首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Chronic pulmonary infection with Pseudomonas aeruginosa is common in cystic fibrosis (CF) patients. P. aeruginosa lipopolysaccharide (LPS), phosholipase C (PLC), and exotoxin A (ETA) were evaluated for their ability to induce pulmonary inflammation in mice following intranasal inoculation. Both LPS and PLC induced high levels of tumor necrosis factor alpha (TNF-alpha), interleukin 1 beta (IL-1 beta-6, gamma interferon (IFN-gamma), MIP-1 alpha MIP-2 in the lungs but did not affect IL-18 levels. ETA did not induce TNF-alpha and was a weak inducer of IL-1 beta, IL-6, macrophage inflammatory protein 1 alpha (MIP-1 alpha), and MIP-2. Remarkably, ETA reduced constitutive lung IL-18 levels. LPS was the only factor inducing IFN-gamma. LPS, PLC, and ETA all induced cell infiltration in the lungs. The role of interferon regulatory factor-1 (IRF-1) in pulmonary inflammation induced by LPS, PLC, and ETA was evaluated. When inoculated with LPS, IRF-1 gene knockout (IRF-1 KO) mice produced lower levels of TNF-alpha, IL-1 beta, and IFN-gamma than did wild-type (WT) mice. Similarly, a milder effect of ETA on IL-1 beta and IL-18 was observed for IRF-1 KO than for WT mice. In contrast, the cytokine response to PLC did not differ between WT and IRF-1 KO mice. Accordingly, LPS and ETA, but not PLC, induced expression of IRF-1 mRNA. IRF-1 deficiency had no effect on MIP-1 alpha and MIP-2 levels and on cell infiltration induced by LPS, PLC, or ETA. Flow cytometric evaluation of lung mononuclear cells revealed strongly reduced percentages of CD8(+) and NK cells in IRF-1 KO mice compared to percentages observed for WT mice. These data indicate that different virulence factors from P. aeruginosa induce pulmonary inflammation in vivo and that IRF-1 is involved in some of the cytokine responses to LPS and ETA.  相似文献   

2.
A significant clinical complication of pulmonary infections with Klebsiella pneumoniae is peripheral blood dissemination, resulting in a systemic infection concurrent with the localized pulmonary infection. In this context, little is known about the role of tumor necrosis factor receptor 1 (TNFR1)-mediated innate immune responses during systemic Klebsiella infections. Mice lacking TNFR1 were significantly more susceptible to Klebsiella-induced mortality following intravenous inoculation. Bacterial clearance was impaired in TNFR1-deficient mice at early times following infection. Unexpectedly, bacterial burdens at the onset of mortality (days 2 to 3 postinfection) were not higher in mice lacking TNFR1. However, elevated production of liver-associated proinflammatory cytokines (interleukin-12, tumor necrosis factor alpha [TNF-alpha[, and gamma interferon [IFN-gamma]) and chemokines (MIP-1 alpha, MIP-2, and MCP-1) was observed within the first 24 h of infection. Additionally, excessive plasma-associated IFN-gamma was also observed late in the course of infection (day 3). Spleen cells from day-3 infected TNFR1-deficient mice secreted markedly enhanced levels of IFN-gamma when cultured in vitro. Additionally, there was a marked increase in the total number of activated lymphocyte subsets as indicated by CD69 upregulation. A notable exception was the sharp decrease in the frequency of splenic NK T cells in infected TNFR1 knockout (KO) mice. Anti-TNF-alpha therapy in TNFR1 KO mice significantly reduced chemokine production and liver injury. Combined, these data indicate a dysregulated antibacterial host response following intravenous Klebsiella infection in the absence of TNFR1 signaling, resulting in heightened cytokine production and hyperactivation of specific splenic lymphocyte subsets.  相似文献   

