首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Incorporation of drugs in self-microemulsifying systems (SMES) offers several advantages for their delivery, the main one being faster drug dissolution and absorption. Formulation of SMES in solid dosage forms can be difficult and, to date, most SMES are applied in liquid dosage form or soft gelatin capsules. This study has explored the incorporation of SMES in microcapsules, which could then be used for formulation of solid dosage forms. An Inotech IE-50?R encapsulator equipped with a concentric nozzle was used to produce alginate microcapsules with a self-microemulsifying core. Retention of the core phase was improved by optimization of encapsulator parameters and modification of the shell forming phase and hardening solution. The mean encapsulation efficiency of final batches was more than 87%, which resulted in 0.07% drug loading. It was demonstrated that production of microcapsules with a self-microemulsifying core is possible and that the process is stable and reproducible.  相似文献   

2.
The purpose of this study was to prepare alginate microcapsules with a self-microemulsifying system (SMES) containing celecoxib in the core. An Inotech IE-50 R encapsulator equipped with a concentric nozzle was used to prepare the microcapsules. The encapsulated SMES was shown to increase celecoxib solubility over that of the pure drug more than 400-fold. Microcapsules prepared with a high SMES:celecoxib ratio exhibited distinct core vesicles containing liquid SMES. By modifying the SMES and including an additional chitosan coating, drug loading in the range from 12–40% could be achieved with the degree of encapsulation ranging from 60–82%. Alginate microcapsules loaded with SMES and celecoxib showed increased dissolution rate of celecoxib over that of alginate microcapsules loaded with celecoxib or of the celecoxib alone. Compared to the previous report, drug loading capacity was significantly improved, enabling the formulation of dosage forms which are of suitable size for peroral application.  相似文献   

3.
The objective of this work was the development of a controlled release system based on self-microemulsifying mixture aimed for oral delivery of poorly water-soluble drugs. HPMC-based particle formulations were prepared by spray drying containing a model drug (nimodipine) of low water solubility and hydroxypropylmethylcellulose (HPMC) of high viscosity. One type of formulations contained nimodipine mixed with HPMC and the other type of formulations contained HPMC and nimodipine dissolved in a self-microemulsifying system (SMES) consisting of ethyl oleate, Cremophor RH 40 and Labrasol. Based on investigation by transmission electron microscopy (TEM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and X-ray powder diffraction, differences were found in the particle structure between both types of formulations. In vitro release was performed and characterized by the power law. Nimodipine release from both types of formulations showed a controlled release profile and the two power law parameters, n and K, correlated to the viscosity of HPMC. The parameters were also influenced by the presence of SMES. For the controlled release solid SMES, oil droplets containing dissolved nimodipine diffused out of HPMC matrices following exposure to aqueous media. Thus, it is possible to control the in vitro release of poorly soluble drugs from solid oral dosage forms containing SMES.  相似文献   

4.
丹参酮ⅡA自乳化释药系统制备工艺的研究   总被引:1,自引:0,他引:1  
《中国新药杂志》2010,19(21):1980
 目的:研究丹参酮ⅡA自微乳化释药系统(TanⅡA-SMEDDS)的处方工艺,探求其最佳处方配比。方法:通过溶解度实验、处方配伍实验和三元相图的绘制,以自乳化时间、色泽和粒径大小为指标,筛选油相、表面活性剂、助表面活性剂的最佳搭配和处方配比;并对含药SMEDDS的粒径和载药量进行了测定;绘制了TanⅡA-SMEDDS制剂的溶出曲线。结果:处方选用IPM为油相(35%),Cremophor RH40/TW80(1∶1)为表面活性剂(40%),PEG 400为助表面活性剂(25%)。含药微乳的粒径为(61.5±2.7) nm,自乳化时间35 s,载药量为1.948 mg?g-1。体外溶出结果表明10 min内药物的体外溶出可达80%。结论:所制备的TanⅡA-SMEDDS达到了设计要求,为开发TanⅡA新制剂提供了依据。  相似文献   

