首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
BACKGROUND: The increase in glomerular filtration rate (GFR) induced by amino acid infusion is attenuated in rats with chronic renal denervation. The aim of the present study was to investigate whether renal denervation abrogates glomerular hyperfiltration occurring in the early state of diabetes mellitus. METHODS: Sprague-Dawley rats were subjected to bilateral renal denervation before induction of diabetes mellitus (DM) by streptozotocin. Clearance experiments were performed 2 weeks after onset of moderate DM. Glomerular volume was estimated following paraformaldehyde fixation in rat kidney slices from measurement of cross-sectional area of Bowman's capsule. RESULTS: GFR in non-diabetic rats with intact nerves (CON-INN) was 0.82+/-0.03 ml.min(-1).100 g(-1) body weight. Diabetic animals with innervated kidneys presented a significant glomerular hyperfiltration (1.13+/-0.03 ml.min(-1).100 g(-1) body weight), while renal denervation in diabetic rats lowered GFR towards levels of CON-INN (0.88+/-0.03 ml.min(-1).100 g(-1) body weight). Estimated glomerular volume amounted to 0.69+/-0.03.10(6) micro m(3) in the CON-INN group and was significantly higher in diabetic animals with intact renal nerves (0.86+/-0.04.10(6) microm(3)). Interestingly, renal denervation prevented the glomerular enlargement due to DM. CONCLUSIONS: Renal nerves appear to be significantly involved in the mediation of glomerular hyperfiltration in experimental DM. If the kidney is prevented from sympathetic nerve stimulation, structural changes due to early diabetic nephropathy, i.e. glomerular enlargement, are abolished.  相似文献   

3.
BACKGROUND: Ischemic acute renal failure (iARF) is associated with increased nitric oxide (NO) production during the reperfusion period, as endothelial nitric oxide synthase (eNOS) is maximally activated, and renal tubular inducible NOS (iNOS) is stimulated. Increased NO production leads to augmented tubular injury, probably through the formation of peroxynitrite. l-Arginine (l-Arg), the only precursor for NO, is transported into cells by cationic amino acid transporters, CAT-1 and CAT-2. We hypothesized that the increased NO production observed in iARF may result from increased l-Arg uptake, which would be reflected in the augmented expression of l-Arg transporter(s). METHODS: Ischemic acute renal failure was induced in rats by right nephrectomy + left renal artery clamping for 60 minutes. l-Arg uptake was examined in freshly harvested glomeruli and tubuli from control, sham operated, and animals subjected to 15, 30, and 60 minutes, and 24 hours of reperfusion, following 60 minutes of ischemia. Using RT-PCR, renal tissues were examined further for the expression of iNOS, CAT-1, CAT-2, arginase I and arginase II. RESULTS: Tubular expression of iNOS mRNA was initiated by ischemia, continued to increase after 60 minutes of reperfusion, and decreased after 24 hours. l-Arg transport into glomeruli was similar in all experimental groups. l-Arg uptake into tubuli was markedly augmented following the 60-minute reperfusion, while it moderately increased after 24 hours of reperfusion. This was accompanied by a parallel, preferential increase in tubular CAT-2 mRNA expression at 60 minutes of reperfusion. CAT-1 mRNA expression was unchanged, as detected by RT-PCR. In addition, the expression of arginase II and arginase I mRNA was attenuated by 30 minutes and one hour of reperfusion, and returned to baseline values after 24 hours of reperfusion. CONCLUSIONS: Ischemic ARF is associated with augmented tubular CAT-2 mRNA expression, which leads to enhanced l-Arg transport and increased NO production. This may contribute to the renal injury exhibited in iARF.  相似文献   

4.
BACKGROUND: It has become evident that increased nitric oxide (NO) generation may be associated with production of reactive oxygen species, such as peroxynitrite (ONOO-). Peroxynitrite has been postulated to be responsible for several of the cytotoxic effects previously ascribed to NO. Since cellular arginine uptake has been shown to modulate nitric oxide synthase activity, we were intrigued to study the effect of ONOO- on arginine traffic in renal mesangial cells. METHODS: Arginine uptake, CAT-1 and CAT-2 mRNA expression by northern blotting analysis, and CAT-1 protein content using western blotting were determined in mesangial cells pre-treated with peroxynitrite (0.1 and 0.5 mM) for 2 h. RESULTS: Peroxynitrite induced a significant increase in arginine uptake and CAT-2 mRNA expression compared with untreated cells. In contrast, CAT-1 mRNA expression and protein abundance were diminished. CONCLUSIONS: In rat mesangial cells, peroxynitrite augments arginine uptake via augmentation of CAT-2 while decreasing CAT-1 expression.  相似文献   

