首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ventral part of the medial prefrontal cortex (mPFC) plays an important role in mood and cognition. This study examined the effect of the 5-HT in this region by measuring the electrophysiological response of ventral mPFC neurones to electrical stimulation of the dorsal and median raphe nuclei (DRN and MRN), which are the source of the 5-HT input. DRN or MRN stimulation evoked a consistent, short-latency, post-stimulus inhibition in the majority of ventral mPFC neurones tested (DRN: 44/73 neurones; MRN: 24/31 neurones). Some neurones responded to DRN or MRN stimulation with antidromic spikes indicating that they were mPFC-raphe projection neurones. Both DRN- and MRN-evoked inhibitions were attenuated by systemic administration of the 5-HT1A antagonist WAY 100635 (0.1 mg/kg i.v.). DRN-evoked inhibition was also attenuated by iontophoretic application of WAY 100635 and by systemic administration of the 5-HT1A antagonist, NAD-299 (4 mg/kg i.v.) but not the 5-HT2 antagonist ketanserin (4 mg/kg, i.v.). These data suggest that DRN and MRN 5-HT neurones inhibit neurones in the ventral mPFC via activation of 5-HT1A receptors. Some of these mPFC neurones may be part of a 5-HT1A receptor-controlled postsynaptic feedback loop to the DRN and MRN.  相似文献   

2.
Rationale Lactate has been shown to play a significant role in energy metabolism and reflect neural activity in the brain.Objectives Using in vivo microdialysis technique, we measured extracellular lactate concentrations in the medial prefrontal cortex (mPFC) and the basolateral amygdaloid (BLA) nucleus of rats under electric foot shock stress. Moreover, to examine the role of serotonin (5-HT)1A receptors in brain energy metabolism in response to stressors, we attempted to determine whether the stress-induced changes of extracellular lactate levels in the mPFC and BLA are attenuated by tandospirone, a partial agonist at 5-HT1A receptors, or perospirone, a novel atypical antipsychotic with a 5-HT1A receptor partial agonist and 5-HT2A/dopamine-D2 antagonist property.Results Foot shock stress led to an increase in extracellular lactate concentrations both in the mPFC and BLA. Tandospirone (2 mg/kg) attenuated the foot shock stress-induced increase of extracellular lactate concentrations in both of the brain regions, which was blocked by pretreatment with WAY-100635, a selective 5-HT1A antagonist. On the other hand, perospirone (0.3 mg/kg) attenuated the increment of extracellular lactate concentrations in the mPFC and BLA, which was unaltered by pretreatment with WAY-100635.Conclusions These results indicate that the foot shock stress-induced increase in lactate metabolism is partly regulated by 5-HT1A receptors both in cortical and limbic regions.  相似文献   

3.

Rationale

Serotonin receptors (5-HT4Rs) are critical to both short-term and long-term memory processes. These receptors mainly trigger the cyclic adenosine monophosphate (cAMP)/protein kinase A signaling pathway, which is regulated by cAMP phosphodiesterases (PDEs).

Objectives

We investigated the mechanisms underlying the effect of the selective activation of 5-HT4R on information acquisition in an object recognition memory task and the putative regulation of PDE.

Materials and methods

The effect of RS 67333 (1 mg/kg, intraperitoneally [i.p.], injected 30 min before the sample phase) was examined at different delay intervals in an object recognition task in Sprague–Dawley rats. After the testing trial, PDE activity of brain regions implicated in this task was assayed.

Results

RS 67333-treated rats spent more time exploring the novel object after a 15-min (P?<?0.001) or 4-h delay (P?<?0.01) but not after a 24-h delay, whereas control animals showed no preference for the novel object for delays greater than 15 min. We characterized the specific patterns and kinetic properties of PDE in the prefrontal and perirhinal cortices as well as in the hippocampus. We demonstrated that particulate PDE activities increase in both the prefrontal cortex and hippocampus following 5-HT4R stimulation. In the prefrontal cortex, PDE4 activities support the RS 67333-induced modification of PDE activities, whereas in the hippocampus, all cAMP-PDE activities varied. In contrast, particulate PDE variation in the hippocampus was not found to support improvement of recognition memory after a 4-h delay.

