首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Acta biomaterialia》2014,10(12):5090-5098
Injectable scaffolds are of interest in the field of regenerative medicine because of their minimally invasive mode of delivery. For tissue repair applications, it is essential that such scaffolds have the mechanical properties, porosity and pore diameter to support the formation of new tissue. In the current study, porous poly(dl-lactic acid-co-glycolic acid) (PLGA) microspheres were fabricated with an average size of 84 ± 24 μm for use as injectable cell carriers. Treatment with ethanolic sodium hydroxide for 2 min was observed to increase surface porosity without causing the microsphere structure to disintegrate. This surface treatment also enabled the microspheres to fuse together at 37 °C to form scaffold structures. The average compressive strength of the scaffolds after 24 h at 37 °C was 0.9 ± 0.1 MPa, and the average Young’s modulus was 9.4 ± 1.2 MPa. Scaffold porosity levels were 81.6% on average, with a mean pore diameter of 54 ± 38 μm. This study demonstrates a method for fabricating porous PLGA microspheres that form solid porous scaffolds at body temperature, creating an injectable system capable of supporting NIH-3T3 cell attachment and proliferation in vitro.  相似文献   

2.
X. Wu  Y. Liu  X. Li  P. Wen  Y. Zhang  Y. Long  X. Wang  Y. Guo  F. Xing  J. Gao 《Acta biomaterialia》2010,6(3):1167-1177
Porous gelatin scaffolds with microtubule orientation structure were manufactured by unidirectional freeze-drying technology, and their porous structure was characterized by scanning electron microscopy. Scaffolds with tunable pore size and high porosity up to 98% were obtained by adjusting the concentration of the gelatin solution and crosslinking agent during the preparation process. All the porous gelatin scaffolds exhibited oriented microtubule pores, with width and length from 50 to 100 μm and 100 to 500 μm, respectively. Meanwhile, the properties of the scaffolds, such as porosity, water adsorption ability and compressive strength, were studied. In vitro enzymatic degradation results showed that the absolute weight loss of the gelatin scaffolds exhibited an increasing trend from low to high gelatin concentration used to prepare gelatin scaffolds; in vitro cell culture results indicated that the porous gelatin scaffolds were non-toxic to cartilage cells, since the cells spread and grew well.  相似文献   

3.
Pore architecture in 3D polymeric scaffolds is known to play a critical role in tissue engineering as it provides the vital framework for the seeded cells to organize into a functioning tissue. In this report, we investigated the effects of different freezing temperature regimes on silk fibroin protein 3D scaffold pore microstructure. The fabricated scaffolds using freeze-dry technique were used as a 3D model to monitor cell proliferation and migration. Pores of 200–250 μm diameter were formed by slow cooling at temperatures of ?20 and ?80 °C but were found to be limited in porosity and pore interconnectivity as observed through scanning electron microscopic images. In contrast, highly interconnected pores with 96% porosity were observed when silk solutions were rapidly frozen at ?196 °C. A detailed study was conducted to assess the affect of pore size, porosity and interconnectivity on human dermal fibroblast cell proliferation and migration on these 3D scaffolds using confocal microscopy. The cells were observed to migrate within the scaffold interconnectivities and were found to reach scaffold periphery within 28 days of culture. Confocal images further confirmed normal cell attachment and alignment of actin filaments within the porous scaffold matrix with well-developed nuclei. This study indicates rapid freeze-drying technique as an alternative method to fabricate highly interconnected porous scaffolds for developing functional 3D silk fibroin matrices for potential tissue engineering, biomedical and biotechnological applications.  相似文献   