5.
BACKGROUND: L-arginine or its metabolites may be important pathogenetic factors in ischemic acute renal failure (iARF) in rats. It was found that the L-arginine-nitric oxide synthase-nitric oxide system plays an important role in the renal hemodynamic alterations in the early stages of diabetes. The iARF in diabetic rats is much more severe than the normal rats exposed to a same ischemia time. The purpose of the present study was to evaluated L-arginine uptake and its transporters and nitric oxide synthase isoform expression in tubuli and glomeruli of STZ-induced diabetic rats with iARF. METHODS: iARF was induced by right nephrectomy and left renal artery clamping for 60 min followed by a 60 min reflow period. iARF was induced in STZ diabetes rats two weeks after intraperitoneal streptozotocin (60 mg/kg body weight) and in normal control rats. L-arginine uptake, L-arginine transporters (CAT1 and CAT2) and nitric oxide synthases (iNOS, eNOS, and bNOS) were determined by RT-PCR) in both glomeruli and tubuli preparations. RESULTS: The STZ diabetic rats compared with the non diabetic normal rats have a higher glomerular L-arginine uptake, higher iNOS mRNA, lower eNOS mRNA, and lower tubular CAT1 mRNA, eNOS mRNA, and bNOS mRNA. The diabetic iARF after one hour of reperfusion had lower glomerular L-arginine uptake, lower CAT1 mRNA, lower eNOS mRNA, lower bNOS, and higher tubular iNOS mRNA compared with iARF in normal rats. CONCLUSIONS: Our findings suggest a prolonged and more severe post-glomerular vasoconstriction very early after the reflow in the iARF of STZ diabetic rats compared with the iARF in the normal control rats. That may be a plausible explanation to the very significant decline in GFR and tubular necrosis that characterize the iARF in diabetic rats.  相似文献   

6.
Background The purpose of this study was to examine the short- and long-term effects of the calcium channel blocker, barnidipine, on renal hemodynamics and urinary albumin excretion in spontaneously hypertensive rats with streptozotocin-induced diabetes. Methods Diabetic and nondiabetic spontaneously hypertensive rats and nonhypertensive rats were treated with barnidipine or placebo (vehicle). In the short-term experiment, barnidipine was given as a single bolus injection (3 μg/kg); in the long-term experiment, barnidipine was administered orally (15 mg/kg per day) for 16 to 20 weeks. Results Renal hyperfiltration was observed in both hypertensive and nonhypertensive rats at 1 to 2 weeks after induction of diabetes, without changes in renal blood flow. Although short-term administration of barnidipine significantly decreased mean arterial pressure and renal vascular resistance, barnidipine did not affect renal blood flow or glomerular filtration rate in hypertensive, diabetic rats. At 16 to 20 weeks after induction of diabetes, renal hyperfiltration and increased urinary albumin excretion were still observed in hypertensive rats given placebo, compared to values for hypertensive nondiabetic rats given placebo. Long-term administration of barnidipine to hypertensive, diabetic rats suppressed the increase in both glomerular filtration rate and urinary albumin excretion, and reduced systolic blood pressure without any change in renal blood flow, renal vascular resistance, or filtration fraction. Conclusions These results indicate that in hypertensive, diabetic rats short-term administration of barnidipine, despite reducing renal vascular resistance, is less effective than long-term administration in restoring normal renal filtration, although long-term administration may normalize renal filtration and reduce urinary albumin excretion.  相似文献   