Conclusions

We provide evidence that the increase in particulate PDE4 activity in the prefrontal cortex supports the 5-HT4R-induced increase in information acquisition.  相似文献   

4.
5-HT(1A) receptor agonists increase the activity of dopamine (DA) neurons in the ventral tegmental area (VTA) and DA release in medial prefrontal cortex (mPFC). The mPFC is enriched in 5-HT(1A) receptors and projects to the VTA, where mesocortical dopaminergic neurons originate. We examined whether 5-HT(1A) receptor activation can modulate the activity of mPFC pyramidal neurons projecting to VTA. These were identified by antidromic stimulation from the VTA and were recorded extracellularly in anesthetized rats. The selective 5-HT(1A) agonist BAY x 3,702 (10-80 microg/kg i.v.) increased the firing rate in 14/19 neurons (283 +/- 79%) and reduced the activity of 5/19 neurons (22 +/- 11%), resulting in an overall 2.2-fold increase of the firing rate. Both effects were blocked by the selective 5-HT(1A) antagonist WAY-100635. These results suggest that the increase in dopaminergic activity produced by 5-HT(1A) receptor activation can be driven by an increase in the activity of projection neurons in mPFC.  相似文献   

5.
The sex steroid hormone, estrogen, has been proposed to be protective against schizophrenia. This study examined the effects of estrogen treatment on modulation of prepulse inhibition (PPI) by the serotonin-1A (5-HT1A) receptor partial agonist, buspirone. PPI is a model of sensorimotor gating, which is deficient in schizophrenia and other mental illnesses. A total of 11 healthy women were tested following four acute treatment conditions: placebo, buspirone (Buspar; 5 mg), estradiol (Estrofem; 2 mg), and combined buspirone and estradiol. Electromyogram activity was measured across three interstimulus intervals (ISI): 30, 60, and 120 ms. There was no significant effect of either drug treatment on startle amplitude or habituation. At 120 ms ISI, buspirone caused a significant disruption of PPI and pretreatment with estrogen prevented this disruption. Estrogen treatment, administered in the appropriate experimental conditions, prevented PPI deficits induced by 5-HT(1A) receptor activation and may therefore also play a protective role in sensorimotor gating deficits in schizophrenia.  相似文献   

6.
7.
In vivo microdialysis in conscious rats was used to evaluate the effect of 5-HT1A agonist (+/-)-8-hydroxy-2-(n-dipropylamino)tetralin (8-OH-DPAT), 5-HT2A/2C agonist (+/-)- 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) and 5-HT1B receptor agonist 3-(1,2,5,6-tetrahydropyrid-4-yl)pyrrolo-[3,2-b]pyrid-5-one (CP 93129) on the veratridine-evoked glutamate (Glu) and aspartate (Asp) release in the rat prefrontal cortex. CP 93129 at concentrations between 50-500 microM significantly reduced Glu and Asp release. The effect of CP 93129 was attenuated by intraperitoneal (ip) administration of the selective 5-HT1B receptor antagonist N-[3-[3-(dimethylamino)ethoxy]-4-methoxyphenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)-[ 1, 1'-biphenyl]-4-carboxamide (SB 216641) at a dose of 2 mg/kg. Neither DOI (100 microM) nor 8-OH-DPAT given locally at concentration of 100 microM or peripherally at doses of 0.1 and 1 mg/kg ip, influenced stimulated Glu and Asp release. We suggest that cortical glutamatergic neurons possess 5-HT1B heteroceptors and their activation may be responsible for the inhibitory effect of 5-HT on Glu and Asp release.  相似文献   

8.
The study demonstrates that guinea-pigs handled daily from birth exhibit similar behaviour to rats on the elevated plus maze. Simultaneously performed intra-cortical microdialysis showed that placing guinea-pigs on the elevated plus maze results in an increase in extracellular 5-HT in the frontal cortex. 8-OH-DPAT (0.3 mg/kg s.c.) reduced significantly the increase in cortical extracellular 5-HT and resulted in an 'anxiolytic' profile of behaviour. Pre-treatment with the 5-HT(1) antagonist methiothepin (10.0 mg/kg) antagonized the behavioural effects and prevented the increase in cortical extracellular 5-HT normally produced by exposure to the elevated plus maze. Methiothepin alone had no effect on behaviour in the elevated plus maze. 5-CT (0.1 mg/kg i.p.) abolished the rise in extracellular 5-HT, but did not produce an 'anxiolytic' profile of behaviour on the elevated plus maze. The results show that an increase in cortical extracellular 5-HT occurs in the saline- treated guinea-pig exposed to aversive conditions. It remains to be determined whether the 'anxiolytic' effect of 8-OH-DPAT in the guinea-pig is causally associated with decreased basal extracellular 5-HT. The results however indicate that there is no simple relationship between inhibition of 5-HT release and behaviour indicative of 'anxiolytic' drug actions.  相似文献   

9.