4.
Highly porous poly(dl-lactic-co-glycolic acid) films with controlled release of horseradish peroxidase (HRP) as a model protein have been successfully developed and studied. These films, which are prepared by freeze-drying inverted emulsions, are designed for use in tissue-regeneration applications. The effects of the emulsion’s formulation and host polymer’s characteristics on the film’s microstructure and HRP release profile over 4 weeks were investigated. A dual pore size population is characteristic for most films, with large 12–18 μm pores and small 1.5–7 μm pores, and porosity in the range of 76–92%. An increase in the polymer content and its initial molecular weight, organic/aqueous (O:A) phase ratio and lactic acid content, or a decrease in the HRP content, all resulted in a decreased burst effect and a more moderate release profile. A simultaneous change in two or three of these formulation parameters (compared to a reference formulation) resulted in a synergistic effect on the HRP release profile. A constant HRP release rate was achieved when a composite film was used. Human gingival fibroblast adhesion to the films indicated good biocompatibility. Appropriate selection of the emulsion’s parameters can therefore yield highly porous films with the desired protein-release behavior which can serve as scaffolds for bioactive agents in tissue-regeneration applications.  相似文献   

5.
There is a need to develop synthetic scaffolds to repair large defects in load-bearing bones. Bioactive glasses have attractive properties as a scaffold material for bone repair, but data on their mechanical properties are limited. The objective of the present study was to comprehensively evaluate the mechanical properties of strong porous scaffolds of silicate 13-93 bioactive glass fabricated by robocasting. As-fabricated scaffolds with a grid-like microstructure (porosity 47%, filament diameter 330 μm, pore width 300 μm) were tested in compressive and flexural loading to determine their strength, elastic modulus, Weibull modulus, fatigue resistance, and fracture toughness. Scaffolds were also tested in compression after they were immersed in simulated body fluid (SBF) in vitro or implanted in a rat subcutaneous model in vivo. As fabricated, the scaffolds had a strength of 86 ± 9 MPa, elastic modulus of 13 ± 2 GPa, and a Weibull modulus of 12 when tested in compression. In flexural loading the strength, elastic modulus, and Weibull modulus were 11 ± 3 MPa, 13 ± 2 GPa, and 6, respectively. In compression, the as-fabricated scaffolds had a mean fatigue life of ~106 cycles when tested in air at room temperature or in phosphate-buffered saline at 37 °C under cyclic stresses of 1–10 or 2–20 MPa. The compressive strength of the scaffolds decreased markedly during the first 2 weeks of immersion in SBF or implantation in vivo, but more slowly thereafter. The brittle mechanical response of the scaffolds in vitro changed to an elasto-plastic response after implantation for longer than 2–4 weeks in vivo. In addition to providing critically needed data for designing bioactive glass scaffolds, the results are promising for the application of these strong porous scaffolds in loaded bone repair.  相似文献   

6.
During the past two decades, research on ceramic scaffolds for bone regeneration has progressed rapidly; however, currently available porous scaffolds remain unsuitable for load-bearing applications. The key to success is to apply microstructural design strategies to develop ceramic scaffolds with mechanical properties approaching those of bone. Here we report on the development of a unique microstructurally designed ceramic scaffold, strontium–hardystonite–gahnite (Sr–HT–gahnite), with 85% porosity, 500 μm pore size, a competitive compressive strength of 4.1 ± 0.3 MPa and a compressive modulus of 170 ± 20 MPa. The in vitro biocompatibility of the scaffolds was studied using primary human bone-derived cells. The ability of Sr–HT–gahnite scaffolds to repair critical-sized bone defects was also investigated in a rabbit radius under normal load, with β-tricalcium phosphate/hydroxyapatite scaffolds used in the control group. Studies with primary human osteoblast cultures confirmed the bioactivity of these scaffolds, and regeneration of rabbit radial critical defects demonstrated that this material induces new bone defect bridging, with clear evidence of regeneration of original radial architecture and bone marrow environment.  相似文献   

