首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The particle size and surface properties of gold nanoparticles are critical factors for the interactions between nanoparticles and cells. To produce noncytotoxic gold nanoparticles, a straightforward method for the synthesis of gold nanoparticles designed involving the reduction and stabilization by a protein such as a lysozyme in conjunction with microwave irradiation. The cooperative combination of a lysozyme with a high affinity for metal ions and the microwave irradiation allowed to form biocompatible gold nanoparticles in an aqueous system. In addition, the cell toxicity and the cellular uptake pathways of the gold nanoparticles synthesized against mouse embryonic fibroblast NIH-3T3 cells were studied and found to be taken up by receptor-mediated endocytosis. In addition, the lysozyme-stabilized gold nanoparticles are accumulated in the cytoplasm as well as the nucleus without any significant cytotoxicity.  相似文献   

2.
Gold nanoparticles (NPs) have been proposed as a highly potential tool in immunotherapies due to its advantageous properties including customizable size and shapes, surface functionality and biocompatibility. Dendritic cells (DCs), the sentinels of immune response, have been of interest to be manipulated by using gold NPs for targeted delivery of immunotherapeutic agent. Researches done especially in human DCs showed a variation of gold NPs effects on cellular uptake and internalization, DC maturation and subsequent T cells priming as well as cytotoxicity. In this review, we describe the synthesis and physiochemical properties of gold NPs as well as the importance of gold NPs in immunotherapies through their actions on human DCs.  相似文献   

3.
Chrysosporium tropicum is a pathogenic fungus. It is known to be an effective mosquito control agent. In the present study, we have synthesized the silver and gold nanoparticles using C. tropicum. These nanoparticles have been characterized through Microscan reader, X-ray diffractometer, transmission electron microscopy, and further confirmed by scanning electron microscopy. The characterization study confirmed the spherical shape and size (2–15 and 20–50 nm) of gold and silver nanoparticles. These silver and gold nanoparticles have been tested as a larvicide against the Aedes aegypti larvae. The larvicidal efficacy was noted when performed against all instars of A. aegypti at six different log concentrations, and significant results could be observed. The gold nanoparticles used as an efficacy enhancer have shown mortality at three times higher concentration than the silver nanoparticles. The larval mortality was observed after different time of exposures. The mortality values were obtained using the probit analysis. The larvae of A. aegypti were found to be highly susceptible for the silver nanoparticles. The second instar larvae have shown 100% mortality against the silver nanoparticles after 1 h, whereas the first, third, and fourth instars have shown efficacy (LC50 = 3.47, 4, and 2; LC90 = 12.30, 8.91, and 4; LC99 = 13.18, 13.18, and 7.58, respectively) after 1 h. The results could suggest that the use of fungus C. tropicum, silver, and gold nanoparticles is a rapid, environmentally safer, and greener approach for mosquito control. This could lead us to a new possibility in vector control strategy.  相似文献   

4.
The use of proteins for therapeutic applications requires the protein to maintain sufficient activity for the period of in vivo treatment. Many proteins exhibit a short half-life in vivo and, thus, require delivery systems for them to be applied as therapeutics. The relative biocompatibility and the ability to form functionalized bioconjugates via simple chemistry make gold nanoparticles excellent candidates as protein delivery systems. Herein, two protocols for coupling proteins to gold nanoparticles have been compared. In the first, strong biomolecular binding between biotin and streptavidin was used to couple catalase to the surface of gold nanoparticles. In the second protocol the formation of an amide bond between carboxylic acid-coated gold nanoparticles and free surface amines of catalase using carbodiimide chemistry was performed. The stability and kinetics of the different steps involved in these protocols were studied using UV-visible spectroscopy, dynamic light scattering, and transmission electron microscopy. The addition of mercapto-undecanoic acid in conjugation with (N-(6-(biotinamido)hexyl)-3'-(2'-pyridyldithio)-propionamide increased the stability of biotinylated gold nanoparticles. Although the carbodiimide chemistry-based bioconjugation approach exhibited a decrease in catalase activity, the carbodiimide chemistry-based bioconjugation approach resulted in more active catalase per gold nanoparticle compared with that of mercapto-undecanoic acid-stabilized biotinylated gold nanoparticles. Both coupling protocols resulted in gold nanoparticles loaded with active catalase. Thus, these gold nanoparticle systems and coupling protocols represent promising methods for the application of gold nanoparticles for protein delivery.  相似文献   