Rationale

The action of serotonin (5-HT) at the 5-HT2A receptor subtype is thought to be involved in cocaine-seeking behavior that is motivated by exposure to drug-associated cues and drug priming. 5-HT2A receptors are densely clustered in the ventromedial prefrontal cortex (vmPFC), an area that plays a role in mediating cocaine-seeking behavior.

Objectives

This study examined the hypothesis that M100907, a 5-HT2A receptor antagonist, infused directly in the vmPFC attenuates cue- and cocaine-primed reinstatement of cocaine-seeking behavior.

Methods

Rats trained to self-administer cocaine (0.75?mg/kg, i.v.) paired with light and tone cues underwent extinction training during which operant responses produced no consequences. Once behavior extinguished, rats were tested for reinstatement of responding elicited by either response-contingent presentations of the cocaine-paired light/tone cues or by cocaine-priming injections (10?mg/kg, i.p.) within 1?min after pretreatment with microinfusions of M100907 (0.1, 0.3, 1.0, or 1.5???g/0.2???l/side) into the vmPFC.

Results

Intra-vmPFC M100907 decreased cue-elicited reinstatement at the two highest doses (1.0 and 1.5???g) but produced only a slight decrease in cocaine-primed reinstatement that was not dose dependent. The decrease in cue reinstatement was not likely due to impaired ability to respond since intra-vmPFC M100907 infusions had minimal effect on cocaine self-administration and no effect on cue-elicited sucrose-seeking behavior, or spontaneous or cocaine-induced locomotion. M100907 infusions into the adjacent anterior cingulate cortex had no effect on cue reinstatement.

Conclusions

The results suggest that the blockade of 5-HT2A receptors in the vmPFC selectively attenuates the incentive motivational effects of cocaine-paired cues.  相似文献   

10.
Clozapine (1–10 mg/kg s.c.) produces a selective increase in dopamine release in rat prefrontal cortex which is, in large part (~50%), mediated via activation of 5-HT1A receptors. Clozapine is a moderately potent, partial 5-HT1A receptor agonist and activation of 5-HT1A receptors may contribute to its efficacy against negative symptoms and reduced extrapyramidal side effect liability. Agonist affinity for 5-HT1A receptors could thus be a desirable feature in the design of new antipsychotics.  相似文献   

11.
The mechanism(s) by which serotonin modulates dopamine release in the medial prefrontal cortex is not known, although studies suggest an involvement of 5-HT2 family receptors. We employed in vivo microdialysis and putatively selective 5-HT2A antagonists (M100907, MDL 11,939, SR46349B) to determine if 5-HT2A receptors are responsible for both drug- and stress-induced DA release in the medial prefrontal cortex. MDL 11,939 and SR46349B receptor-binding studies indicated, for the first time, that only MDL 11,939 had greater selectivity for the 5-HT2A vs the 5-HT2C receptor subtypes similar to M100907, and that both showed low or no affinity for non-5-HT2 receptors. Reverse dialysis with 5-HT2A antagonists had little or no effect on basal dopamine efflux. However, intracortical administration of MDL 11,939 or M100907 attenuated dopamine release induced by systemic administration of the 5-HT2 agonist DOI. Dual-probe microdialysis demonstrated that systemic DOI also increased glutamate concentrations in the ventral tegmental area (VTA). This was blocked by intracortical M100907. Cortical perfusion with M100907, or the atypical antipsychotic drug risperidone, but not the 5-HT2B/C ligand SB 206553, also decreased dopamine release induced physiologically by stress. These results indicate that stimulation of cortical 5-HT2A receptors increases the release of dopamine from the mesocortical system. They suggest that this effect may be mediated by increases in glutamate release from corticotegmental projections to the VTA. Additionally, they indicate that cortical 5-HT2A receptors modulate evoked dopamine release, such as that observed physiologically following mild stress. These findings may have implications for the pharmacological treatment of disorders resulting from or exacerbated by stress.  相似文献   