7.
In this study, we report for the first time the fabrication of novel 3-D sericin/gelatin scaffolds and 2-D films using non-mulberry Antheraea mylitta silk cocoon sericin protein. The matrices were fabricated, biophysically characterized and optimized for cell culture applications. Blended sericin/gelatin 3-D scaffolds were highly porous with an optimum pore size of 170 ± 20 μm. The scaffolds were robust with enhanced mechanical strength and showed high compressibility. Swelling studies showed high swellability along with complete degradation in the presence of phosphate-buffered saline. Cytocompatibility of the matrices was evaluated using feline fibroblasts showing normal spreading and proliferation as assessed by fluorescence microscopy. Cell cycle analysis showed cytocompatibility without any cell cycle arrests. Low immunogenicity of the matrices as observed through tumor necrosis factor α release reveal its potential as future biopolymeric graft material. The results of this novel study lay the foundation for the use of the silk cocoon protein sericin as a biocompatible biopolymer for tissue engineering applications.  相似文献   

8.
A strategy to modulate the behavior of stem cells in culture is to mimic structural aspects of the native cell/extracellular matrix interaction. We applied femtosecond laser two-photon polymerization (2PP) to fabricate three-dimensional (3-D) microscaffolds, or “niches”, using a hybrid organic–inorganic photoresist called SZ2080. The niches, of sizes fitting in a volume of 100 × 100 × 100 μm3, were made by an external containment grid of horizontal parallel elements and by an internal 3-D lattice. We developed two niche heights, 20 and 80-100 μm, and four lattice pore dimensions (10, 20, 30 μm and graded). We used primary rat mesenchymal stem cells (MSCs) to study cell viability, migration and proliferation in the niches, up to 6 culture days. MSCs preferentially stayed on/in the structures once they ran into them through random migration from the surrounding flat surface, invaded those with a lattice pore dimension greater than 10 μm, and adhered to the internal lattice while the cell nuclei acquired a roundish morphology. In the niches, the highest MSC density was found in those areas where proliferation was observed, corresponding to the regions where the scaffold surface density available for cell adhesion was highest. The microgeometry inducing the highest cell density was 20 μm high with graded pores, in which cell invasion was favored in the central region of large porosity and cell adhesion was favored in the lateral regions of high scaffold surface density. Cell density in the niches, 17 ± 6 cells/(100 × 100 μm2), did not significantly differ from that of the flat surface colonies. This implies that MSCs spontaneously homed and established colonies within the 3-D niches. This study brings to light the crucial role played by the niche 3-D geometry on MSC colonization in culture, with potential implications for the design of biomaterial scaffolds for synthetic niche engineering.  相似文献   

9.
Implants that serve simultaneously as an osteoconductive matrix and as a device for local growth factor delivery may be required for optimal bone regeneration in some applications. In the present study, hollow hydroxyapatite (HA) microspheres (106–150 μm) in the form of three-dimensional (3-D) scaffolds or individual (loose) microspheres were created using a glass conversion process. The capacity of the implants, with or without transforming growth factor β1 (TGF-β1), to regenerate bone in a rat calvarial defect model was compared. The 3-D scaffolds supported the proliferation and alkaline phosphatase activity of osteogenic MLO-A5 cells in vitro, showing their cytocompatibility. Release of TGF-β1 from the 3-D scaffolds into phosphate-buffered saline ceased after 2–3 days when ~30% of the growth factor was released. Bone regeneration in the 3-D scaffolds and the individual microspheres increased with time from 6 to 12 weeks, but it was significantly higher (23%) in the individual microspheres than in the 3-D scaffolds (15%) after 12 weeks. Loading with TGF-β1 (5 μg per defect) enhanced bone regeneration in the 3-D scaffolds and individual microspheres after 6 weeks, but had little effect after 12 weeks. 3-D scaffolds and individual microspheres with larger HA diameter (150–250 μm) showed better ability to regenerate bone. Based on these results, implants composed of hollow HA microspheres show promising potential as an osteoconductive matrix for local growth factor delivery in bone regeneration.  相似文献   