5.
Abstract

Noble metals and their compounds have been used as therapeutic agents from the ancient time in medicine for the treatment of various infections. Recently, much progress has been made in the field of nanobiotechnology towards the development of different kinds of nanomaterials with a wide range of applications. Among the metal nanoparticles, noble metal nanoparticles have demonstrated potential biomedical applications. Due to the small size, nanoparticles can easily interact with biomolecules both at surface and inside cells, yielding better signals and target specificity for diagnostics and therapeutics. Noble metal nanoparticles inspired the researchers due to their remarkable role in detection and treatment of dreadful diseases. In this review, we have attempted to focus on the biomedical applications of noble metal nanoparticles particularly, silver, gold, and platinum in diagnosis and treatment of dreaded diseases such as cancer, human immunodeficiency virus (HIV), tuberculosis (TB), and Parkinson disease. In addition, the role of silver nanoparticles (AgNPs) such as novel antimicrobials, gold nanoparticles (AuNPs) such as efficient drug carrier, uses of platinum nanoparticles (PtNPs) in bone allograft, dentistry, etc. have been critically reviewed. Moreover, the toxicity due to the use of metal nanoparticles and some unsolved challenges in the field have been discussed with their possible solutions.  相似文献   

6.
We determined the effect of aggregation and coating thickness of gold on the luminescence of nanoparticles engulfed by macrophages and in gelatin phantoms. Thin gold-coated iron oxide nanoclusters (nanoroses) have been developed to target macrophages to provide contrast enhancement for near-infrared optical imaging applications. We compare the brightness of nanoroses luminescent emissions in response to 635 nm laser excitation to other nanoparticles including nanoshells, nanorods, and Cy5 conjugated iron oxide nanoparticles. Luminescent properties of all these nanoparticles were investigated in monomeric and aggregated form in gelatin phantoms and primary macrophage cell cultures using confocal microscopy. Aggregation of the gold nanoparticles increased luminescence emission and correlated with increased surface mass of gold per nanoparticle (nanoshells 37 ± 14.30 × 10(-3) brightness with 1.23 × 10(-4) wt of gold (g)/nanoparticle versus original nanorose 1.45 ± 0.37 × 10(-3) with 2.10 × 10(-16) wt of gold/nanoparticle, p<0.05). Nanoshells showed greater luminescent intensity than original nanoroses or Cy5 conjugated iron oxide nanoparticles when compared as nanoparticles per macrophage (38 ± 10 versus 11 ± 2.8 versus 17 ± 6.5, p<0.05, respectively, ANOVA), but showed relatively poor macrophage uptake (1025 ± 128 versus 7549 ± 236 versus 96,000 nanoparticles/cell, p<0.05, student t-test nanoshells versus nanoroses). Enhancement of gold fluorescent emissions by nanoparticles can be achieved by reducing the thickness of the gold coating, by clustering the gold on the surface of the nanoparticles (nanoshells), and by clustering the gold nanoparticles themselves.  相似文献   

7.
Curcumin nanoparticles were most recently considered in medical research because of their antibacterial properties. The main objective of the study was to develop the green synthesis and antibacterial activity of curcumin nanoparticles using Curcuma longa. The processing of curcumin nanoparticles was carried out after the collection, identification, and extraction of curcumin. The effect of a sample on the synthesis of nanoparticles, such as curcumin aqueous concentrations (5, 10, and 20 mg/ml) and curcumin nanoparticles (5, 10, and 20 mg/ml), and the antibacterial effect of these nanoparticles on Escherichia coli, Staphylococcus aureusPseudomonas aeruginosa, Klebsiella pneumoniae, and the fungal strain Aspergillus niger. For examining antibacterial and anti-fungal activity disc diffusion method was performed, followed by the zone of inhibition. According to X-ray diffraction and scanning electron microscope analysis, nanoparticles have spherical shapes and size of 42.64 nm. Results showed that a high dose of 20 mg/ml curcumin nanoparticles have more antibacterial activity than curcumin extracts in E. coli as it showed the largest diameter of zone of inhibition as compared to other doses. Other bacterial and fungal strains also showed significant results but E. coli was most prominent. The biosynthesis of curcumin nanoparticles using an aqueous extract of C. longa is a clean, inexpensive, and safe method that has not been used any toxic substance and consequently does not have side effects. Since several pathogenic species have acquired antibiotic resistance, the combination of curcumin with various nanoparticles would be beneficial in the cure of pathogenic diseases.  相似文献   