12.
Clozapine is an atypical antipsychotic drug active on both positive and negative symptoms of schizophrenia which has a unique serotonergic and dopaminergic profile. Given the putative role of the medial prefrontal cortex (mPFC) in negative symptoms of schizophrenia, the aim of this study was to assess the effects of clozapine on the dopamine- and serotonin-responsive neurons in that particular brain structure. D1 and D2 agonists (SKF 38393 and quinpirole) as well as 5-HT2 and 5-HT3 agonists (1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane, DOI, and phenylbiguanide) were applied by microiontophoresis alone and concurrently with clozapine while recording extracellularly mPFC neurons. Dopamine ejections inhibited firing activity while D1 and D2 agonists were ineffective. Clozapine did not change basal firing by itself, but was able to suppress the inhibition produced by dopamine and by the 5-HT2/5-HT3 receptor agonists. It is concluded that clozapine at the mPFC level exerts a complex modulatory activity on dopamine receptors, that is directly at the dopaminergic receptors and through 5-HT receptors on the same neurons.  相似文献   

13.
Rationale  Social instigation is used in rodents to induce high levels of aggression, a pattern of behavior with certain parallels to that of violent individuals. This procedure consists of a brief exposure to a provocative stimulus male, before direct confrontation with an intruder. Studies using 5-HT1A and 5-HT1B receptor agonists show an effective reduction in aggressive behavior. An important site of action for these drugs is the ventral orbitofrontal cortex (VO PFC), an area of the brain which is particularly relevant in the inhibitory control of aggressive and impulsive behavior. Objectives  The objectives of the study are to assess the anti-aggressive effects of 5-HT1A and 5-HT1B agonist receptors [8-hydroxy-2-(di-n-propylamino) tetralin hydrobromide (8-OH-DPAT) and CP-93,129] in the VO PFC of socially provoked male mice. To confirm the specificity of the receptor, 5-HT1A and 5-HT1B antagonist receptors (WAY-100,635 and SB-224,289) were microinjected into the same area, in order to reverse the agonist effects. Results  8-OH-DPAT (0.56 and 1.0 μg) reduced the frequency of attack bites. The lowest dose of CP-93,129 (0.1 μg) also decreased the number of attack bites and lateral threats. 5-HT1A and 5-HT1B receptor agonists differed in their effects on non-aggressive activities, the former decreasing rearing and grooming, and the latter, increasing these acts. Specific participation of the 1A and 1B receptors was verified by reversal of anti-aggressive effects using selective antagonists WAY-100,635 (10.0 μg) and SB-224,289 (1.0 μg). Conclusions  The decrease in aggressiveness observed with microinjections of 5-HT1A and 5-HT1B receptor agonists into the VO PFC of socially provoked mice, supports the hypothesis that activation of these receptors modulates high levels of aggression in a behaviorally specific manner.  相似文献   

14.
Clozapine is an atypical antipsychotic drug active on both positive and negative symptoms of schizophrenia which has a unique serotonergic and dopaminergic profile. Given the putative role of the medial prefrontal cortex (mPFC) in negative symptoms of schizophrenia, the aim of this study was to assess the effects of clozapine on the dopamine- and serotonin-responsive neurons in that particular brain structure. D1 and D2 agonists (SKF 38393 and quinpirole) as well as 5-HT2 and 5-HT3 agonists (1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane, DOI, and phenylbiguanide) were applied by microiontophoresis alone and concurrently with clozapine while recording extracellularly mPFC neurons. Dopamine ejections inhibited firing activity while D1 and D2 agonists were ineffective. Clozapine did not change basal firing by itself, but was able to suppress the inhibition produced by dopamine and by the 5-HT2/5-HT3 receptor agonists. It is concluded that clozapine at the mPFC level exerts a complex modulatory activity on dopamine receptors, that is directly at the dopaminergic receptors and through 5-HT receptors on the same neurons.  相似文献   