3.
The pathogenesis of pulmonary Cryptococcus neoformans infection and the efficacy of passive immunoglobulin G1 (IgG1) administration were investigated in B-cell-deficient and C57BL/6J mice. C57BL/6J mice lived longer than B-cell-deficient mice after both intratracheal and intravenous infections. Administration of IgG1 prior to infection prolonged the survival of C57BL/6J mice but had no effect on the survival or numbers of CFU in the lungs of B-cell-deficient mice. C. neoformans infection in B-cell-deficient mice resulted in significantly higher levels of gamma interferon (IFN-gamma), monocyte chemoattractant protein-1 (MCP-1), and macrophage inflammatory protein-1alpha (MIP-1alpha) than in C57BL/6J mice. IgG1 administration reduced IFN-gamma and MCP-1 levels in C57BL/6J mice but not in B-cell-deficient mice. In addition, compared to its effect in C57BL/6J mice, C. neoformans infection in FcRgammaIII-deficient, athymic, and SCID mice significantly increased IFN-gamma and MCP-1 levels. IgG1 administration was associated with reduced IFN-gamma levels in C57BL/6J mice but not in FcRgammaIII-deficient, athymic, and SCID mice. These observations suggest that IgG1-mediated protection in this system is a consequence of alterations in the inflammatory response that translate into less damage to the host without directly reducing the fungal burden. For hosts with impaired immunities, the ineffectiveness of passive antibody (Ab) may reflect an inability to down-regulate inflammation and avoid self-damage. The results indicate an important role for B cells in host defense against C. neoformans infection and demonstrate a surprising dependence of Ab-mediated protection on B cells in this system.  相似文献   

4.
The role of interleukin (IL)-4 in cryptococcal disease was studied in IL-4 knockout (IL-4KO) and wild-type (WT) mice infected with Cryptococcus neoformans isolates that vary widely in their virulence. Delayed-type hypersensitivity responses were reduced in IL-4KO mice following primary infection with either isolate. Splenic T helper 1 (Th1) cytokine responses were increased in the IL-4KO mice infected with the weakly virulent isolate (184A) but did not change during infection with the highly virulent isolate (NU-2). Th2 cytokine responses (IL-5, IL-10) were downregulated in the IL-4KO mice infected with either isolate. Survival after primary infection with either isolate was not influenced by the absence of IL-4. Fewer colony-forming units were found in the lungs of 184A-infected, IL-4KO mice as compared to WT mice, suggesting that some immunity had developed. IL-4KO mice, primed with small doses of cryptococcal antigen (CneF), had significantly enhanced delayed-type hypersensitivity responses after intravenous infection with 184A and were more resistant to infection compared with WT mice. Increased expression of IL-5 with decreased interferon-gamma contributed to the inability of primed WT mice to resist infection with 184A. Enhanced immunity in the primed IL-4KO mice was reflected in a more moderate increase in IL-5 and IL-10 with maintenance of interferon-gamma levels.  相似文献   

5.
Vaginal infection with the mouse pneumonitis agent of Chlamydia trachomatis (MoPn) produces shorter courses of infection in C57BL/6 and BALB/c mice than in C3H/HeN mice, while C57BL/6 mice are more resistant to oviduct pathology. A robust Th1 response is extremely important in host defense against chlamydia. In this study we examined gamma interferon (IFN-gamma), interleukin 10 (IL-10), and the T-cell-regulatory chemokines macrophage inflammatory protein-1alpha (MIP-1alpha) and monocyte chemoattractant protein-1 (MCP-1) to determine if differences in these responses were associated with the differential courses of infection seen in these three strains of mice. Increased and prolonged IFN-gamma responses and lower IL-10 responses were observed in the C57BL/6 strain compared to BALB/c and C3H. Examination of genital tract chemokines revealed a marked predominance of MIP-1alpha over MCP-1 only in the C57 strain. Thus, a pattern of high MIP-1alpha and low MCP-1 levels during the first week of infection is associated with an increased Th1 response and a shorter, more benign chlamydial infection. Inhibition of the MCP-1 response in C3H mice increased their later T-cell production of IFN-gamma but decreased their early IFN-gamma response and had no effect on the course or outcome of infection. Inhibition of MCP-1 is not beneficial in chlamydial infection because of its pleiotropic effects.  相似文献   