8.
Surface-modified gold nanoparticles have pronounced benefits in the biomedical field due to their significant interaction with delivery materials. In the present study we used hydrophobically-modified polycations (i.e., N-acylated chitosan) to stabilize gold nanoparticles. Aliphatic hydrophobic groups, having carbon chains of different lengths, were first grafted onto the backbone of chitosan by N-acylation with fatty-acid chlorides in order to increase its hydrophobicity. Gold nanoparticles stabilized with native chitosan and N-acylated chitosan were prepared by the graft-onto approach. Chemical modification and its quantification were studied by Fourier-transform infrared (FT-IR) spectroscopy. Further, the stabilized gold nanoparticles were characterized by different physico-chemical techniques such as UV-Vis, FT-IR, TEM, TGA and DLS. Spectral studies of gold nanoparticles show the backbone and the side chain functional groups of chitosan were not cleaved during the conjugation process. TEM observations revealed that the modified chitosan gold nanoparticles were well dispersed and spherical in shape with average size around 10-12 nm in triply-distilled water at pH 7.4, whereas the native chitosan gold nanoparticles appeared as clusters with 9.9 nm as average diameter and were dispersed only in dilute HCl. The size of modified chitosan gold nanoparticles varied depending on the length of grafting molecules.  相似文献   

9.
With improved control of cytomegalovirus infection, invasive fungal infections have become the leading cause of infectious mortality after bone marrow transplantation (BMT). A number of changes in transplant practices have led to changes in patterns of fungal infections: neutropenic episodes have been shortened through the use of hematopoietic growth factors and peripheral blood as a source of stem cells. More potent immunosuppressive regimens, including T-cell depletion techniques, have encouraged the use of alternate donor sources with greater numbers of transplant recipients experiencing more prolonged and more profound immunodeficiency following engraftment. The advent of new antifungal agents has led to a decline in Candida infections, but has encouraged the emergence of other less susceptible fungal pathogens. The development of molecular techniques to distinguish different fungal strains has led to identification of nosocomial transmission as an unexpected means for the spread of fungal infections in BMT units. These shifts in fungal infection patterns emphasize the need for infection control monitoring. The development of more accurate diagnostic tools and the incorporation of new antifungal agents into practice are needed to further improve outcomes.  相似文献   

10.
Diminazene aceturate is a trypanocide with unwanted toxicity and limited efficacy.It was reasoned that conjugating diminazene aceturate to functionalized nanoparticle would lower untoward toxicity while improving selectivity and therapeutic efficacy.Silver and gold nanoparticles were evaluated for their capacities to serve as carriers for diminazene aceturate.The silver and gold nanoparticles were synthesized,functionalized and coupled to diminazene aceturate following established protocols.The nanoparticle conjugates were characterized.The free diminazene aceturate and drug conjugated nanoparticles were subsequently evaluated for cytotoxicity in vitro.The characterizations by transmission electron microscopy or UV/Vis spectroscopy revealed that conjugation of diminazene aceturate to silver or gold nanoparticles was successful.Evaluation for cytotoxic actions in vitro demonstrated no significance difference between free diminazene aceturate and the conjugates.Our data suggest that surface modified metal nanoparticles could be optimized for drug delivery systems.  相似文献   

11.
In this work we demonstrate the potential use of gold nanoparticles as contrast agents for the optical coherence tomography (OCT) imaging technique in dentistry. Here, a new in situ photothermal reduction procedure was developed, producing spherical gold nanoparticles inside dentinal layers and tubules. Gold ions were dispersed in the primer of commercially available dental bonding systems. After the application and permeation in dentin by the modified adhesive systems, the dental bonding materials were photopolymerized concurrently with the formation of gold nanoparticles. The gold nanoparticles were visualized by scanning electron microscopy (SEM). The SEM images show the presence of gold nanospheres in the hybrid layer and dentinal tubules. The diameter of the gold nanoparticles was determined to be in the range of 40 to 120 nm. Optical coherence tomography images were obtained in two- and three-dimensions. The distribution of nanoparticles was analyzed and the extended depth of nanosphere production was determined. The results show that the OCT technique, using in situ formed gold nanoparticles as contrast enhancers, can be used to visualize dentin structures in a non-invasive and non-destructive way.  相似文献   

12.
In this report, we have explored the possibility to facilitate the drug delivery efficiency for cancer cells through the surface chemistry modification of gold nanoparticles (AuNPs), where the functional AuNPs were synthesized by the ligand exchange reaction between triphenyl phosphide-stabilized precursor nanoparticles and mercaptopropionic acid. Our observations demonstrate that the combination of the anticancer drug daunorubicin with relevant AuNPs could be used as an efficient way to mark the cancer cells, which may afford the potential application for the early diagnosis of the respective cancers. Besides, the synergistic enhanced effect of the relevant gold nanoparticles on the drug uptake of target cancer cells could provide a new strategy to inhibit the multidrug resistance of the respective cancers.  相似文献   