7.
BACKGROUND/AIMS: Benserazide (BZD), an inhibitor of the dopamine synthesis, abolished the increase in glomerular filtration rate (GFR) following the infusion of a mixed amino acid solution. These results reveal endogenous dopamine as a mediator in the renal response to amino acids. The aim of the present study was to evaluate whether dopamine is also involved in the regulation of glomerular hyperfiltration during the early state of diabetes mellitus (DM). METHODS: Male Sprague-Dawley rats were injected with a single dose of streptozotocin (60 mg/kg i.p.) for induction of experimental DM (n = 7-8/group). Age-matched non-diabetic animals, injected with citrate buffer, served as controls (CON, n = 8/group). Clearance experiments were performed 2 weeks after induction of DM in thiopental-anesthetized rats (80 mg/kg i.p.), which were continuously infused either with BZD (30 microg/min/kg) or vehicle (VHC). RESULTS: Mean arterial blood pressure was around 110 mm Hg and did not significantly differ among the groups. GFR was 0.95 +/- 0.02 ml/min/100 g b.w. in VHC-treated CON. BZD treatment did not significantly change GFR in the CON group (0.92 +/- 0.06 ml/min/100 g b.w.). As expected, glomerular hyperfiltration was observed in diabetic rats infused with VHC (1.24 +/- 0.08 ml/min/100 g b.w.). Treatment with BZD significantly reduced the diabetes-induced increase in GFR to control levels (0.95 +/- 0.05 ml/min/100 g b.w.). CONCLUSION: Our results show that the inhibition of dopamine synthesis prevented the increase in GFR due to diabetic conditions, indicating that endogenous dopamine is involved in the regulation of DM-induced changes in renal hemodynamics.  相似文献   

8.
Background. L-arginine or its metabolites may be important pathogenetic factors in ischemic acute renal failure (iARF) in rats. It was found that the L-arginine-nitric oxide synthase-nitric oxide system plays an important role in the renal hemodynamic alterations in the early stages of diabetes. The iARF in diabetic rats is much more severe than the normal rats exposed to a same ischemia time. The purpose of the present study was to evaluated L-arginine uptake and its transporters and nitric oxide synthase isoform expression in tubuli and glomeruli of STZ-induced diabetic rats with iARF. Methods. iARF was induced by right nephrectomy and left renal artery clamping for 60 min followed by a 60 min reflow period. iARF was induced in STZ diabetes rats two weeks after intraperitoneal streptozotocin (60 mg/kg body weight) and in normal control rats. L-arginine uptake, L-arginine transporters (CAT1 and CAT2) and nitric oxide synthases (iNOS, eNOS, and bNOS) were determined by RT-PCR) in both glomeruli and tubuli preparations. Results. The STZ diabetic rats compared with the non diabetic normal rats have a higher glomerular L-arginine uptake, higher iNOS mRNA, lower eNOS mRNA, and lower tubular CAT1 mRNA, eNOS mRNA, and bNOS mRNA. The diabetic iARF after one hour of reperfusion had lower glomerular L-arginine uptake, lower CAT1 mRNA, lower eNOS mRNA, lower bNOS, and higher tubular iNOS mRNA compared with iARF in normal rats.

Conclusions. Our findings suggest a prolonged and more severe post-glomerular vasoconstriction very early after the reflow in the iARF of STZ diabetic rats compared with the iARF in the normal control rats. That may be a plausible explanation to the very significant decline in GFR and tubular necrosis that characterize the iARF in diabetic rats.  相似文献   

9.
This study tested the hypothesis that nitric oxide (NO)-mediated renal vasodilation due to the activity of the inducible nitric oxide synthase (iNOS) contributes to glomerular hyperfiltration in diabetic rats. Two weeks after induction of diabetes mellitus by streptozotocin, mean arterial BP (MAP), GFR (inulin clearance), and renal plasma flow (RPF) (para-aminohippurate clearance) were measured in conscious instrumented rats. Diabetic rats had elevated GFR (3129 +/- 309 microl/min versus 2297 +/- 264 microl/min in untreated control rats, P < 0.05) and RPF (10526 +/- 679 microl/min versus 8005 +/- 534 microl/min), which was prevented by chronic insulin treatment. Intravenous administration of 0.1 and 1 mg of L-imino-ethyl-lysine (L-NIL), an inhibitor of iNOS, did not affect MAP, GFR, or RPF, either in diabetic or control rats. A higher L-NIL dose (10 mg) increased MAP and decreased RPF in diabetic rats significantly (n = 6, P < 0.05), but not in controls (n = 6). In addition, 0.1 mg of NG-nitro-L-arginine methyl ester (L-NAME), a nonselective blocker of NOS isoforms, decreased GFR (2389 +/- 478 microl/min) and RPF (7691 +/- 402 microl/min) in diabetic animals to control levels, while renal hemodynamics in normoglycemic rats were not altered. Higher L-NAME doses (1 and 10 mg) reduced GFR and RPF in diabetic and control rats to identical levels. In glomeruli isolated from diabetic and control rats, neither iNOS mRNA nor iNOS protein expression was detected. In contrast, increased protein levels of endothelial constitutive NOS (ecNOS) were found in glomeruli of diabetic rats compared with controls. By immunohistochemistry, ecNOS but not iNOS staining was observed in the endothelium of preglomerular vessels and in diabetic glomeruli. These results support the notion that increased NO availability due to greater abundance of ecNOS contributes to the pathogenesis of glomerular hyperfiltration in early experimental diabetic nephropathy. In contrast, we found no functional or molecular evidence for increased glomerular expression and activity of iNOS in diabetic rats.  相似文献   