10.
It is well established that scaffolds for applications in bone tissue engineering require interconnected pores on the order of 100 μm for bone in growth and nutrient and waste transport. As a result, most studies have focused on scaffold macroporosity (>100 μm). More recently researchers have investigated the role of microporosity in calcium phosphate -based scaffolds. Osteointegration into macropores improves when scaffold rods or struts contain micropores, typically defined as pores less than ~50 μm. We recently demonstrated multiscale osteointegration, or growth into both macropores and intra-red micropores (<10 μm), of biphasic calcium phosphate (BCP) scaffolds. The combined effect of BMP-2, a potent osteoinductive growth factor, and multiscale porosity has yet to be investigated. In this study we implanted BCP scaffolds into porcine mandibular defects for 3, 6, 12 and 24 weeks and evaluated the effect of BMP-2 on multiscale osteointegration. The results showed that given this in vivo model BMP-2 influences osteointegration at the microscale, but not at the macroscale, but not at the macroscale. Cell density was higher in the rod micropores for scaffolds containing BMP-2 compared with controls at all time points, but BMP-2 was not required for bone formation in micropores. In contrast, there was essentially no difference in the fraction of bone in macropores for scaffolds with BMP-2 compared with controls. Additionally, bone in macropores seemed to have reached steady-state by 3 weeks. Multiscale osteointegration results in bone-scaffold composites that are fully osteointegrated, with no ‘dead space’. These composites are likely to contain a continuous cell network as well as the potential for enhanced load transfer and improved mechanical properties.  相似文献   

11.
This is the first reported study to prepare highly porous baghdadite (Ca3ZrSi2O9) scaffolds with and without surface modification and investigate their ability to repair critical-sized bone defects in a rabbit radius under normal load. The modification was carried out to improve the mechanical properties of the baghdadite scaffolds (particularly to address their brittleness) by coating their surfaces with a thin layer (~400 nm) of polycaprolactone (PCL)/bioactive glass nanoparticles (nBGs). The β-tricalcium phosphate/hydroxyapatite (TCP/HA) scaffolds with and without modification were used as the control groups. All of the tested scaffolds had an open and interconnected porous structure with a porosity of ~85% and average pore size of 500 μm. The scaffolds (six per scaffold type and size of 4 mm × 4 mm × 15 mm) were implanted (press-fit) into the rabbit radial segmental defects for 12 weeks. Micro-computed tomography and histological evaluations were used to determine bone ingrowth, bone quality, and implant integration after 12 weeks of healing. Extensive new bone formation with complete bridging of the radial defect was evident with the baghdadite scaffolds (modified/unmodified) at the periphery and in close proximity to the ceramics within the pores, in contrast to TCP/HA scaffolds (modified/unmodified), where bone tended to grow between the ulna adjacent to the implant edge. Although the modification of the baghdadite scaffolds significantly improved their mechanical properties, it did not show any significant effect on in vivo bone formation. Our findings suggest that baghdadite scaffolds with and without modification can serve as a potential material to repair critical sized bone defects.  相似文献   

12.
A room temperature camphene-based freeze-casting method was used to fabricate hydroxyapatite/tricalcium phosphate (HA/TCP) ceramic scaffolds. By varying the solid loading of the mixture and the freezing temperature, a range of structures with different pore sizes and strength characteristics were achieved. The macropore size of the HA/TCP bioceramics was in the range of 100–200 μm, 40–80 μm and less than 40 μm at solid loadings of 10, 20 and 30 vol.%, respectively. The initial level of solid loading played a primary role in the resulting porosity of the scaffolds. The porosity decreased from 72.5 to 31.4 vol.% when the solid loading was increased from 10 to 30 vol.%. This resulted in an increase in the compressive strength from 2.3 to 36.4 MPa. The temperature gradient, rather than the percentage porosity, influenced the pore size distribution. The compressive strength increased from 1.95 to 2.98 MPa when samples were prepared at 4 °C as opposed to 30 °C. The results indicated that it was possible to manufacture porous HA/TCP bioceramics, with compressive strengths comparable to cancellous bone, using the freeze-casting manufacturing technique, which could be of significant clinical interest.  相似文献   

