.

Background

Systemic sclerosis (SSc) is characterised by multi-organ tissue fibrosis including the myocardium. Diffuse myocardial fibrosis can be detected non-invasively by T1 and extracellular volume (ECV) quantification, while focal myocardial inflammation and fibrosis may be detected by T2-weighted and late gadolinium enhancement (LGE), respectively, using cardiovascular magnetic resonance (CMR). We hypothesised that multiparametric CMR can detect subclinical myocardial involvement in patients with SSc.

Methods

19 SSc patients (18 female, mean age 55 ± 10 years) and 20 controls (19 female, mean age 56 ± 8 years) without overt cardiovascular disease underwent CMR at 1.5T, including cine, tagging, T1-mapping, T2-weighted, LGE imaging and ECV quantification.

Results

Focal fibrosis on LGE was found in 10 SSc patients (53%) but none of controls. SSc patients also had areas of myocardial oedema on T2-weighted imaging (median 13 vs. 0% in controls). SSc patients had significantly higher native myocardial T1 values (1007 ± 29 vs. 958 ± 20 ms, p < 0.001), larger areas of myocardial involvement by native T1 >990 ms (median 52 vs. 3% in controls) and expansion of ECV (35.4 ± 4.8 vs. 27.6 ± 2.5%, p < 0.001), likely representing a combination of low-grade inflammation and diffuse myocardial fibrosis. Regardless of any regional fibrosis, native T1 and ECV were significantly elevated in SSc and correlated with disease activity and severity. Although biventricular size and global function were preserved, there was impairment in the peak systolic circumferential strain (-16.8 ± 1.6 vs. -18.6 ± 1.0, p < 0.001) and peak diastolic strain rate (83 ± 26 vs. 114 ± 16 s-1, p < 0.001) in SSc, which inversely correlated with diffuse myocardial fibrosis indices.

Conclusions

Cardiac involvement is common in SSc even in the absence of cardiac symptoms, and includes chronic myocardial inflammation as well as focal and diffuse myocardial fibrosis. Myocardial abnormalities detected on CMR were associated with impaired strain parameters, as well as disease activity and severity in SSc patients. CMR may be useful in future in the study of treatments aimed at preventing or reducing adverse myocardial processes in SSc.  相似文献   

11.

Background

Paravalvular aortic regurgitation (PAR) following transcatheter aortic valve implantation (TAVI) is well acknowledged. Despite improvements, echocardiographic measurement of PAR largely remains qualitative. Cardiovascular magnetic resonance (CMR) directly quantifies AR with accuracy and reproducibility. We compared CMR and transthoracic echocardiography (TTE) analysis of pre-operative and post-operative aortic regurgitation in patients undergoing both TAVI and surgical aortic valve replacement (AVR).

Methods

Eighty-seven patients with severe aortic stenosis undergoing TAVI (56 patients) or AVR were recruited. CMR (1.5 T) and transthoracic echocardiography (TTE) were carried out pre-operatively and a median of 6 days post-operatively. The CMR protocol included regurgitant aortic flows using through-plane phase-contrast velocity. None/trivial, mild, moderate and severe AR by CMR was defined as ≤8%, 9-20%, 21–39%, >40% regurgitant fractions respectively.

Results

Pre- and post-operative left ventricular ejection fraction (LVEF) was similar. Post-procedure aortic regurgitant fraction using CMR was higher in the TAVI group (TAVI 16 ± 13% vs. AVR 4 ± 4%, p < 0.01). Comparing CMR to TTE, 27 of 56 (48%) TAVI patients had PAR which was at least one grade more severe on CMR than TTE (Z = −4.56, p <0.001). Sensitivity analysis confirmed the difference in PAR grade between TTE and CMR in the TAVI group (Z = −4.49, p < 0.001).

Conclusion

When compared to CMR based quantitative analysis, TTE underestimated the degree of paravalvular aortic regurgitation. This underestimation may in part explain the findings of increased mortality associated with mild or greater AR by TTE in the PARTNER trial. Paravalvular aortic regurgitation post TAVI assessed as mild by TTE may in fact be more severe.  相似文献   

12.