10.
Vascular endothelial growth factor (VEGF) is a cytokine that potently stimulates angiogenesis, microvascular hyperpermeability, and endothelium-dependent vasodilation, effects that are largely mediated by endothelial nitric oxide synthase (eNOS). The expression of VEGF is pronounced in glomerular visceral epithelial cells, but its function in renal physiology and pathophysiology is unknown. VEGF expression is upregulated by high ambient glucose concentrations in several cell types in vitro and in glomeruli of diabetic rats. To assess the role of VEGF in the pathophysiology of early renal dysfunction in diabetes, monoclonal anti-VEGF antibodies (Ab) were administered to control and streptozotocin-induced diabetic rats for 6 wk after induction of diabetes. Based on in vitro binding studies, an adequate serum VEGF inhibitory activity was achieved during the entire course of anti-VEGF Ab administration. Anti-VEGF Ab treatment but not administration of isotype-matched control Ab decreased hyperfiltration, albuminuria, and glomerular hypertrophy in diabetic rats. VEGF blockade also prevented the upregulation of eNOS expression in glomerular capillary endothelial cells of diabetic rats. Antagonism of VEGF had no effect on GFR and glomerular volume in control rats. These results identify VEGF as a pathogenetic link between hyperglycemia and early renal dysfunction in diabetes. Targeting VEGF may prove useful as a therapeutic strategy for the treatment of early diabetic nephropathy.  相似文献   

11.
Intraglomerular hypertension and glomerular hyperfiltration likely contribute to the pathogenesis of diabetic nephropathy, and tubuloglomerular feedback (TGF) has been suggested to play a role in diabetic hyperfiltration. A1 adenosine receptor (A1AR) null mice lack a TGF response, so this model was used to investigate the contribution of TGF to hyperfiltration in diabetic Ins2(+/-) Akita mice. TGF responses in Ins2(+/-) A1AR(-/-) double mutants were abolished, whereas they were attenuated in Ins2(+/-) mice. GFR, assessed at 14, 24, and 33 wk, was approximately 30% higher in Ins2(+/-) than in wild-type (WT) mice and increased further in Ins2(+/-) A1AR(-/-) mutants (P < 0.01 versus both WT and Ins2(+/-) mice at all ages). Histologic evidence of glomerular injury and urinary albumin excretion were more pronounced in double-mutant than single-mutant or WT mice. In summary, the marked elevation of GFR in diabetic mice that lack a TGF response indicates that TGF is not required to cause hyperfiltration in the Akita model of diabetes. Rather, an A1AR-dependent mechanism, possibly TGF, limits the degree of diabetic hyperfiltration and nephropathy.  相似文献   