15.
The functions and interactions of cortical and subcortical dopamine systems are of interest because alterations in these systems have been implicated in neuropsychiatric diseases, such as schizophrenia. It has been proposed that prefrontal dopamine transmission may oppose dopamine transmission in subcortical sites, such as the nucleus accumbens. Accordingly, reduced prefrontal dopamine transmission would be expected to enhance or induce behavioral effects that have been associated with stimulation of accumbal dopamine receptors. In rats, spontaneous and amphetamine-induced activity is supported by dopamine receptor stimulation in the nucleus accumbens, while prepulse inhibition (PPI) of the acoustic startle response, which is used to measure sensorimotor gating and is disrupted in schizophrenia, is reduced by increased accumbal dopamine receptor stimulation. In the present experiments, we found that bilateral infusion of the dopamine D1/D2 receptor antagonist cis-flupenthixol dihydrochloride into the medial prefrontal cortex of Wistar rats (25 microg each side) reduced spontaneous activity and completely blocked induction of hyperactivity by systemic administration of D-amphetamine sulfate (1 mg/kg), while not affecting PPI. These findings do not support an antagonism between prefrontal and accumbal dopamine in the control of behavior. Rather, our data demonstrate that prefrontal dopamine transmission may modulate some behavioral processes in a similar way to accumbal dopamine.  相似文献   

16.
Electrophysiological recordings from hippocampus and cortex have demonstrated that one of the most prominent effects of serotonin in these regions is a membrane hyperpolarization that effectively inhibits neuronal activity. The use of the in vitro brain slice preparation has allowed for detailed pharmacological and physiological studies of this response. Pharmacological analysis using agonists and antagonists indicates that these responses are mediated by activation of receptors of the 5-HT1A subtype. Buspirone, ipsapirone and 8-OHDPAT are all partial agonists at this receptor with 8-OHDPAT exhibiting an intrinsic activity approximately one-fourth that of serotonin. The ability of 5-HT1A receptor agonists to elicit a hyperpolarization is dependent on intracellular GTP, suggesting the involvement of a G protein in the transmembrane signalling mechanism. In agreement with this idea, injection of the stable GTP analog GTPγS renders the serotonin induced hyperpolarization irreversible, while GDPβS blunts its effects and pertussis toxin pretreatment blocks it. The 5-HT1A receptor induced hyperpolarization is mediated by an increase in potassium conductance. While the identity of the potassium channel remains to be determined, its basic characteristics identify it as belonging to a general class of inwardly rectifying G protein activated potassium channels ubiquitously distributed in neuronal and cardiac muscle tissues. In the rat hippocampus and cortex, most pyramidal cells co-express 5-HT1A with either 5-HT4 or 5-HT2 receptors, respectively, which in turn act to increase the ability of strong stimuli to excite these cells. As a result the net effect of serotonin on membrane excitability is dependent on the strength of incoming stimuli. Weak stimuli are depressed by the coactivation of these receptor subtypes while strong stimuli are enhanced. Thus the effects of selective 5-HT1A ligands are likely to depend not only on their direct effect on membrane excitability but also on how they alter ongoing serotonergic neurotransmission. © 1992 Wiley-Liss, Inc.  相似文献   

17.
Serotonin (5-HT) receptors are increasingly recognized as major targets for cognitive enhancement in schizophrenia. Several lines of evidence suggest a pathophysiological role for glutamate NMDA receptors in the prefrontal cortex in schizophrenia and associated disorders in attention and executive functioning. We investigated how the interactions between 5-HT1A and 5-HT2A and glutamate NMDA receptor mechanisms in the medial prefrontal cortex (mPFC) contribute to the control of different aspects of attentional performance. Rats were trained on a five-choice serial reaction time (5-CSRT) task, which provides indices of attentional functioning (percentage of correct responses), executive control (measured by anticipatory and perseverative responses), and speed. The competitive NMDA receptor antagonist CPP (50 ng/side) was infused directly into the mPFC 5 min after infusion of either 8-OH-DPAT (30 and 100 ng/side) or M100907 (100 and 300 ng/side) into the same brain area. Impairments in attentional functioning induced by CPP were completely abolished by both doses of 8-OH-DPAT or M100907. In addition, M100907 abolished the CPP-induced anticipatory responding but had no effects on perseverative over-responding, while 8-OH-DPAT reduced the perseverative over-responding but had no effects on anticipatory responding induced by CPP. The selective 5-HT(1A) receptor antagonist WAY100635 (30 ng/side) antagonized the effects of 8-OH-DPAT (100 ng/side). 8-OH-DPAT at 30 ng/side reduced the latency of correct responses in controls and CPP-injected rats and lowered the percentage of omissions in CPP-injected rats. The data show that 5-HT1A and 5-HT2A receptors in the mPFC exert opposing actions on attentional functioning and demonstrate a dissociable contribution of 5-HT1A and 5-HT2A receptors in the mPFC to different aspects of executive control such as impulsivity and compulsive perseveration.  相似文献   