Objectives

The purpose of this study was to compare cardiovascular magnetic resonance (CMR) and echocardiography (echo) in patients treated with primary percutaneous coronary intervention (PCI) for acute myocardial infarction (AMI) with emphasis on the analysis of left ventricular function and left ventricular wall motion characteristics.

Methods

We performed CMR and echo in 52 patients with first AMI shortly after primary angioplasty and four months thereafter. CMR included cine-MR and T1-weighted first-pass and late-gadolinium enhancement (LGE) sequences. Global ejection fraction (EFCMR, %) and regional left ventricular function (systolic wall thickening %, [SWT]) were determined from cine-MR images. In echo the global left ventricular function (EFecho, %) and regional wall motion abnormalities were determined. A segment in echo was scored as "infarcted" if it was visually > 50% hypokinetic.

Results

EFecho revealed a poor significant agreement with EFCMR at baseline (r: 0.326; p < 0.01) but higher correlation at follow-up (r: 0.479; p < 0.001). The number of infarcted segments in echocardiography correlated best with the number of segments which showed systolic wall thickening < 30% (r: 0.498; p < 0.001) at baseline and (r: 0.474; p < 0.001) at follow-up. Improvement of EF was detected in both CMR and echocardiography increasing from 44.2 ± 11.6% to 49.2 ± 11% (p < 0.001) by CMR and from 51.2 ± 8.1% to 54.5 ± 8.3% (p < 0.001) by echocardiography.

Conclusion

Wall motion and EF by CMR and echocardiography correlate poorly in the acute stage of myocardial infarction. Correlation improves after four months. Systolic wall thickening by CMR < 30% indicates an infarcted segment with influence on the left ventricular function.  相似文献   

13.

Objective

We sought to determine differences with cardiovascular magnetic resonance (CMR) in the morphology and composition of the carotid arteries between individuals with angiographically-defined obstructive coronary artery disease (CAD, ≥ 50% stenosis, cases) and those with angiographically normal coronaries (no lumen irregularities, controls).

Methods and results

191 participants (50.3% female; 50.8% CAD cases) were imaged with a multi-sequence, carotid CMR protocol at 1.5T. For each segment of the carotid, lumen area, wall area, total vessel area (lumen area + wall area), mean wall thickness and the presence or absence of calcification and lipid-rich necrotic core were recorded bilaterally. In male CAD cases compared to male controls, the distal bulb had a significantly smaller lumen area (60.0 ± 3.1 vs. 79.7 ± 3.2 mm2, p < 0.001) and total vessel area (99.6 ± 4.0 vs. 119.8 ± 4.1 mm2; p < 0.001), and larger mean wall thickness (1.25 ± 0.03 vs. 1.11 ± 0.03 mm; p = 0.002). Similarly, the internal carotid had a smaller lumen area (37.5 ± 1.8 vs. 44.6 ± 1.8 mm2; p = 0.006) and smaller total vessel area (64.0 ± 2.3 vs. 70.9 ± 2.4 mm2; p = 0.04). These metrics were not significantly different between female groups in the distal bulb and internal carotid or for either gender in the common carotid. Male CAD cases had an increased prevalence of lipid-rich necrotic core (49.0% vs. 19.6%; p = 0.003), while calcification was more prevalent in both male (46.9% vs. 17.4%; p = 0.002) and female (33.3% vs. 14.6%; p = 0.031) CAD cases compared to controls.

Conclusion

Males with obstructive CAD compared to male controls had carotid bulbs and internal carotid arteries with smaller total vessel and lumen areas, and an increased prevalence of lipid-rich necrotic core. Carotid calcification was related to CAD status in both males and females. Carotid CMR identifies distinct morphological and compositional differences in the carotid arteries between individuals with and without angiographically-defined obstructive CAD.  相似文献   

14.