12.
In the early stage of diabetic nephropathy (one of the major microvascular complications of diabetes) glomerular hyperfiltration and hypertrophy are observed. It is clinically important to regulate glomerular hypertrophy for preventing glomerulosclerosis. The number of glomerular endothelial cells is known to be increased in diabetic nephropathy associated with enlarged glomerular tufts, suggesting that the mechanism is similar to that of angiogenesis. Tumstatin peptide is an angiogenesis inhibitor derived from type IV collagen and inhibits in vivo neovascularization induced by vascular endothelial growth factor (VEGF), one of the mediators of glomerular hypertrophy in diabetic nephropathy. Here, we show the effect of tumstatin peptide in inhibiting alterations in early diabetic nephropathy. Glomerular hypertrophy, hyperfiltration, and albuminuria were suppressed by tumstatin peptide (1 mg/kg) in streptozotocin-induced diabetic mice. Glomerular matrix expansion, the increase of total glomerular cell number and glomerular endothelial cells (CD31 positive), and monocyte/macrophage accumulation was inhibited by tumstatin peptide. Increase in renal expression of VEGF, flk-1, and angiopoietin-2, an antagonist of angiopoietin-1, was inhibited by tumstatin treatment in diabetic mice. Alteration of glomerular nephrin expression, a podocyte protein crucial for maintaining glomerular filtration barrier, was recovered by tumstatin in diabetic mice. Taken together, these results demonstrate the potential use of antiangiogenic tumstatin peptide as a novel therapeutic agent in early diabetic nephropathy.  相似文献   

13.
Early functional disturbances in nerve, retina, and lens in diabetes mellitus appear to result from a common mechanism involving increased polyol-pathway activity with an associated effect on tissue myo-inositol metabolism. We tested the role of increased polyol-pathway activity in the early glomerular hemodynamic abnormalities in experimental diabetes in rats with dietary myo-inositol supplementation or the administration of sorbinil, an aldose reductase inhibitor. Each maneuver prevented the glomerular hyperfiltration of early streptozocin-induced diabetes and reversed the hyperfiltration of established diabetes of 10 days' duration. We also found that the abnormal response to captopril in diabetic rats was improved by dietary myo-inositol supplementation or sorbinil administration. Although nonhypotensive doses of captopril lowered glomerular filtration rate (GFR) in diabetic rats on a 0.01% myo-inositol diet, GFR increased substantially after captopril infusion in diabetic rats treated with sorbinil or myo-inositol supplementation. These data suggest that normalization of tissue myo-inositol metabolism restores normal responsiveness to angiotensin II; this may contribute to the reduction in GFR with the two experimental maneuvers. We also tested the interaction between polyol-pathway activation and high dietary protein intake. Aldose reductase inhibition and dietary myo-inositol supplementation had no effect on the component of increased GFR due to 50% dietary protein intake but specifically inhibited the hyperfiltration attributable to diabetes. These results suggest that hyperglycemia acts through increased polyol-pathway activity and its effects on tissue myo-inositol metabolism to play a fundamental role in the pathogenesis of the glomerular hyperfiltration characteristic of early diabetes.  相似文献   

14.
Glomerular hyperfiltration (>140 ml/min per 1.73 m2 body surface area) is found in early diabetes and is associated with a poor prognosis with respect to the development of diabetic kidney disease. This review addresses recent investigations and discussions of the following hypotheses behind diabetic hyperfiltration: Increased proximal tubular volume reabsorption results in a pressure drop in Bowman's capsule which increases glomerular filtration rate (GFR). Proximal tubular hyperreabsorption induces an increase in GFR mediated by tubuloglomerular feedback. Dietary NaCl restriction results in a paradoxically increased GFR and increased urine volume in diabetic animals.  相似文献   

15.
GFR normally increases during glycine infusion. This response is absent in humans and rats with established diabetes mellitus. In diabetic patients, angiotensin-converting enzyme inhibition (ACEI) restores the effect of glycine on GFR. To ascertain the glomerular hemodynamic basis for this effect of ACEI, micropuncture studies were performed in male Wistar-Froemter rats after 5 to 6 wk of insulin-treated streptozotocin diabetes. The determinants of single-nephron GFR (SNGFR) were assessed in each rat before and during glycine infusion. Studies were performed in diabetics, diabetics after 5 d of ACEI (enalapril in the drinking water), and weight-matched controls. Diabetic rats manifest renal hypertrophy and glomerular hyperfiltration but not glomerular capillary hypertension. ACEI reduced glomerular capillary pressure, increased glomerular ultrafiltration coefficient, and did not mitigate hyperfiltration. In controls, glycine increased SNGFR by 30% due to increased nephron plasma flow. In diabetics, glycine had no effect on any determinant of SNGFR. In ACEI-treated diabetics, the SNGFR response to glycine was indistinguishable from nondiabetics, but the effect of glycine was mediated by greater ultrafiltration pressure rather than by greater plasma flow. These findings demonstrate that: (1) The absent response to glycine in established diabetes does not indicate that renal functional reserve is exhausted by hyperfiltration; and (2) ACEI restores the GFR response to glycine in established diabetes, but this response is mediated by increased ultrafiltration pressure rather than by increased nephron plasma flow.  相似文献   