6.
Early inflammatory responses, delayed-type hypersensitivity (DTH) responses, and cytokine profiles were studied in mice infected by the pulmonary route with either a highly virulent isolate (NU-2) or a weakly virulent isolate (184A) of Cryptococcus neoformans. After infection, NU-2 remained in the lungs and the capsule became more pronounced during the first 24 h, whereas 184A induced an immediate inflammatory reaction and was rapidly cleared from the lungs. Cryptococcal antigen (GXM) appeared in sera early after infection with NU-2 and increased over the entire observation period. There was no detectable GXM in sera from 184A-infected mice. Both C. neoformans isolates induced anticryptococcal cell-mediated immune responses, but the responses had different profiles. DTH in NU-2-infected mice appeared at day 15 after infection and waned by day 21, whereas DTH in 184A-infected mice was present by day 5 and continued to increase. T helper 1 (Th1) cytokines (interleukin 2 [IL-2] and gamma interferon) were made by spleen cells early after infection with either isolate. NU-2-infected mice lost their ability to produce these cytokines, but 184A-infected mice retained it. IL-4, a Th2 cytokine, was not detected in infected mice. The regulatory cytokine IL-10 was made by spleen cells early but not later after infection with the highly virulent isolate and was not produced by spleen cells from 184A-infected mice. IL-10-deficient mice survived an NU-2 infection significantly longer than wild-type mice, suggesting that IL-10 is important in down-regulating the protective immune response. The induction of anergy appears to be responsible for the inability of NU-2-infected mice to control a C. neoformans infection.  相似文献   

7.
The contribution of granulocyte-macrophage colony-stimulating factor (GM-CSF), a hematopoietic and immunoregulatory cytokine, to resistance to blood-stage malaria was investigated by infecting GM-CSF-deficient (knockout [KO]) mice with Plasmodium chabaudi AS. KO mice were more susceptible to infection than wild-type (WT) mice, as evidenced by higher peak parasitemia, recurrent recrudescent parasitemia, and high mortality. P. chabaudi AS-infected KO mice had impaired splenomegaly and lower leukocytosis but equivalent levels of anemia compared to infected WT mice. Both bone marrow and splenic erythropoiesis were normal in infected KO mice. However, granulocyte-macrophage colony formation was significantly decreased in these tissues of uninfected and infected KO mice, and the numbers of macrophages in the spleen and peritoneal cavity were significantly lower than in infected WT mice. Serum levels of gamma interferon (IFN-gamma) were found to be significantly higher in uninfected KO mice, and the level of this cytokine was not increased during infection. In contrast, IFN-gamma levels were significantly above normal levels in infected WT mice. During infection, tumor necrosis factor alpha (TNF-alpha) levels were significantly increased in KO mice and were significantly higher than TNF-alpha levels in infected WT mice. Our results indicate that GM-CSF contributes to resistance to P. chabaudi AS infection and that it is involved in the development of splenomegaly, leukocytosis, and granulocyte-macrophage hematopoiesis. GM-CSF may also regulate IFN-gamma and TNF-alpha production and activity in response to infection. The abnormal responses seen in infected KO mice may be due to the lack of GM-CSF during development, to the lack of GM-CSF in the infected mature mice, or to both.  相似文献   

8.
The development of T1-cell-mediated immunity is required to clear a pulmonary Cryptococcus neoformans infection. The objective of these studies was to determine the mechanism by which tumor necrosis factor alpha (TNF-alpha) augments the development of pulmonary T1 immunity to C. neoformans infection. TNF-alpha expression was detected in lavage sample cells at days 2, 3, and 7 following C. neoformans infection. The numbers of CFU in the lung were not different between control and anti-TNF-alpha-treated mice at any time point examined during the afferent phase of the response (days 0 to 7). However, neutralization of TNF-alpha prevented the initiation of pulmonary clearance during the efferent phase of the response (day 14). Administration of anti-TNF-alpha monoclonal antibody (day 0) diminished the lung levels of TNF-alpha, interleukin-12 (IL-12), and gamma interferon (IFN-gamma) induced by C. neoformans at day 7 postinfection. Neutralization of TNF-alpha (day 0) also altered the IFN-gamma/IL-4 ratio in the lung-associated lymph nodes at day 7 following C. neoformans infection. Anti-TNF-alpha-treated mice developed a pulmonary eosinophilia at day 14 postinfection. Consistent with the pulmonary eosinophilia, anti-TNF-alpha-treated mice exhibited elevated serum immunoglobulin E and inhibition of the anticryptococcal delayed-type hypersensitivity response, indicating a shift toward a T2 response. Neutralization of IL-12 also prevented lung leukocyte production of IFN-gamma in response to the infection. These findings demonstrate that afferent-phase TNF-alpha production is essential for the induction of IL-12 and IFN-gamma and neutralization of early TNF-alpha results in a T2 shift of the T1/T2 balance of antifungal immunity.  相似文献   