5.
One of the principal uses of microencapsulation for pharmaceuticals has been the preparation of sustained-release dosage forms which have been usually presented in the form of a suspension or gel. However, a non-disintegrating tablet would be a better formulation to obtain sustained-release effect. Microencapsulation has been employed to provide protection of the core material against atmospheric effects, to cover the unpleasant taste and to enhance the stability. A number of drugs have also been encapsulated to reduce gastric and other GI tract irritations, to alter release properties and to change availability. Oxolamine citrate is one of the synthetic derivatives of 3,5-disubstituted 1,2,4-oxodiazole, used particularly for its antitussive activity. The usual dose of the drug is 200 mg given four times a day. Its use was limited by side-effects of nausea and vomiting. In order to prevent the disadvantages caused by taking the drug four times daily, and to reduce the side-effects, a sustained-release dosage form of oxolamine citrate was prepared by the microencapsulation technique and microcapsules thus formed were pressed into tablets. Dissolution tests were done with microcapsules and tablets formed by microcapsules by using the USPXXI paddle method and dissolution kinetics were studied and evaluated.  相似文献   

6.
The aim of this study was to develop and characterize a self-microemulsifying drug delivery system (SMEDDS) of Brucea javanica oil (BJO) and transform the liquid formulation into solid granules. Solubility studies of BJO and pseudo-ternary phase diagrams were used to identify the most efficient self-emulsification region. A methyl thiazolyl tetrazolium (MTT) assay was performed to identify cell apoptosis. Antitumor activity studies were also employed to evaluate the BJO SMEDDS. The optimized BJO SMEDDS in liquid and granule formulations rapidly formed fine oil-in-water microemulsions with particle sizes <50 nm. Additionally, the MTT assay demonstrated that BJO SMEDDS had a significant effect on cancer cells, and antitumor activity studies showed remarkable inhibition of S180 tumors. The BJO SMEDDS, optimized to have good characteristics, was successfully transformed into solid granules by adsorbing onto crospovidone. The studies of the release of the BJO SMEDDS of liquid and granules in vitro suggested that the release of BJO was enhanced by the SMEDDS. These studies revealed that the new self-microemulsifying systems of liquid and granule forms might be promising strategies for the oral delivery of the poorly water-soluble drug BJO.  相似文献   

7.
臧洪梅  金涌  王祺  邓倩  陈飞虎 《安徽医药》2012,16(10):1418-1420
目的制备4-氨基-2-三氟甲基苯基维甲酸酯固体自乳化制剂,以解决该药水溶性差的问题,提高药物胃中溶出度和口服生物利用度。方法通过伪三元相图法考察不同乳化剂、助乳化剂和油相形成微乳的能力和区域,制备自微乳。然后采用mix-ture design方法进行处方优化,并对其乳化后粒径、制剂综合评分和载药量进行考察。结果制备出的最佳处方(含HS1570%,PEG400 10%,油酸乙酯20%)自乳化后粒径在30 nm左右,体外溶出10 min即可溶出80%以上。结论该处方制备出的ATPR固体自微乳可用于提高其溶出速度。  相似文献   

8.
The development of a new type of parenteral dosage form is described. A system of microencapsulation was formulated which produced microcapsules containing a water-soluble core material. The basic microencapsulation system could be altered to produce microcapsules with varied timed-release characteristics. Tracer methodology was employed as a sensitive and versatile analytical tool for the development and evaluation of the microencapsulation system. The core material was labeled by neutron activation after microcapsule formulation, which eliminated the radiation hazard and contamination problems that could occur during formulation with a labeled core material. Both in vitro and in vivo testing showed that the release patterns of labeled core material could be altered and detected. The microcapsules developed have potential as a timed-release parenteral dosage form and as an organ-imaging radiopharmaceutical.  相似文献   

9.
The aim of present investigation is to improve dissolution rate of poor soluble drug Zotepine by a self-microemulsifying drug delivery system (SMEDDS). Ternary phase diagram with oil (Oleic acid), surfactant (Tween 80) and co-surfactant (PEG 400) at apex were used to identify the efficient self-microemulsifying region. Box–Behnken design was implemented to study the influence of independent variables. Principal Component Analysis was used for scrutinising critical variables. The liquid SMEDDS were characterised for macroscopic evaluation, % Transmission, emulsification time and in vitro drug release studies. Optimised formulation OL1 was converted in to S-SMEDDS by using Aerosil® 200 as an adsorbent in the ratio of 3:1. The S-SMEDDS was characterised by SEM, DSC, globule size (152.1?nm), zeta-potential (?28.1?mV), % transmission study (98.75%), in vitro release (86.57%) at 30?min. The optimised solid SMEDDS formulation showed faster drug release properties as compared to conventional tablet of Zotepine.  相似文献   

