首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Neurofibromatosis type I (NF1) is an autosomal dominant familial tumor syndrome characterized by the presence of multiple benign neurofibromas. In 95% of NF1 individuals, a mutation is found in the NF1 gene, and in 5% of the patients, the germline mutation consists of a microdeletion that includes the NF1 gene and several flanking genes. We studied the frequency of loss of heterozygosity (LOH) in the NF1 region as a mechanism of somatic NF1 inactivation in neurofibromas from NF1 patients with and without a microdeletion. There was a statistically significant difference between these two patient groups in the proportion of neurofibromas with LOH. None of the 40 neurofibromas from six different NF1 microdeletion patients showed LOH, whereas LOH was observed in 6/28 neurofibromas from five patients with an intragenic NF1 mutation (P = 0.0034, Fisher's exact). LOH of the NF1 microdeletion region in NF1 microdeletion patients would de facto lead to a nullizygous state of the genes located in the deletion region and might be lethal. The mechanisms leading to LOH were further analyzed in six neurofibromas. In two out of six neurofibromas, a chromosomal microdeletion was found; in three, a mitotic recombination was responsible for the observed LOH; and in one, a chromosome loss with reduplication was present. These data show an important difference in the mechanisms of second hit formation in the 2 NF1 patient groups. We conclude that NF1 is a familial tumor syndrome in which the type of germline mutation influences the type of second hit in the tumors.  相似文献   

2.
Neurofibromatosis type-1 (NF1), caused by heterozygous inactivation of the NF1 tumour suppressor gene, is associated with the development of benign and malignant peripheral nerve sheath tumours (MPNSTs). Although numerous germline NF1 mutations have been identified, relatively few somatic NF1 mutations have been described in neurofibromas. Here we have screened 109 cutaneous neurofibromas, excised from 46 unrelated NF1 patients, for somatic NF1 mutations. NF1 mutation screening (involving loss-of-heterozygosity (LOH) analysis, multiplex ligation-dependent probe amplification and DNA sequencing) identified 77 somatic NF1 point mutations, of which 53 were novel. LOH spanning the NF1 gene region was evident in 25 neurofibromas, but in contrast to previous data from MPNSTs, it was absent at the TP53, CDKN2A and RB1 gene loci. Analysis of DNA/RNA from neurofibroma-derived Schwann cell cultures revealed NF1 mutations in four tumours whose presence had been overlooked in the tumour DNA. Bioinformatics analysis suggested that four of seven novel somatic NF1 missense mutations (p.A330T, p.Q519P, p.A776T, p.S1463F) could be of functional/clinical significance. Functional analysis confirmed this prediction for p.S1463F, located within the GTPase-activating protein-related domain, as this mutation resulted in a 150-fold increase in activated GTP-bound Ras. Comparison of the relative frequencies of the different types of somatic NF1 mutation observed with those of their previously reported germline counterparts revealed significant (P=0.001) differences. Although non-identical somatic mutations involving either the same or adjacent nucleotides were identified in three pairs of tumours from the same patients (P<0.0002), no association was noted between the type of germline and somatic NF1 lesion within the same individual.  相似文献   

3.
Neurofibromas are one of the most characteristic features of neurofibromatosis type 1 (NF1), an inherited autosomal-dominant neurogenetic disorder affecting 1 in 3500 individuals worldwide. These benign tumors mainly consist of Schwann cells (SCs) and fibroblasts. Recent evidence demonstrates that somatic mutations at the NF1 gene are found in neurofibromas, but it has not been demonstrated whether SCs, fibroblasts and/or both cell types bear a somatic loss of NF1. We recently established a cell culture system that allows selective expansion of human SCs from neurofibromas. We cultured pure populations of SCs and fibroblasts derived from 10 neurofibromas with characterized NF1 mutations and found that SCs but not fibroblasts harbored a somatic mutation at the NF1 locus in all studied tumors. Furthermore, by culturing neurofibroma-derived SCs under different in vitro conditions we were able to obtain two genetically distinct SC subpopulations: NF1(-/-) and NF1(+/-). These data strongly support the idea that NF1 mutations in SCs, but not in fibroblasts, correlate to neurofibroma formation and demonstrate that only a portion of SCs in neurofibromas have mutations in both NF1 alleles.  相似文献   