16.
An increase in Na+/glucose cotransport upstream to the macula densa might contribute to the increase in single nephron GFR (SNGFR) in early diabetes mellitus by lowering the signal of the tubuloglomerular feedback, i.e., the luminal Na+, Cl-, and K+ concentration sensed by the macula densa. To examine this issue, micropuncture experiments were performed in nephrons with superficial glomeruli of streptozotocin-induced diabetes mellitus in rats. First, in nondiabetic control rats, ambient early distal tubular concentrations of Na+, Cl-, and K+ were about 21, 20, and 1.2 mM, respectively, suggesting collection sites relatively close to the macula densa. Second, glomerular hyperfiltration in diabetic rats was associated with a reduction in ambient early distal tubular concentrations of Na+, Cl-, and K+ by 20 to 28%, reflecting an increase in fractional reabsorption of these ions up to the early distal tubule. Third, in diabetic rats, early proximal tubular application of phlorizin, an inhibitor of Na+/glucose cotransport, elicited (1) a greater reduction in absolute and fractional reabsorption of Na+, Cl-, and K+ up to the early distal tubule, and (2) a greater increase in early distal tubular concentration of these ions, which was associated with a more pronounced reduction in SNGFR. These findings support the concept that stimulation of tubular Na+/glucose cotransport by reducing the tubuloglomerular feedback signal at the macula densa may contribute to glomerular hyperfiltration in diabetic rats. Glomerular hyperfiltration in diabetic rats serves to compensate for the rise in fractional tubular reabsorption to partly restore the electrolyte load to the distal nephron.  相似文献   

17.
BACKGROUND: Renal hemodynamics in early diabetes are characterized by preglomerular and postglomerular vasodilation and increased glomerular capillary pressure, leading to hyperfiltration. Despite intensive research, the etiology of the renal vasodilation in diabetes remains a matter of debate. The present study investigated the controversial role of nitric oxide (NO) in the renal vasodilation in streptozotocin-induced diabetic rats. METHODS: In the renal microcirculation, basal tone and response to NO synthase blockade were studied using the in vivo hydronephrotic kidney technique. L-arginine analog N-nitro-L-arginine methyl ester (L-NAME) was administered locally to avoid confounding by systemic blood pressure effects. The expression of endothelial NO synthase (eNOS) was investigated in total kidney by immunocytochemistry and in isolated renal vascular trees by Western blotting. Urinary excretion of nitrites/nitrates was measured. RESULTS: Diabetic rats demonstrated a significant basal vasodilation of all preglomerular and postglomerular vessels versus control rats. Vasoconstriction to L-NAME was significantly increased in diabetic vessels. After high-dose L-NAME, there was no difference in diameter between diabetic and control vessels, suggesting that the basal vasodilation is mediated by NO. Immunocytochemically, the expression of eNOS was mainly localized in the endothelium of preglomerular and postglomerular vessels and glomerular capillaries, and was increased in the diabetic kidneys. Immunoblots on isolated renal vascular trees revealed an up-regulation of eNOS protein expression in diabetic animals. The urinary excretion of nitrites/nitrates was elevated in diabetic rats. CONCLUSION: The present study suggests that an up-regulation of eNOS in the renal microvasculature, resulting in an increased basal generation of NO, is responsible for the intrarenal vasodilation characteristic of early diabetes.  相似文献   