9.
Monocyte chemoattractant protein 1 (MCP-1) and its receptor CCR2 have been shown to play an import role in leukocyte recruitment to sites of infection and inflammation. To investigate the role of MCP-1 during infection with influenza we inoculated wild-type (WT) and MCP-1 knockout (KO) mice with a non-lethal dose of a mouse adapted strain of influenza A. Influenza infection of WT mice resulted in a profound increase in pulmonary MCP-1 levels. MCP-1 KO mice had enhanced weight loss and did not fully regain their body weight during the 14-day observation period. In addition, MCP-1 KO mice demonstrated elevated viral loads 8 days after infection, which was accompanied by reduced leukocyte recruitment into the infected lungs, primarily caused by a diminished influx of macrophages and granulocytes. Moreover, pulmonary levels of IgA were reduced in MCP-1 KO mice. The pulmonary concentrations of tumor necrosis factor-alpha, interleukin-6, macrophage inflammatory protein 2 and interferon-gamma were higher in MCP-1 KO mice. This study shows that MCP-1 contributes to an adequate protective immune response against influenza infection in mice.  相似文献   

10.
To investigate the role of interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha) in the resistance to Paracoccidioides brasiliensis (Pb) infection, mice with homologous disruption of the IFN-gamma (GKO) or TNF-alpha receptor p55 (p55KO) were infected with the parasite. GKO and p55KO, but not wild-type (WT) mice, were unable to control the growth of yeast cells and the mice succumbed to infection by days 16 and 90 after infection, respectively. Typical inflammatory granulomas were found only in WT mice. In contrast, knockout mice presented an inflammatory infiltrate composed of a few neutrophils, mononuclear, epithelioid, and multinuclear giant cells forming incipient granulomas in GKO mice and without granuloma formation in p55KO mice. Besides, both groups of knockout mice exhibited elevated numbers of yeast forms in agreement with colony-forming unit counts in organs. Compared with WT, splenocytes from infected GKO mice cultured with the Pb F1 fraction produced lower TNF-alpha levels, whereas leukocytes from infected p55KO mice produced similar amounts of TNF-alpha but higher levels of IFN-gamma. Moreover, splenocytes from infected WT mice produced higher levels of nitric oxide (NO) resulting in a lower T-cell proliferative response to Con A than uninfected WT, or infected p55KO and GKO mice. On the contrary, the addition of IFN-gamma to splenocytes from infected GKO mice resulted in higher NO production and lower T cell proliferation. Taken together, these findings suggests that endogenous TNF-alpha, acting through the p55 receptor, and IFN-gamma mediate resistance to Pb infection and induce NO production that determines marked T cell unresponsiveness.  相似文献   

11.
Transgenic Leishmania parasites that encode the murine chemokine monocyte chemoattractant protein 1 (MCP-1) were generated. These parasites transcribed MCP-1 mRNA and secreted MCP-1 protein. Infection of BALB/c, C57BL/6, or MCP-1 knockout (KO) mice with these parasites resulted in minimal lesion development with fewer parasites in the infected foot, lymph node, and spleen compared to wild-type-infected mice. In contrast, transgenic parasites caused substantial lesions with relatively high numbers of parasites in CC chemokine receptor 2 (CCR2) KO mice, indicating that the parasites are viable and healthy and that the lack of lesion development is CCR2 dependent. Prior infection of mice with transgenic parasites offered no protection to subsequent wild-type L. major challenge, suggesting that the transgenic parasites are controlled by an early innate immune response. Consistent with innate immunity, flow cytometry of cells from the ears of mice infected with transgenic parasites revealed an increase in the number of CCR2-positive macrophages by day 7 postinfection. The enumeration of transgenic parasites in ear lesions demonstrated a significant reduction in parasite numbers, which coincided with the increased CCR2-positive macrophage migration. CCR2-positive macrophages isolated from ears of mice infected with transgenic parasites contained virtually no parasites. In vitro studies revealed that optimal parasite killing required the recruitment of CCR2-positive macrophages, followed by stimulation with a combination of both MCP-1 and gamma interferon (IFN-gamma). This work suggests that the parasite-derived MCP-1 can recruit a restrictive population of CCR2-positive macrophages into lesions that can be optimally stimulated by MCP-1 and IFN-gamma to efficiently kill Leishmania parasites.  相似文献   