4.
About 10% of neurofibromatosis type 1 (NF1) patients develop malignant peripheral nerve sheath tumors (MPNSTs) and represent considerable patient morbidity and mortality. Elucidation of the genetic mechanisms by which inherited and acquired NF1 disease gene variants lead to MPNST development is important. A study was undertaken to identify the constitutional and somatic NF1 mutations in 34 MPNSTs from 27 NF1 patients. The NF1 germline mutations identified in 22 lymphocytes DNA from these patients included seven novel mutations and a large 1.4-Mb deletion. The NF1 germline mutation spectrum was similar to that previously identified in adult NF1 patients without MPNST. Somatic NF1 mutations were identified in tumor DNA from 31 out of 34 MPNSTs, of which 28 were large genomic deletions. The high prevalence (>90%) of such deletions in MPNST contrast with the =or<20% found in benign neurofibromas and is indicative of the involvement of different mutational mechanisms in these tumors. Coinactivation of the TP53 gene by deletion, or by point mutation along with NF1 gene inactivation, is known to exacerbate disease symptoms in NF1, therefore TP53 gene inactivation was screened. DNA from 20 tumors showed evidence for loss of heterozygosity (LOH) across the TP53 region in 11 samples, with novel TP53 point mutations in four tumors.  相似文献   

5.
One of the main features of neurofibromatosis type 1 (NF1) is benign neurofibromas, 10-20% of which become transformed into malignant peripheral nerve sheath tumors (MPNSTs). The molecular basis of NF1 tumorigenesis is, however, still unclear. Ninety-one tumors from 31 NF1 patients were screened for gross changes in the NF1 gene using microsatellite/restriction fragment length polymorphism (RFLP) markers; loss of heterozygosity (LOH) was found in 17 out of 91 (19%) tumors (including two out of seven MPNSTs). Denaturing high performance liquid chromatography (DHPLC) was then used to screen 43 LOH-negative and 10 LOH-positive tumors for NF1 microlesions at both RNA and DNA levels. Thirteen germline and 12 somatic mutations were identified, of which three germline (IVS7-2A>G, 3731delT, 6117delG) and eight somatic (1888delG, 4374-4375delCC, R2129S, 2088delG, 2341del18, IVS27b-5C>T, 4083insT, Q519P) were novel. A mosaic mutation (R2429X) was also identified in a neurofibroma by DHPLC analysis and cloning/sequencing. The observed somatic and germline mutational spectra were similar in terms of mutation type, relative frequency of occurrence, and putative underlying mechanisms of mutagenesis. Tumors lacking mutations were screened for NF1 gene promoter hypermethylation but none were found. Microsatellite instability (MSI) analysis revealed MSI in five out of 11 MPNSTs as compared to none out of 70 neurofibromas (p=1.8 x 10(-5)). The screening of seven MPNSTs for subtle mutations in the CDKN2A and TP53 genes proved negative, although the screening of 11 MPNSTs detected LOH involving either the TP53 or the CDKN2A gene in a total of four tumors. These findings are consistent with the view that NF1 tumorigenesis is a complex multistep process involving a variety of different types of genetic defect at multiple loci.  相似文献   

6.
7.
Neurofibromatosis type 1 (NF1), an autosomal dominantly-inherited disorder, is mainly characterized by the occurrence of multiple dermal neurofibromas and is caused by mutations in the NF1 gene, a tumor suppressor gene. The variable expressivity of the disease and the lack of a genotype/phenotype correlation prevents any prediction of patient outcome and points to the action of genetic factors in addition to stochastic factors modifying the severity of the disease. The analysis of somatic NF1 gene mutations in neurofibromas from NF1 patients revealed that each neurofibroma results from an individual second hit mutation, indicating that factors that influence somatic mutation rates may be regarded as potential modifiers of NF1. A mutational screen of numerous neurofibromas from two NF1 patients presented here revealed a predominance of point mutations, small deletions, and insertions as second hit mutations in both patients. Seven novel mutations are reported. Together with the results of studies that showed LOH as the predominant second hit in neurofibromas of other patients, our results suggest that in different patients different factors may influence the somatic mutation rate and thereby the severity of the disease.  相似文献   

8.
9.
Malignant peripheral nerve sheath tumours (MPNSTs) are a malignancy occurring with increased frequency in patients with neurofibromatosis type 1 (NF1). In contrast to the well‐known spectrum of germline NF1 mutations, the information on somatic mutations in MPNSTs is limited. In this study, we screened NF1, KRAS, and BRAF in 47 MPNSTs from patients with (n = 25) and without (n = 22) NF1. In addition, DNA from peripheral blood and cutaneous neurofibroma biopsies from, respectively, 14/25 and 7/25 of the NF1 patients were analysed. Germline NF1 mutations were detected in ten NF1 patients, including three frameshift, three nonsense, one missense, one splicing alteration, and two large deletions. Somatic NF1 mutations were found in 10/25 (40%) NF1‐associated MPNSTs, in 3/7 (43%) neurofibromas, and in 9/22 (41%) sporadic MPNSTs. Large genomic copy number changes accounted for 6/10 and 7/13 somatic mutations in NF1‐associated and sporadic MPNSTs, respectively. Two NF1‐associated and 13 sporadic MPNSTs did not show any NF1 mutation. A major role of the KRAS and BRAF genes was ruled out. The spectrum of germline NF1 mutations in neurofibromatosis patients with MPNST is different from the spectrum of somatic mutations seen in MPNSTs. However, the somatic events share common characteristics with the NF1‐related and the sporadic tumours. Copyright © 2008 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