13.
Carbonated apatite ceramics, with a composition similar to that of bone mineral, are potentially interesting synthetic bone graft substitutes. In the present study, two porous carbonated apatite ceramics were developed, characterized and tested for their bone repair capacity and osteoinductive potential in a goat model. Although the two ceramics were prepared from a similar starting powder, their physico-chemical and structural characteristics differed as a consequence of different preparation methods. Both ceramics had an open and interconnected porous structure with a porosity of about 80%. The morphology of the surface of CA-A and CA-B at the submicron level differed significantly: CA-A consisted of irregular grains with a size of 5–20 μm, with 1–10 μm large micropores among the grains, whereas CA-B surface consisted of much smaller and regular shaped grains (0.05–0.5 μm), with most micropores smaller than 1 μm. The specific surface area of CA-B was about 10 times larger than that of CA-A due to its significantly smaller grain size. CA-A and CA-B ceramics contained 3 and 5 wt.% of B-type carbonated apatite, respectively. Although neither ceramic succeeded in completely bridging the 17 mm iliac wing defect with new bone after 12 weeks of implantation, CA-A showed significantly more bone formation in the pores of the implant than CA-B. The total area percentage of new bone in the total defect area was 12.7 ± 1.81 and 5.51 ± 1.37 (mean ± SEM) for CA-A and CA-B, respectively. Intramuscular implantation of the ceramics led to ectopic bone formation by CA-A in all three implanted specimens, in contrast to CA-B, where no new bone was observed in any of the 11 animals. CA-A showed a more pronounced degradation than CA-B both in vitro and in vivo at both implantation sites, which was unexpected based on the physico-chemical and structural properties of the two ceramics. Both physico-chemical and structural properties of the ceramics could, dependently or independently, have affected their in vivo behaviour, emphasizing the importance to control individual parameters for successful bone repair.  相似文献   

14.
《Acta biomaterialia》2014,10(12):5148-5155
Anisotropic scaffolds with the typical structure of lamellar, aligned and continuous pores were successfully achieved by the directional solidification of water-based β-tricalcium phosphate (β-TCP) suspensions. Adjustable porosities from 49 to 82%, tunable pore widths from 8 to 50 μm and linked ceramic cells with wall thicknesses from 4 to 30 μm were obtained. Correlated compressive strengths reached from 0.4 MPa (82% porosity, low solidification velocity of 10 μm s−1) to 40 MPa (49% porosity, high solidification velocity of 30 μm s−1). At a given scaffold porosity, the compressive strength increased by more than twofold with increasing solidification velocity due to attendant structural changes. Thus, the key to controlling structural sizes, besides the trivial control of porosity through the water content in the initial suspension, is to control the solidification velocity. In this study, an analytical solution of the heat conduction equation was used as a novel approach to control the solidification velocity during the process. The relationships between processing conditions and resulting structure as well as between structure and mechanical properties were elucidated and discussed.  相似文献   

15.
Topographical features, including fiber dimensions and pattern, are important aspects in developing fibrous scaffolds for tissue engineering. In this study aligned poly(l-lactide) (PLLA) fibers with diameters of 307 ± 47, 500 ± 53, 679 ± 72 and 917 ± 84 nm and random fibers with diameters of 327 ± 40, 545 ± 54, 746 ± 82 and 1150 ± 109 nm were obtained by optimizing the electrospinning parameters. We cultured neonatal mouse cerebellum C17.2 cells on the PLLA fibers. These neural stem cells (NSCs) exhibited significantly different growth and differentiation depending upon fiber dimension and pattern. On aligned fibers cell viability and proliferation was best on 500 nm fibers, and reduced on smaller or larger fibers. However, on random fibers cell viability and proliferation was best with the smallest (350 nm) and largest (1150 nm) diameter fibers. Polarized and elongated cells were orientated along the fiber direction on the aligned fibers, with focal contacts bridging the cell body and aligned fibers. Cells of spindle and polygonal morphologies were randomly distributed on the random fibers, with no focal contacts observed. Moreover, longer neurites were obtained on the aligned fibers than random fibers within the same diameter range. Thus, the surface topographic morphologies of fibrous scaffolds, including fiber pattern, dimensions and mesh size, play roles in regulating the viability, proliferation and neurite outgrowth of NSCs. Nevertheless, our results indicated that aligned 500 nm fiber are most promising for fine tuning the design of a nerve scaffold.  相似文献   