12.
To elucidate the roles of neutrophils in experimental Chagas' disease, we depleted the peripheral neutrophils in BALB/c and C57BL/6 mice with a monoclonal antibody 1 day before Trypanosoma cruzi infection. Neutrophil depletion in BALB/ c mice resulted in exacerbation of the disease and decreased expression of mRNA for Th1 cytokines, including IL-2 and IFN-gamma, IL-12p40 and TNF-alpha in their spleens after the infection, while a Th2 cytokine, IL-10, increased especially 1 day after infection. Neutrophils from infected BALB / c mice expressed mRNA for IL-12p40, IFN-gamma, TNF-alpha and Th1 chemoattractive chemokines, monokine induced by IFN-gamma (MIG) and macrophage inflammatory protein-1alpha (MIP-1alpha ). In contrast, in C57BL/6 mice neutrophil depletion induced resistance to the disease and enhanced the expression of the above Th1 cytokines, although IL-10 mRNA in neutrophil-depleted C57BL/6 mice was also higher than in control mice. Neutrophils from C57BL/6 mice did not express IL-12p40, IFN-gamma and MIG but expressed TNF-alpha, MIP-1alpha and IL-10. Therefore, neutrophils may play opposite roles in these two strains of mice with respect to protection versus exacerbation of T. cruzi infection, possibly through modulating the Th1/Th2 dichotomy in different directions.  相似文献   

13.
We showed recently that activation of Valpha14(+) natural killer T cells (NKT cells) by alpha-galactosylceramide (alpha-GalCer) resulted in increased gamma interferon (IFN-gamma) production and host resistance to intravenous infection with Cryptococcus neoformans. In other studies, interleukin-18 (IL-18) activated NKT cells in collaboration with IL-12, suggesting the possible contribution of this cytokine to alpha-GalCer-induced IFN-gamma synthesis. Here we examined the role of IL-18 in alpha-GalCer-induced Th1 response by using IL-18KO mice with this infection. In these mice, levels of IFN-gamma in serum and its synthesis in vitro by spleen cells stimulated with live organisms were not reduced, but rather enhanced, compared to those in wild-type (WT) mice, while such production was completely absent in IL-12KO mice. The enhanced production of IFN-gamma correlated with increased IL-12 synthesis but not with reduced production of IL-4, which was rather increased. IFN-gamma synthesis in IL-18KO mice was abolished by neutralizing anti-IL-12 antibody and significantly inhibited by neutralization of endogenous IL-4 with a specific monoclonal antibody. In addition, administration of recombinant IL-4 significantly enhanced the production of IFN-gamma in WT mice. Finally, the enhanced production of IFN-gamma in IL-18KO mice correlated with increased host defense against cryptococcal infection, as indicated by enhancement in alpha-GalCer-related clearance of microorganisms. Our results indicated that in IL-18KO mice, IFN-gamma synthesis was enhanced through overproduction of IL-12 and IL-4 after intravenous infection with C. neoformans and a ligand-specific activation of Valpha14(+) NKT cells.  相似文献   