Background

T2-weighted cardiovascular magnetic resonance (CMR) has been shown to be a promising technique for determination of ischemic myocardium, referred to as myocardium at risk (MaR), after an acute coronary event. Quantification of MaR in T2-weighted CMR has been proposed to be performed by manual delineation or the threshold methods of two standard deviations from remote (2SD), full width half maximum intensity (FWHM) or Otsu. However, manual delineation is subjective and threshold methods have inherent limitations related to threshold definition and lack of a priori information about cardiac anatomy and physiology. Therefore, the aim of this study was to develop an automatic segmentation algorithm for quantification of MaR using anatomical a priori information.

Methods

Forty-seven patients with first-time acute ST-elevation myocardial infarction underwent T2-weighted CMR within 1 week after admission. Endocardial and epicardial borders of the left ventricle, as well as the hyper enhanced MaR regions were manually delineated by experienced observers and used as reference method. A new automatic segmentation algorithm, called Segment MaR, defines the MaR region as the continuous region most probable of being MaR, by estimating the intensities of normal myocardium and MaR with an expectation maximization algorithm and restricting the MaR region by an a priori model of the maximal extent for the user defined culprit artery. The segmentation by Segment MaR was compared against inter observer variability of manual delineation and the threshold methods of 2SD, FWHM and Otsu.

Results

MaR was 32.9 ± 10.9% of left ventricular mass (LVM) when assessed by the reference observer and 31.0 ± 8.8% of LVM assessed by Segment MaR. The bias and correlation was, -1.9 ± 6.4% of LVM, R = 0.81 (p < 0.001) for Segment MaR, -2.3 ± 4.9%, R = 0.91 (p < 0.001) for inter observer variability of manual delineation, -7.7 ± 11.4%, R = 0.38 (p = 0.008) for 2SD, -21.0 ± 9.9%, R = 0.41 (p = 0.004) for FWHM, and 5.3 ± 9.6%, R = 0.47 (p < 0.001) for Otsu.

Conclusions

There is a good agreement between automatic Segment MaR and manually assessed MaR in T2-weighted CMR. Thus, the proposed algorithm seems to be a promising, objective method for standardized MaR quantification in T2-weighted CMR.  相似文献   

15.

Background

Carotid plaque rupture, characterized by ruptured fibrous cap (FC), is associated with subsequent cerebrovascular events. However, ruptured FC may heal following stroke and convey decreased risk of future events. This study aims to characterize the healing process of ruptured FC by assessing the lumen conditions, quantified by the lumen curvature and roughness, using in vivo carotid cardiovascular magnetic resonance (CMR).

Methods

Patients suffering from transient ischemic attack underwent high resolution carotid MR imaging within 72 hours of the acute cerebrovascular ischemic event. CMR imaging was repeated at 3 and 12 months in 26 patients, in whom FC rupture/erosion was observed on baseline images and subsequent cerebrovascular events were recorded during the follow-up period. Lumen curvature and roughness were quantified from carotid CMR images and changes in these values were monitored on follow-up imaging.

Results

Healing of ruptured plaque was observed in patients (23 out of 26) without any ischemic symptom recurrence as shown by the lumen surface becoming smoother during the follow-up period, characterized by decreasing maximum lumen curvature (p < 0.05), increasing minimum lumen curvature (p < 0.05) and decreasing lumen roughness (p < 0.05) during the one year follow-up period.

Conclusions

Carotid plaque healing can be assessed by quantification of the lumen curvature and roughness and the incidence of recurrent cerebrovascular events may be high in plaques that do not heal with time. The assessment of plaque healing may facilitate risk stratification of recent stroke patients on the basis of CMR results.  相似文献   

16.

Background

Multi-contrast weighted imaging is a commonly used cardiovascular magnetic resonance (CMR) protocol for characterization of carotid plaque composition. However, this approach is limited in several aspects including low slice resolution, long scan time, image mis-registration, and complex image interpretation. In this work, a 3D CMR technique, named Multi-contrast Atherosclerosis Characterization (MATCH), was developed to mitigate the above limitations.