18.
BACKGROUND: Studies performed during the last decade have indicated that growth hormone (GH) and insulin-like growth factors (IGFs) may mediate the early renal changes in diabetes mellitus, i.e. hypertrophy and hyperfiltration. This and other observations have led to the suggestion that GH/IGF inhibitors, such as long-acting somatostatin analogue (e.g. octreotide and lanreotide), may be useful in order to inhibit or prevent development of long-term diabetic complications. METHODS: The present study examined the acute and chronic effects of octreotide on renal function following induction of streptozotocin (STZ)-diabetes in rats. The studies were carried out in conscious, non-fasted diabetic animals. RESULTS: Chronic administration of octreotide for 7 days, from onset of diabetes, prevented the decrease of effective renal vascular resistance (ERVR), and the increases in filtration fraction (FF), glomerular filtration rate (GFR), and absolute proximal tubular fluid reabsorption (APR) induced by diabetes. The renal hypertrophy was only partially prevented. In the acute study, similar changes were observed in effective renal plasma flow (ERPF) and ERVR but FF increased and GFR remained unaltered. CONCLUSIONS: Chronic but not acute treatment with octreotide prevented the renal hyperfiltration caused by diabetes. This effect is most likely due to an increase in afferent arteriolar resistance.  相似文献   

19.
Renal functional reserve in the early stage of experimental diabetes.   总被引:4,自引:0,他引:4  
The role of renal functional reserve (RFR; increase in plasma flow and glomerular filtration rate in response to protein loading) as an indicator of increased glomerular hydrostatic pressure and flow was evaluated in recent-onset poorly controlled diabetic rats. Streptozocin-induced diabetic (STZ-D) rats were studied with micropuncture (MP) technique after 10-15 days of diabetes (daily blood glucose level 15.3-18 mmol). We also studied STZ-D rats treated with the converting-enzyme inhibitor (CEI) enalapril or the angiotensin II (ANG II) receptor antagonist DuP 753 (DuP) for 3 days before MP. Nondiabetic rats (NOR) served as controls. Glomerular hemodynamics and proximal tubular reabsorption were measured in the control period and during intravenous glycine infusion. In NOR rats, glycine increased single-nephron plasma flow (SNPF) and single-nephron glomerular filtration rate (SNGFR). Although STZ-D rats did not exhibit hyperfiltration, SNGFR and SNPF were not modified by glycine, defining loss of RFR. CEI rats responded to glycine with an increase in SNGFR due to a rise in SNPF and a rise in the ultrafiltration coefficient. Interestingly, loss of RFR in STZ-D rats was associated with a decrease in absolute proximal reabsorption. The decrease in absolute proximal reabsorption was corrected by both CEI and DuP, although glomerular vasodilation was restored only in the CEI group. In conclusion, at the early stage of diabetes mellitus, loss of RFR does not detect hyperfiltration, but rather the presence of a tubular alteration probably dependent on ANG II.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Microalbuminuria, an early feature of diabetic nephropathy, indicates intrarenal endothelial damage. In type 2 diabetes, microalbuminuria is strongly related to insulin resistance. We therefore investigated whether rosiglitazone, an insulin-sensitizing drug that is known to improve endothelial dysfunction, was able to improve intrarenal endothelial dysfunction and microalbuminuria. Nineteen type 2 diabetic patients participated in this double-blind cross-over trial. Nine patients with newly diagnosed disease without microalbuminuria were randomized to a treatment with rosiglitazone or nateglinide, each for 12 weeks. Ten patients with microalbuminuria were randomized to rosiglitazone or placebo, each for 12 weeks in addition to their previous antidiabetic medication. After each treatment, glomerular filtration rate (GFR), renal plasma flow, and filtration fraction were measured before and after blockade of nitric oxide (NO) by intravenous administration of N-monomethyl-L-arginine-acetate (L-NMMA). Ten healthy subjects served as control subjects. Type 2 diabetic patients at baseline showed glomerular hyperfiltration compared with healthy control subjects. Rosiglitazone reduced elevated GFR and filtration fraction toward control primarily in patients with microalbuminuria (GFR: 133.4 +/- 9.8 vs. 119.6 +/- 8.7 ml/min; filtration fraction: 23.2 +/- 1.7 vs. 20.5 +/- 1.6% before and after rosiglitazone, respectively; control subjects: GFR 111.7 +/- 8.6 ml/min, filtration fraction 20.4 +/- 1.5%). Rosiglitazone improved intrarenal NO bioavailability in type 2 diabetes toward control as shown by infusion of L-NMMA. Rosiglitazone reduced albumin excretion in type 2 diabetes with microalbuminuria from 116.5 +/- 31 to 40.4 +/- 12 mg/day. Rosiglitazone ameliorated glomerular hyperfiltration in early type 2 diabetes, improved NO bioavailability, and lessened renal end-organ damage in type 2 diabetes with microalbuminuria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号