14.
Cryptococcus neoformans is a yeast that causes cryptococcosis, a life-threatening disease that develops following inhalation and dissemination of the organisms. C. neoformans has a predilection for the central nervous system (CNS) and mortality is most frequently associated with meningoencephalitis. Susceptibility to cryptococcosis is increased in patients with deficiencies in cell-mediated immunity (CMI). Because cryptococcal CNS infections are associated with mortality and diagnosis of cryptococcosis is often not made until after dissemination to the CNS, a better understanding of host defense mechanisms against C. neoformans in the CNS is needed to design improved therapies for immunocompromised individuals suffering from cryptococcosis. Using a mouse model, we previously described a protective cell-mediated immune response induced in the periphery that limited the growth of C. neoformans in the CNS. In the current investigation, we examined cytokine and chemokine expression in the CNS to identify factors important in achieving protective immunity. We observed increased expression of IL-1beta, TNF-alpha, IFN-gamma, MCP-1, RANTES, and IP-10 in C. neoformans-infected brains of immune mice compared to control mice suggesting that these cytokines and chemokines are associated with the protective immune response. Furthermore, the Th1-type cytokines TNF-alpha and IFN-gamma, but not the Th2 cytokines IL-4 and IL-5, were secreted at significantly higher levels in C. neoformans-infected brains of immune mice compared to control mice. Our results demonstrate that cytokines and chemokines associated with CMI are produced following infection in the CNS of immunized mice, and the expression of these factors correlates with protection against C. neoformans in the CNS.  相似文献   

15.
The mechanisms underlying induction of immune dysregulation and chronic fungal infection by a transient tumor necrosis factor alpha (TNF-alpha) deficiency remain to be defined. The objective of our studies was to determine the potential contribution of neutropenia and immature dendritic cells to the immune deviation. Administration of an anti-TNF-alpha monoclonal antibody at day 0 neutralized TNF-alpha only during the first week of a pulmonary Cryptococcus neoformans infection. Transient neutralization of TNF-alpha resulted in transient depression of interleukin-12 (IL-12), monocyte chemotactic protein 1 (MCP-1), and gamma interferon (IFN-gamma) production but permanently impaired long-term clearance of the infection from the lungs even after the levels of these cytokines increased and a vigorous inflammatory response developed. Early neutrophil recruitment was defective in the absence of TNF-alpha. However, as demonstrated by neutrophil depletion studies, this did not account for the decrease in IL-12 and IFN-gamma levels and did not play a role in establishing chronic pulmonary cryptococcal infection. Transient TNF-alpha neutralization also produced a deficiency in CD11c(+) MHC II(+) cells and IL-12 in the lymph nodes, potentially implicating a defect in mature dendritic cell trafficking. Transfer of cryptococcal antigen-pulsed immature dendritic cells into naive mice prior to intratracheal challenge resulted in the development of a nonprotective immune response to C. neoformans that was similar to that observed in anti-TNF-alpha-treated mice (increased IL-4, IL-5, and IL-10 levels, pulmonary eosinophilia, and decreased clearance). Thus, stimulation of an antifungal response by immature dendritic cells can result in an immune deviation similar to that produced by transient TNF-alpha deficiency, identifying a new mechanism by which a chronic fungal infection can occur in an immunocompetent host.  相似文献   

16.
Chemokines and chemokine receptors play a role in cell recruitment during granulomatous inflammatory reactions. Here, we evaluated the expression of chemokines and chemokine receptors and their regulation by IFN-gamma in the course of Paracoccidioides brasiliensis (Pb) infection in mice. We found an association between KC and MIP-1alpha (CCL3) production and neutrophil infiltration in the lungs of Pb-infected mice during the early acute phase of infection. High levels of RANTES/CCL5, MCP-1/CCL2, IP-10/CXCL10, and Mig/CXCL9 simultaneously with mononuclear cell infiltration in the lungs was found. In the absence of IFN-gamma (GKO mice) we observed increased production of KC and MIP-1alpha and chronic neutrophilia. Moreover, we found a change in the chemokine receptor profiles expressed by wild-type (WT) versus GKO animals. Increased expression of CXCR3 and CCR5, and low levels of CCR3 and CCR4 were observed in the lungs of Pb-infected WT mice, whereas the opposite effect was observed in the lungs of GKO mice. Consistent with these results, infected cells from WT mice preferentially migrated in response to IP-10 (CXCR3 ligand), while those from GKO mice migrated in response to eotaxin/CCL11 (CCR3 ligand). These results suggest that IFN-gamma modulates the expression of chemokines and chemokine receptors as well as the kind of cells that infiltrate the lungs of Pb-infected mice.  相似文献   