Methods

MATCH employs a 3D spoiled segmented fast low angle shot readout to acquire data with three different contrast weightings in an interleaved fashion. The inherently co-registered image sets, hyper T1-weighting, gray blood, and T2-weighting, are used to detect intra-plaque hemorrhage (IPH), calcification (CA), lipid-rich necrotic core (LRNC), and loose-matrix (LM). The MATCH sequence was optimized by computer simulations and testing on four healthy volunteers and then evaluated in a pilot study of six patients with carotid plaque, using the conventional multi-contrast protocol as a reference.

Results

On MATCH images, the major plaque components were easy to identify. Spatial co-registration between the three image sets with MATCH was particularly helpful for the reviewer to discern co-existent components in an image and appreciate their spatial relation. Based on Cohen’s kappa tests, moderate to excellent agreement in the image-based or artery-based component detection between the two protocols was obtained for LRNC, IPH, CA, and LM, respectively. Compared with the conventional multi-contrast protocol, the MATCH protocol yield significantly higher signal contrast ratio for IPH (3.1 ± 1.3 vs. 0.4 ± 0.3, p < 0.001) and CA (1.6 ± 1.5 vs. 0.7 ± 0.6, p = 0.012) with respect to the vessel wall.

Conclusions

To the best of our knowledge, the proposed MATCH sequence is the first 3D CMR technique that acquires spatially co-registered multi-contrast image sets in a single scan for characterization of carotid plaque composition. Our pilot clinical study suggests that the MATCH-based protocol may outperform the conventional multi-contrast protocol in several respects. With further technical improvements and large-scale clinical validation, MATCH has the potential to become a CMR method for assessing the risk of plaque disruption in a clinical workup.  相似文献   

17.

Background

While cardiovascular magnetic resonance (CMR) commonly employs ECG-synchronized cine acquisitions with balanced steady-state free precession (SSFP) contrast at 1.5 T, recent developments at 3 T demonstrate significant potential for T1-weighted real-time imaging at high spatiotemporal resolution using undersampled radial FLASH. The purpose of this work was to combine both ideas and to evaluate a corresponding real-time CMR method at 1.5 T with SSFP contrast.

Methods

Radial gradient-echo sequences with fully balanced gradients and at least 15-fold undersampling were implemented on two CMR systems with different gradient performance. Image reconstruction by regularized nonlinear inversion (NLINV) was performed offline and resulted in real-time SSFP CMR images at a nominal resolution of 1.8 mm and with acquisition times of 40 ms.

Results

Studies of healthy subjects demonstrated technical feasibility in terms of robustness and general image quality. Clinical applicability with access to quantitative evaluations (e.g., ejection fraction) was confirmed by preliminary applications to 27 patients with typical indications for CMR including arrhythmias and abnormal wall motion. Real-time image quality was slightly lower than for cine SSFP recordings, but considered diagnostic in all cases.

Conclusions

Extending conventional cine approaches, real-time radial SSFP CMR with NLINV reconstruction provides access to individual cardiac cycles and allows for studies of patients with irregular heartbeat.  相似文献   

18.

Background

Late Gadolinium Enhancement (LGE) and T2-weighted cardiovascular magnetic resonance (CMR) provides a means to measure myocardial area at risk (AAR) and salvage. Several T2-weighted CMR sequences are in use, but there is no consensus in terms of which sequence to be the preferred. Therefore, the aim of the present study was to: (1) Assess the reproducibility and (2) compare the two most frequently used T2-weighted CMR protocols for measuring AAR and salvage.

Methods

91 patients with ST-elevation myocardial infarction treated with primary percutaneous coronary intervention underwent a CMR scan 1-7 days after initial treatment. Two different T2-weighted protocols, varying in slice thickness and echo time (TE), were applied covering the entire left ventricle (LV) (protocol 1: TE 65 msec and slice thickness 15 mm; protocol 2: TE 100 msec and slice thickness of 8 mm). On a second scan performed 3 months later, infarct size was assessed with a standard LGE sequence. The two protocols were compared in terms of AAR and salvage index. Furthermore, intra- and interobserver reproducibility were assessed.