16.
There is a need for synthetic bone graft substitutes to repair large bone defects resulting from trauma, malignancy and congenital diseases. Bioactive glass has attractive properties as a scaffold material but factors that influence its ability to regenerate bone in vivo are not well understood. In the present work, the ability of strong porous scaffolds of 13-93 bioactive glass with an oriented microstructure to regenerate bone was evaluated in vivo using a rat calvarial defect model. Scaffolds with an oriented microstructure of columnar pores (porosity = 50%; pore diameter = 50?150 μm) showed mostly osteoconductive bone regeneration, and new bone formation, normalized to the available pore area (volume) of the scaffolds, increased from 37% at 12 weeks to 55% at 24 weeks. Scaffolds of the same glass with a trabecular microstructure (porosity = 80%; pore width = 100?500 μm), used as the positive control, showed bone regeneration in the pores of 25% and 46% at 12 and 24 weeks, respectively. The brittle mechanical response of the as-fabricated scaffolds changed markedly to an elastoplastic response in vivo at both implantation times. These results indicate that both groups of 13-93 bioactive glass scaffolds could potentially be used to repair large bone defects, but scaffolds with the oriented microstructure could also be considered for the repair of loaded bone.  相似文献   

17.
High porosity and pore interconnectivity are important features of a successful tissue engineering scaffold. The objective of this work was to optimize the pore interconnectivity and to increase the porosity of an elastomeric degradable/polar/hydrophobic/ionic (D-PHI) polyurethane porous scaffold while maintaining its mechanical integrity in order to allow for the transfer of mechanical stimulus to vascular smooth muscle cells (VSMCs) seeded onto the scaffold. The effect of varying porogen (sodium bicarbonate (salt) and polyethylene glycol (PEG)) composition and concentration on the mechanical properties, degree of swelling and porosity of the scaffolds was investigated. It was found that the use of 10 wt.% PEG and 65 wt.% salt in scaffold fabrication (D-PHI-75T) resulted in micropore (1–5 μm) formation, a high porosity (79 ± 3%) and mechanical properties (elastic modulus = 0.16 ± 0.03 MPa, elongation-at-yield = 31 ± 5% and tensile strength = 0.04 ± 0.01 MPa) required to withstand the physiologically relevant mechanical strain experienced by VMSCs in vivo. This study also investigated the influence of cyclic mechanical strain (CMS) on select molecular markers of A10 VSMCs when seeded into the optimized D-PHI scaffold. To study the interaction of A10 cells with the optimized D-PHI-75T scaffold in the presence of uniaxial strain (10%, 1 Hz), a CMS bioreactor was designed and constructed. Molecular marker studies showed a statistical increase in DNA mass and calponin expression after 3 and 7 days of CMS when compared to static samples, indicating that the translation of mechanical loading from the novel polyurethane elastomeric scaffold onto VSMCs will be important to consider with regard to modulating cell phenotype.  相似文献   

18.
An ideal scaffold provides an interface for cell adhesion and maintains enough biomechanical support during tissue regeneration. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) scaffolds with pore sizes ranging from 100 to 500 μm and porosity ~90% were prepared by the particulate-leaching method, and then modified by the introduction of polyacrylamide (PAM) on the inner surface of scaffolds using in situ UV polymerization, with the aim of enhancing the biological and mechanical properties of the PHBV scaffolds. The modified PHBV scaffolds had interconnected pores with porosity of 75.4–78.6% and pore sizes at peak volume from 20 to 50 μm. The compressive load and modulus were up to 62.45 N and 1.06 MPa, respectively. The water swelling percentage (WSP) of the modified PHBV scaffolds increased notably compared with that of the PHBV scaffolds, with the maximum WSP at 537%. Sheep bone mesenchymal stem cells (BMSC) were cultured on the PHBV and modified PHBV. The hydrophilic PAM chains did not influence BMSC viability or proliferation index, but the initial cell adhesion at 1 h of culture was enhanced significantly. Framing PHBV scaffold along with gel-like PAM chains inside is a novel model of inner surface modification for PHBV scaffolds, which shows potential in tissue engineering applications.  相似文献   