10.
In this study, nicardipine hydrochloride (N.HCl) microcapsules were prepared by means of coacervation phase separation technique using ethylcellulose (EC) as a coating material. Micromeritic investigations were carried out on nicardipine hydrochloride, ethylcellulose and nicardipine hydrochloride microcapsules in order to standardize the microcapsule product and to optimize the pilot production of dosage forms prepared with these microcapsules. Microcapsules we prepared had the ratio of 2:1 core:wall and then by sieving, were divided into two groups according to their particle sizes which were > 840 μm and 476–840 μm. The bulk volume and weight, tapping volume and weight, fluidity, angle of repose, weight deviation, particle size distribution, density and porosity of nicardipine hydrochloride, ethylcellulose and nicardipine hydrochloride microcapsules were studied. To determine flowability, Hausner ratio and Consolidation index were also calculated from the results obtained. The findings of the study suggested that the micromeritic properties of the crude materials were significantly changed by the microencapsulation process. In addition, it was shown by scanning electron microscopy, that the changes were due to changes in the physicochemical properties of drug particles.  相似文献   

11.
12.
Microcapsules of phenethicillin potassium as a model water-soluble drug, coated with ethyl cellulose, have been prepared (core: wall ratios 1:1, 1:2 and 1:3) in which the taste has been masked, the odour almost eliminated and the release retarded. Sieve analysis showed that with decreasing core: wall ratios there was a trend towards increasing amounts of larger sized microcapsules. At constant core: wall ratios in vitro release of drug was generally greatest from the larger microcapsules. This result correlated with the surface areas of the microcapsules which became less as the asymmetry of the microcapsules diminished with decrease in microcapsule size. There was a linear relation between the amount of ethyl cellulose and the time for 60% release of drug, and the release pattern was analogous to that from insoluble porous matrices. Scanning electron micrographs showed the microcapsules to be irregularly shaped with circular surface pores, and they did not alter in shape or size during dissolution. Tableting of 1:1 core: wall ratio microcapsules significantly further retarded the dissolution.  相似文献   

13.
Poly(lactic acid) [PLA] and its co-polymers with glycolic acid [PLCG] have been known to be biodegradable and histocompatible for the past 20 years. Their physico-chemical and biological properties have been found suitable, in many instances, for sustaining drug release in vivo for days or months. Several dosage forms for parenteral administration have been investigated using these polymers and a microencapsulation technique is chosen frequently for its unique properties. There are a limited number of published papers concerning preparation and characterization of PLA or PLCG microcapsules, possibly because of commercial unavailability and difficulties in the synthesis of reproducible batches of these polymers. However, microcapsules can be made using different traditional and non-traditional techniques containing core materials ranging from biological proteins to synthetic drugs. An attempt is made here to review problems associated with the different microencapsulation techniques using PLA or PLCG. In vivo and in vitro drug release from these microcapsules is also reviewed.  相似文献   

14.
Abstract

Microcapsules are used for the formulation of drug controlled release and drug targeting dosage forms. Encapsulated hydrophobic drugs are often applied as their solutions in plant oils. The uptake of the oils in the complex coacervate microcapsules can be improved by the addition of surfactants. In this study, soybean, olive and peanut oils were chosen as the representatives of plant oils. The well characterized complex coacervation of gelatin and acacia has been used to produce the microcapsules. The amount of encapsulated oil has been determined gravimetrically. The encapsulation of the oils was high (75–80%). When the surfactants with HLB values from 1.8 to 6.7 were used, the amount of encapsulated oil was high (65–85%). A significant decrease of the oil content in the microcapsules was found when Tween 61 with HLB = 9.6 had been added into the mixture. No oil was found inside the microcapsules from the coacervate emulsion mixture containing Tween 81 (HLB = 10) and Tween 80 (HLB = 15), respectively. The results of the experiment confirm the dependence of hydrophobic substance encapsulation on the HLB published recently for Squalan  相似文献   