13.
The theranostic potential of several nanostructures has been discussed in the context of photothermal therapies and imaging. In the last several decades, the burden of cancer has grown rapidly, making the need for new theranostic approaches vital. Lasers have emerged as promising tools in cancer treatment, especially with the advent of photothermal therapies wherein light absorbing dyes or plasmonic gold nanoparticles are used to generate heat and achieve tumor damage. Recently, photoabsorbing nanostructures have materialized that can be employed in conjunction with lasers in the near-infrared region in order to enhance both imaging and photothermal effects. The incorporation of tunable nanostructures has resulted in improved specificity in cancer treatment. Silica-cored gold nanoshells and gold nanorods currently serve as the chief plasmonic structures for photothermal therapy. Although gold nanorods and silica-cored gold nanoshells have shown promise as therapeutic agents, over the past few years new nanostructures have emerged that offer comparable and even superior theranostic properties. In the present review, several theranostic agents and their impact on the development of more effective photothermal therapies for the treatment of cancer are discussed. These agents include hollow gold nanoshells, gold gold-sulfide nanoparticles, gold nanocages, carbon and titanium nanotubes, photothermal-based nanobubbles, polymeric nanoparticles and copper-based nanocrystals.  相似文献   

14.
目的 建立一种呼吸道病原体多重PCR结合核酸侵入反应及纳米金显色的检测方法.方法 针对几种重要的呼吸道病原体(甲型流感病毒、乙型流感病毒、SARS冠状病毒、嗜肺军团菌、脑膜炎奈瑟菌以及腺病毒)保守区基因设计引物,进行多重PCR反应、核酸侵入反应及纳米金显色反应,对多种呼吸道病原体同时进行检测,以人偏肺病毒、呼吸道合胞病毒、人鼻病毒、肺炎链球菌4种呼吸道病原核酸评价其检测特异性,以体外转录的病毒RNA或扩增的PCR片段评价其检测敏感性.结果 成功建立了一种呼吸道病原体多重PCR结合核酸侵入反应及纳米金显色的检测技术.建立的检测方法可特异的检测目的病原体,且与人偏肺病毒、呼吸道合胞病毒、人鼻病毒、肺炎链球菌无交叉反应.该方法对不同靶标的检测灵敏度介0.5 ~50拷贝/μL.结论 建立的呼吸道病原体多重PCR结合核酸侵入反应及纳米金显色技术的检测方法,具有较高的检测特异性及灵敏度,检测通量高,肉眼即可观察结果,在传染病病原体检测方面具有广阔的应用前景.  相似文献   

15.
16.
Multispectral optoacoustic tomography (MSOT) is a powerful modality that allows high-resolution imaging of photo-absorbers deep within tissue, beyond the classical depth and resolution limitations of conventional optical imaging. Imaging of intrinsic tissue contrast can be complemented by extrinsically administered gold nanoparticles or fluorescent molecular probes. Instead, we investigated herein generation of re-engineered clinically-used PEGylated liposomes incorporating indocyanine green (LipoICG) as a contrast strategy that combines materials already approved for clinical use, with strong photo-absorbing signal generation available today only from some metallic nanoparticles (e.g. gold nanorods). Using MSOT we confirmed LipoICG as a highly potent optoacoustic agent and resolved tissue accumulation in tumor-bearing animals over time with high-sensitivity and resolution using two tumor models of different vascularisation. We further showcase a paradigm shift in pharmacology studies and nanoparticle investigation, by enabling detailed volumetric optical imaging in vivo through the entire tumor tissue non-invasively, elucidating never before seen spatiotemporal features of optical agent distribution. These results point to LipoICG as a particle with significant advantageous characteristics over gold nanoparticles and organic dyes.  相似文献   

17.
Lee K  Lee H  Lee KW  Park TG 《Biomaterials》2011,32(10):2556-2565
The generation of intracellular reactive oxygen species (ROS) was optically monitored using ROS-sensitive gold nanoprobes in response to an exposure of nanoparticles (NPs). Fluorescent dye-labeled hyaluronic acid was grafted onto the surface of gold nanoparticles (HF-AuNPs) for imaging intracellular ROS. The ultrasensitive detection of intracellular ROS was utilized as a powerful analytical tool to assess early cellular toxicities of monodisperse polystyrene (PS) particles with different sizes and different functional groups on the surface. The effect of PEGylation on the surface of PS NPs was also investigated by evaluating intracellular ROS generation. For various PS NPs, the extent of intracellular ROS was well correlated with cellular uptake, apoptosis inducing activity, and cytotoxic effect of NPs. In addition to the nanoparticles, commonly used polymeric gene carriers such as linear and branched polyethylenimine (PEI) were tested to analyze their extent of intracellular ROS generation related to cellular toxicity. This study demonstrated that sensitive and optical detection of intracellular ROS generation can provide a valuable toxicity index value for a wide range of NPs as an early indicator for cellular responses.  相似文献   