18.
We compared 5-hydroxytryptamine (5-HT), norepinephrine and dopamine for their efficacy at increasing excitatory postsynaptic current frequency in layer V pyramidal cells from rat medial prefrontal cortical slices. 5-HT, norepinephrine and dopamine increased the excitatory postsynaptic current frequency by 15.9-, 4.5- and 1.7-fold, respectively. Similar to previous results with 5-HT-induced excitatory postsynaptic currents, blockade of mu-opioid receptors, of alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid (AMPA) receptors and fast Na+ channels suppressed the norepinephrine-induced excitatory postsynaptic currents. The norepinephrine-induced, and in most cases, the dopamine-induced increase in excitatory postsynaptic current frequency was blocked by the alpha1-adrenoceptor antagonist prazosin while the alpha2-adrenoceptor antagonist yohimbine did not block either the norepinephrine- or the 5-HT-induced increase in excitatory postsynaptic currents frequency. The potency of three 5-HT2 receptor antagonists with varying selectivity for 5-HT2A/2B/2C receptors tested against the 5-HT-induced increase in excitatory postsynaptic current frequency are in agreement with the affinity of these drugs for the 5-HT2A receptor. These findings suggest that 5-HT2A receptor or alpha1-adrenoceptor activation enhance neurotransmitter release from a similar subset of glutamate terminals that innervate apical dendrites of layer V pyramidal cells.  相似文献   

19.
Convergent evidence suggests that serotonin 5-HT1A receptor (5-HT1AR) agonists reduce l-DOPA-induced dyskinesia by auto-regulating aberrant release of l-DOPA-derived dopamine (DA) from raphestriatal neurons. However, recent findings indicate that 5-HT1AR stimulation also modifies D1 receptor (D1R)-mediated dyskinesia and rotations implicating a previously unexplored extra-raphe mechanism. In order to characterize the contribution of the striatum to these effects, rats with medial forebrain bundle DA lesions were tested for abnormal involuntary movements (AIMs) and rotations following striatal microinfusions of the 5-HT1AR agonist +/-8-OH-DPAT and systemic D1R agonist treatment with SKF81297. Additional rats with multi-site striatal DA lesions were tested for motor disability following systemic or intrastriatal +/-8-OH-DPAT with or without systemic SKF81297. In rats with medial forebrain bundle lesions, striatal infusions of +/-8-OH-DPAT dose-dependently reduced AIMs while conversely increasing rotations. In rats with striatal lesions, +/-8-OH-DPAT alone, both systemic and intrastriatal administration, optimally reversed motor disability. Collectively, these results support an important functional interaction between 5-HT1AR and D1R in the striatum with implications for the improved treatment of Parkinson's disease.  相似文献   

20.
The effects of local applications of phencyclidine (PCP) and dopamine (DA) on neurons of the medial prefrontal cortex were investigated using single unit recording techniques. The activity of the majority of cells in the deeper layers of the medial prefrontal cortex was depressed by both phencyclidine and DA, whereas increases, as well as decreases, in the firing rates were observed in cells located in the superficial cortical layers. The stereospecificity of the responses of deeper cells to phencyclidine was demonstrated using the enantiomers of 1-(-1-phenylcyclohexyl)-3-methylpiperidine (PCMP). Phencyclidine was found to be 1.5 times more potent than (+) PCMP and 3 times more potent than (-) PCMP. Finally, the DA receptor antagonist fluphenazine, blocked the phencyclidine-elicited depressions of unit activity in the deep prefrontal cortex. Taken together, the data indicate that the DA-like effects of phencyclidine on neurons of the medial prefrontal cortex are mediated by DA receptors and provide pharmacological support for the idea that psychomotor stimulant drugs have specific actions on targets of the ventral tegmental area (A10) dopamine system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号