15.
The systemic effect of hydroxyzine hydrochloride following its oral administration or topical application is associated with non compliant anticholinergic effect. Subsequently, the present study aims to prepare microcapsules loaded with hydroxyzine hydrochloride enabling its controlled release into the skin and reducing the side effect of its systemic absorption. The microcapsules were prepared by thermal phase separation method using ethyl cellulose/cyclohexane. Optimization of the formulation parameters was carried out by: (1) varying the type and the concentration of the coacervation inducer with microcapsules prepared with three different core: wall ratios, (2) by using ethyl cellulose with two different viscosities, (3) and by the addition of pore inducers such as pregelatinized starch and sucrose in order to enhance the drug release. Microcapsules of 99% encapsulation efficiency were prepared using 1% w/v polyisobutylene, and 1:0.1 core: wall ratio. The highest percent of drug is released after 9 h from microcapsules prepared using 1:0.1 core :wall ratio. Almost 100% drug was released after 3 h, from the same microcapsules prepared with pregelatinized starch that acts as a core coated with the drug. The pharmacodynamic effect of the chosen preparation was tested on the shaved back of histamine sensitized rabbits. Histopathological studies were driven for the detection of the healing of inflamed tissues.  相似文献   

16.
Propranolol-HCl, a water soluble drug, was bound to Indion 254, a cation exchange resin, and the resulting resinate was microencapsulated with polystyrene using an oil-in-water emulsion-solvent evaporation method with a view to achieve prolonged drug release in simulated gastric and intestinal fluid. The effect of various formulation parameters on the characteristics of the microcapsules was studied. The diameter of the resinate-loaded polystyrene microcapsules increased with increase in the concentration of emulsion stabilizer and coat/core ratio and decreased with increase in the volume of organic disperse phase. The variation in the size of the microcapsules appeared to be related with the inter-facial viscosity which was influenced by the viscosity of both the aqueous dispersion medium and the organic disperse phase. The resinate encapsulation efficiency and hence the drug entrapment efficiency of the microcapsules increased with increase in the concentration of emulsion stabilizer and coat/core ratio and decreased with increase in the volume of organic disperse phase. These characteristics were found to depend on the extent of formation of fractured microcapsules and subsequent partitioning of the resinate into the aqueous dispersion medium. The degree of fracture on the microcapsules depended on the viscosity of the aqueous dispersion medium and the organic disperse phase. The uncoated resinate discharged the drug quite rapidly following the typical particle diffusion process. Although the desorption of the drug from the resinate was independent of pH of the dissolution media, increase in ionic strength increased the drug desorption. On the other hand, release of drug from the coated resinate was considerably prolonged and followed a diffusion controlled model. The prolongation of drug release was dependent on the uniformity of coating which was influenced by the formulation parameters. The drug release from the microcapsules was also found to be independent of pH of the dissolution media and increased with increase in ionic strength. The pH-independent release of the drug from both the uncoated and microencapsulated resinate was due to pH-independent solubility of the drug and high equilibrium concentration of the resinate in both the dissolution media. Polystyrene appeared to be a suitable polymer to provide prolonged release of propranolol independent of pH of the dissolution media.  相似文献   

17.
The double-encapsulated microcapsules were prepared by the non-solvent addition, phase-separation method to form core material and, encapsulated with the O/W emulsion non-solvent addition method to increase drug loading and regulate drug release rate. The drug used was theophylline, which is watersoluble. Dichloromethane and n-hexane were used as the solvent and non-solvent, respectively. This study investigated how various core material and microcapsule EC/TH ratios affect the drug loss, particle size, surface morphology and release rate. The drug loss of the double-encapsulated microcapsules was 12.8% less than that of microcapsules prepared by the O/W emulsion non-solvent addition method alone. The particle size of these double-encapsulated microcapsules decreased as the concentration of EC polymer was increased in the second encapsulation process. The roughness of their surface was also in proportion to the concentration of polymer solution used in the second encapsulation process. The dissolution study showed that the T 20 of the double-encapsulated microcapsules ranged from 2-35.4 h, while that of the O/W emulsion non-solvent addition method microcapsules was from 2.7-7.7 h. The greater the level of EC in the polymer solution, the slower the release rate of the drug from the microcapsules when the EC was not over the critical amount.  相似文献   