17.
Previous studies have shown that IFN-gamma, TNF-alpha and NOS-2, but not B cells, are crucial for host defense against primary systemic infection with the attenuated live vaccine strain (LVS) of Francisella tularensis. In this study, we examined the importance of these and additional immune components in host resistance against infection with virulent strains of F. tularensis initiated by systemic and airborne routes. Wild-type (WT) mice and mice deficient in IFN-gamma, TNFR1R2, NOS-2, or B cells were equally susceptible to low dose ( approximately 10 colony forming units) aerosol or intradermal challenge with virulent type B F. tularensis, and succumbed to the infection between days 6 and 8 post-inoculation. Quantitative bacteriology showed that IFN-gamma-/- and B cell-/- mice consistently harbored up to one log(10) more bacteria in their lungs, spleens and livers than WT mice at day 5 post aerosol exposure. Surprisingly, however, compared to other strains of KO mice and WT control mice, IFN-gamma-/- mice showed only mild liver damage as assessed by histopathology and liver function tests. Additional experiments established that even mice with broad immunodeficiency (SCID, neutropenic, splenectomized or thymectomized mice and mice treated with corticosteroid) were no more susceptible to aerosol-initiated infection with virulent type B or type A F. tularensis than immunosufficient control mice. Combined, our results indicate that, unlike LVS, normal type A and type B F. tularensis strains are so extremely virulent that even immunocompetent mice are virtually defenseless to low dose aerosol and intradermal challenges with them.  相似文献   

18.
M Florido  R Appelberg  I M Orme    A M Cooper 《Immunology》1997,90(4):600-606
The basis of the increased susceptibility of beige mice to Mycobacterium avium infections is still not clearly understood. In this study we examined the growth of three virulent strains of M. avium in beige mice and normal C57BL/6 controls. Depletion of natural killer (NK) cells by administration of anti-asialo GM1 antisera did not affect the growth of M. avium in any of the groups of animals. Similarly, interferon-gamma (IFN-gamma) gene-disrupted mice were more susceptible to infection than control mice but the growth of M. avium was not further affected by NK-cell depletion. In terms of effector immunity, beige mice showed enhanced expression of IFN-gamma and tumour necrosis factor-alpha (TNF-alpha) when compared with wild-type C57BL/6 mice. In agreement with these results; I-A and interferon-inducible protein (IP-10) expression was also higher in beige mice than in wild-type animals, as was expression of the chemokines macrophage inflammatory protein-2 (MIP-2) and macrophage chemotactic protein (MCP-1) during latter stages of the infection. However, over the first few weeks of the infection, when the susceptibility of the beige mouse lung first becomes evident, MIP-1 beta and MIP-2 chemokine expression in the lungs was lower in beige mice than in wild-type animals. These data indicate, therefore, that the increased susceptibility of beige mice to M. avium infection in the lung is not due to lack of NK-cell activity, nor can it be explained in terms of the effector cytokine response. Instead, the lower early expression of the neutrophil chemoattractants MIP-1 beta and MIP-2 in the lungs of beige mice tends to suggest that the enhanced susceptibility of these mice to M. avium infection may be due in part to defective recruitment of neutrophils or other cells responsive to these specific chemokines.  相似文献   

19.
20.
IFN-gamma has been implicated in the pathogenesis of experimental cerebral malaria (ECM). We have used mice lacking the alpha chain of the IFN-gamma receptor (KO mice) to define its role in the pathogenesis of ECM. Infected KO mice did not develop ECM and showed no leukocyte or parasite sequestration in the brain, and no hemorrhages. The resistance of KO mice to ECM was associated with the absence of any increases of TNF-alpha and ICAM-1 proteins in the brain, which are both essential for ECM. Wild-type (WT) mice which do not develop ECM, despite increased local production of TNF-alpha protein, showed no leukocyte accumulation in the brain and this was correlated with the absence of ICAM-1 protein from brain microvessels. KO mice infected with 106 parasitized erythrocytes (PE) of Plasmodium berghei ANKA (PbA) did not develop ECM, but they had high parasitemia and died earlier than WT mice which did not develop ECM. However, KO mice did not develop higher parasitemia than WT mice when both groups were infected with a lower dose (5x10(5) PE) of PbA-infected red blood cells. This indicates that different doses of PE may trigger different IFN-gamma responses and that there may be a threshold concentration for protection against parasitemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号