Results

Protocol 1 measures a larger AAR and salvage index than protocol 2 with a mean difference in AAR of 1 ± 8%LV (p < 0.01) and 6 ± 12 g (p < 0.01) and salvage index of 0.04 ± 0.12 (p < 0.01). Both protocols had a high intra- and interobserver reproducibility with acceptable limits of agreement (6-8%LV and 6-12 g in AAR and 0.06-0.08 in salvage index).

Conclusions

We report acceptable reproducibility for AAR and salvage index measured by T2-weighted images. Thus CMR is a reliable tool for measuring AAR and salvage index. Protocol 2 (8 mm slice thickness and 100 msec TE) measures slightly smaller AAR than protocol 1 (15 mm slice thickness and 65 msec TE), but the present study does not allow for a clear recommendation of either of the protocols.  相似文献   

19.

Background

The purpose of this study was to determine the ability of Blood Oxygen Level Dependent (BOLD) cardiovascular magnetic resonance (CMR) to detect stress-inducible myocardial ischemic reactions in the presence of angiographically significant coronary artery disease (CAD).

Methods

Forty-six patients (34 men; age 65 ± 9 years,) with suspected or known coronary artery disease underwent CMR at 3Tesla prior to clinically indicated invasive coronary angiography. BOLD CMR was performed in 3 short axis slices of the heart at rest and during adenosine stress (140 μg/kg/min) followed by late gadolinium enhancement (LGE) imaging. In all 16 standard myocardial segments, T2* values were derived at rest and under adenosine stress. Quantitative coronary angiography served as the standard of reference and defined normal myocardial segments (i.e. all 16 segments in patients without any CAD), ischemic segments (i.e. supplied by a coronary artery with ≥50% luminal narrowing) and non-ischemic segments (i.e. supplied by a non-significantly stenosed coronary artery in patients with significant CAD).

Results

Coronary angiography demonstrated significant CAD in 23 patients. BOLD CMR at rest revealed significantly lower T2* values for ischemic segments (26.7 ± 11.6 ms) compared to normal (31.9 ± 11.9 ms; p < 0.0001) and non-ischemic segments (31.2 ± 12.2 ms; p = 0.0003). Under adenosine stress T2* values increased significantly in normal segments only (37.2 ± 14.7 ms; p < 0.0001).

Conclusions

Rest and stress BOLD CMR at 3Tesla proved feasible and differentiated between ischemic, non-ischemic, and normal myocardial segments in a clinical patient population. BOLD CMR during vasodilator stress identified patients with significant CAD.  相似文献   

20.

Background

Myocardial edema is a substantial feature of the inflammatory response in human myocarditis. The relation between myocardial edema and myocardial mass in the course of healing myocarditis has not been systematically investigated. We hypothesised that the resolution of myocardial edema as visualised by T2-weighted cardiovascular magnetic resonance (CMR) is associated with a decrease of myocardial mass in steady state free precession (SSFP)-cine imaging.

Methods

21 patients with acute myocarditis underwent CMR shortly after onset of symptoms and 1 year later. For visualization of edema, a T2-weighted breath-hold black-blood triple-inversion fast spin echo technique was applied and the ratio of signal intensity of myocardium/skeletal muscle was assessed. Left ventricular (LV) mass, volumes and function were quantified from biplane cine steady state free precession images.11 healthy volunteers served as a control group for interstudy reproducibility of LV mass.

Results

In patients with myocarditis, a significant decrease in LV mass was observed during follow-up compared to the acute phase (156.7 ± 30.6 g vs. 140.3 ± 28.3 g, p < 0.0001). The reduction of LV mass paralleled the normalization of initially increased myocardial signal intensity on T2-weighted images (2.4 ± 0.4 vs. 1.68 ± 0.3, p < 0.0001).In controls, the interstudy difference of LV mass was lower than in patients (5.1 ± 2.9 g vs. 16.3 ± 14.2 g, p = 0.02) resulting in a lower coefficient of variability (2.1 vs 8.9%, p = 0.04).

Conclusion

Reversible abnormalities in T2-weighted CMR are paralleled by a transient increase in left ventricular mass during the course of myocarditis. Myocardial edema may be a common pathway explaining these findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号