18.
The double-encapsulated microcapsules were prepared by the non-solvent addition, phase-separation method to form core material and, encapsulated with the O/W emulsion non-solvent addition method to increase drug loading and regulate drug release rate. The drug used was theophylline, which is water-soluble. Dichloromethane and n-hexane were used as the solvent and non-solvent, respectively. This study investigated how various core material and microcapsule EC/TH ratios affect the drug loss, particle size, surface morphology and release rate. The drug loss of the double-encapsuLated microcapsules was 12.8% less than that of microcapsules prepared by the O/W emulsion non-solvent addition method alone. The particle size of these double-encapsulated microcapsules decreased as the concentration of EC polymer was increased in the second encapsulation process. The roughness of their surface was also in proportion to the concentration of polymer solution used in the second encapsulation process. The dissolution study showed that the T20 of the double-encapsulated microcapsules ranged from 2-35.4 h, while that of the O/W emulsion non-solvent addition method microcapsules was from 2.7-7.7 h. The greater the level of EC in the polymer solution, the slower the release rate of the drug from the microcapsules when the EC was not over the critical amount.  相似文献   

19.
To develop a novel flurbiprofen-loaded solid self-microemulsifying drug delivery system (solid SMEDDS) with improved oral bioavailability using gelatin as a solid carrier, the solid SMEDDS formulation was prepared by spray-drying the solutions containing liquid SMEDDS and gelatin. The liquid SMEDDS, composed of Labrafil M 1944 CS/Labrasol/Transcutol HP (12.5/80/7.5%) with 2% w/v flurbiprofen, gave a z-average diameter of about 100?nm. The flurbiprofen-loaded solid SMEDDS formulation gave a larger emulsion droplet size compared to liquid SMEDDS. Unlike conventional solid SMEDDS, it produced a kind of microcapsule in which liquid SMEDDS was not absorbed onto the surfaces of carrier but formed together with carrier in it. However, the drug was in an amorphous state in it like conventional solid SMEDDS. It greatly improved the oral bioavailability of flurbiprofen in rats. Thus, gelatin could be used as a carrier in the development of solid SMEDDS with improved oral bioavailability of poorly water-soluble drug.  相似文献   

20.
Propranolol-HCl, a water soluble drug, was bound to Indion 254®, a cation exchange resin, and the resulting resinate was microencapsulated with polystyrene using an oil-in-water emulsion-solvent evaporation method with a view to achieve prolonged drug release in simulated gastric and intestinal fluid. The effect of various formulation parameters on the characteristics of the microcapsules was studied. The diameter of the resinate-loaded polystyrene microcapsules increased with increase in the concentration of emulsion stabilizer and coat/core ratio and decreased with increase in the volume of organic disperse phase. The variation in the size of the microcapsules appeared to be related with the inter-facial viscosity which was influenced by the viscosity of both the aqueous dispersion medium and the organic disperse phase. The resinate encapsulation efficiency and hence the drug entrapment efficiency of the microcapsules increased with increase in the concentration of emulsion stabilizer and coat/core ratio and decreased with increase in the volume of organic disperse phase. These characteristics were found to depend on the extent of formation of fractured microcapsules and subsequent partitioning of the resinate into the aqueous dispersion medium. The degree of fracture on the microcapsules depended on the viscosity of the aqueous dispersion medium and the organic disperse phase. The uncoated resinate discharged the drug quite rapidly following the typical particle diffusion process. Although the desorption of the drug from the resinate was independent of pH of the dissolution media, increase in ionic strength increased the drug desorption. On the other hand, release of drug from the coated resinate was considerably prolonged and followed a diffusion controlled model. The prolongation of drug release was dependent on the uniformity of coating which was influenced by the formulation parameters. The drug release from the microcapsules was also found to be independent of pH of the dissolution media and increased with increase in ionic strength. The pH-independent release of the drug from both the uncoated and microencapsulated resinate was due to pH-independent solubility of the drug and high equilibrium concentration of the resinate in both the dissolution media. Polystyrene appeared to be a suitable polymer to provide prolonged release of propranolol independent of pH of the dissolution media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号