19.
In this study, a series of 3-D interconnected porous scaffolds with various pore diameters and porosities was fabricated by freeze-drying with non-toxic biodegradable waterborne polyurethane (WBPU) emulsions of different concentration. The structures of these porous scaffolds were characterized by scanning electron microscopy (SEM), and the pore diameters were calculated using CIAS 3.0 software. The pores obtained were 3-D interconnected in the scaffolds. The scaffolds obtained at different pre-freeze temperatures showed a pore diameter ranging from 2.8 to 99.9 μm with a pre-freezing temperature of ?60°C and from 13.1 to 229.1 μm with a pre-freezing temperature of ?25°C. The scaffolds fabricated with WBPU emulsions of different concentration at the same pre-freezing temperature (?25°C) had pores with mean pore diameter between 90.8 and 39.6 μm and porosity between 92.0 and 80.0%, depending on the emulsion concentration. The effect of porous structure of the scaffolds on adhesion and proliferation of human umbilical vein endothelial cells (HUVECs) cultured in vitro was evaluated using the MTT assay and environmental scanning electron microscopy (ESEM). It was found that the better adhesion and proliferation of HUVECs on 3-D scaffolds of WBPU with relative smaller pore diameter and lower porosity than those on scaffolds with larger pore and higher porosity and film. Our work suggests that fabricating a scaffold with controllable pore diameter and porosity could be a good method to be used in tissue-engineering applications to obtain carriers for cell culture in vitro.  相似文献   

20.
Treatment of defects in joint cartilage aims to re-establish normal joint function. In vitro experiments have shown that the application of synthetic scaffolds is a promising alternative to existing therapeutic options. A sheep study was conducted to test the suitability of microporous pure β-tricalcium phosphate (TCP) ceramics as tissue engineering scaffolds for the repair of osteochondral defects. Cylindrical plugs of microporous β-TCP (diameter: 7 mm; length: 25 mm; porosity: 43.5 ± 2.4%; pore diameter: ~5 μm) with interconnecting pores were used. Scaffolds were seeded with autologous chondrocytes in vitro and cultured for 4 weeks. A drill hole (diameter 7 mm) was placed in both medial femoral condyles of sheep. For the left knee the defect was filled with a TCP plug and for the right knee the defect was left empty. After 6, 12, 26 and 52 weeks, seven animals from each group were killed and studied. The samples were examined employing histological, histomorphometric and immunohistological methods as well as various imaging techniques (X-ray, microcomputer tomography and scanning electron microscopy). After explantation the cartilage defects were first assessed macroscopically. There were no signs of infection or inflammation. Histological grading scales were used for assessment of bony integration and cartilage repair. An increasing degradation (81% after 52 weeks) of the ceramic with concomitant bone formation was observed. The original structure of cancellous bone was almost completely restored. After 26 and 52 weeks, collagen II-positive hyaline cartilage was detected in several samples. New subchondral bone had formed. The formation of cartilage began at the outer edge and proceeded to the middle. According to the O’Driscoll score, values corresponding to healthy cartilage were not reached after 1 year. Integration of the newly formed cartilage tissue into the surrounding native cartilage was found. The formation of biomechanical stable cartilage began at the edge and progressed towards the centre of the defect. After 1 year this process was still not completed. Microporous β-TCP scaffolds seeded with chondrocytes are suitable for the treatment of osteochondral defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号