18.
Zhang XD  Wu D  Shen X  Chen J  Sun YM  Liu PX  Liang XJ 《Biomaterials》2012,33(27):6408-6419
Gold nanoparticles have been conceived as a radiosensitizer in cancer radiation therapy, but one of the important questions for primary drug screening is what size of gold nanoparticles can optimally enhance radiation effects. Herein, we perform in vitro and in vivo radiosensitization studies of 4.8, 12.1, 27.3, and 46.6 nm PEG-coated gold nanoparticles. In vitro results show that all sizes of the PEG-coated gold nanoparticles can cause a significant decrease in cancer cell survival after gamma radiation. 12.1 and 27.3 nm PEG-coated gold nanoparticles have dispersive distributions in the cells and stronger sensitization effects than 4.8 and 46.6 nm particles by both cell apoptosis and necrosis. Further, in vivo results also show all sizes of the PEG-coated gold nanoparticles can significantly decrease tumor volume and weight after 5 Gy radiations, and 12.1 and 27.3 nm PEG-coated gold nanoparticles have greater sensitization effects than 4.8 and 46.6 nm particles, which can lead to almost complete disappearance of the tumor. In vivo biodistribution confirms that 12.1 and 27.3 nm PEG-coated gold nanoparticles are accumulated in the tumor with high concentrations. The pathology, immune response, and blood biochemistry indicate that the PEG-coated gold nanoparticles have not caused spleen and kidney damages, but give rise to liver damage and gold accumulation. It can be concluded that 12.1 and 27.3 nm PEG-coated gold nanoparticles show high radiosensitivity, and these results have an important indication for possible radiotherapy and drug delivery.  相似文献   

19.
There is an increasing demand for convenient and accurate point-of-care tools that can detect and diagnose different stages of a disease in remote or impoverished settings. In recent years, lateral flow immunoassays (LFIA) have been indicated as a suitable medical diagnostic tool for these environments because they require little or no sample preparation, provide rapid and reliable results with no electronic components and thus can be manufactured at low costs and operated by unskilled personnel. However, even though they have been successfully applied to acute and chronic disease detection, LFIA based on gold nanoparticles, the standard marker, show serious limitations when high sensitivity is needed, such as early stage disease detection. Moreover, based on the lack of comparative information for label performance, significant optimization of the systems that are currently in use might be possible. To this end, in the presented work, we compare the detection limit between the four most used labels: colloidal-gold, silver enhanced gold, blue latex bead and carbon black nanoparticles. Preliminary results were obtained by using the biotin-streptavidin coupling as a model system and showed that carbon black had a remarkably low detection limit of 0.01 μg/mL in comparison to 0.1 μg/mL, 1 μg/mL and 1mg/mL for silver-coated gold nanoparticles, gold nanoparticles and polystyrene beads, respectively. Therefore, as a proof of concept, carbon black was used in a detection system for Dengue fever. This was achieved by immobilizing monoclonal antibodies for the nonstructural glycoprotein (NS1) of the Dengue virus to carbon black. We found that the colorimetric detection limit of 57 ng/mL for carbon black was ten times lower than the 575 ng/mL observed for standard gold nanoparticles; which makes it sensitive enough to diagnose a patient on the first days of infection. We therefore conclude that, careful screening of detection labels should be performed as a necessary step during LFIA development in order to enhance the detection limit in a final test system.  相似文献   

20.

Introduction

Guided treatments with nanoparticles and cold atmospheric plasma are a new approach in cancer therapy. Plasma is an ionized gas that has reactive and energetic particles and can be produced in the laboratory by different methods.

Material and methods

Plasma jet therapy was employed to irradiate HCT-116 cells (human colorectal cancer cells) which were cultured in the presence of gold nanoparticles (GNPs). Cell cytotoxicity was tested with 3-[4, 5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide (MTT), and cancerous cell apoptosis was shown by 4’,6-diamidino-2-phenylindole (DAPI) staining.

Results

The results showed that cell death was increased significantly with p < 0.001 by cold atmospheric plasma in the presence of gold nanoparticles.

Conclusions

It appears that non-thermal plasma and gold nanoparticles synergism is a promising approach in colon cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号