10.
The commonest tumors associated with neurofibromatosis type 1 (NF1) are benign peripheral nerve sheath tumors, called neurofibromas. Malignant transformation of neurofibromas into aggressive MPNSTs may occur with a poor patient prognosis. A cooperative role of SUZ12 or EED inactivation, along with NF1, TP53, and CDKN2A loss‐of‐function, has been proposed to drive progression to MPNSTs. An exome sequencing analysis of eight MPNSTs, one plexiform neurofibroma, and seven cutaneous neurofibromas was undertaken. Biallelic inactivation of the NF1 gene was observed in the plexiform neurofibroma and the MPNSTs, underlining that somatic biallelic NF1 inactivation is likely to be the initiating event for plexiform neurofibroma genesis, although it is unlikely to be sufficient for the subsequent MPNST development. The majority (5/8) of MPNSTs in our analyses demonstrated homozygous or heterozygous deletions of CDKN2A, which may represent an early event following NF1 LOH in the malignant transformation of Schwann cells from plexiform neurofibroma to MPNST. Biallelic somatic alterations of SUZ12 was also found in 4/8 MPNSTs. EED biallelic alterations were detected in 2 of the other four MPNSTs, with one tumor having a homozygous EED deletion. A missense mutation in the chromatin regulator KDM2B was also identified in one MPNST. No TP53 point mutations were found in this study, confirming previous data that TP53 mutations may be relatively rare in NF1‐associated MPNSTs. Our study confirms the frequent biallelic inactivation of PRC2 subunits SUZ12 and EED in MPNSTs, and suggests the implication of KDM2B.  相似文献   

11.
Dermal and plexiform neurofibromas are benign peripheral nerve sheath tumors that arise in neurofibromatosis type 1 (NF1). NF1 patients also have an increased risk of malignant peripheral nerve sheath tumors (MPNSTs), thought to arise in a subset of plexiform neurofibromas. Plexiform neurofibroma pathogenesis is poorly understood, despite the serious clinical problem posed by these tumors. The Schwann cell is hypothesized to be the cell type initially mutated and clonally expanded in plexiform neurofibromas. To test this hypothesis and search for genetic alterations involved in tumorigenesis, we established Schwann cell cultures from plexiform and dermal neurofibromas. Cytogenetic abnormalities were identified in 4/6 plexiform cultures (including one from a plexiform with a sarcomatous component) and 0/7 dermal neurofibroma Schwann cell cultures. There were no consistent chromosomal regions involved in the abnormal karyotypes, suggesting that plexiform tumors are heterogeneous and may bear a variety of primary and/or secondary genetic changes. This is the first study to show successful culturing of genetically abnormal Schwann cell lineages from plexiform neurofibromas. Thus, we present the strongest evidence yet to support the theory that the Schwann cell is the central component in the development of plexiform neurofibromas. This is a key finding for NF1 research, which will lead to further studies of the genetic and biochemical pathogenesis of these Schwann cell tumors. Genes Chromosomes Cancer 27:117-123, 2000.  相似文献   

12.
Neurofibromatosis type 1 (NF1) patients develop neurofibromas, tumors of Schwann cell origin, as a result of loss of the Ras-GAP neurofibromin. In normal nerves, Schwann cells are found tightly associated with axons, while loss of axonal contact is a frequent and important early event in neurofibroma development. However, the molecular basis of this physical interaction or how it is disrupted in cancer remains unclear. Here we show that loss of neurofibromin in Schwann cells is sufficient to disrupt Schwann cell/axonal interactions via up-regulation of the Ras/Raf/ERK signaling pathway. Importantly, we identify down-regulation of semaphorin 4F (Sema4F) as the molecular mechanism responsible for the Ras-mediated loss of interactions. In heterotypic cocultures, Sema4F knockdown induced Schwann cell proliferation by relieving axonal contact-inhibitory signals, providing a mechanism through which loss of axonal contact contributes to tumorigenesis. Importantly, Sema4F levels were strongly reduced in a panel of human neurofibromas, confirming the relevance of these findings to the human disease. This work identifies a novel role for the guidance-molecules semaphorins in the mediation of Schwann cell/axonal interactions, and provides a molecular mechanism by which heterotypic cell–cell contacts control cell proliferation and suppress tumorigenesis. Finally, it provides a new approach for the development of therapies for NF1.  相似文献   

13.
Schwannomatosis is characterized by the onset of multiple intracranial, spinal, or peripheral schwannomas, without involvement of the vestibular nerve, which is instead pathognomonic of neurofibromatosis type 2 (NF2). Recently, a schwannomatosis family with a germline mutation of the SMARCB1 gene on chromosome 22 has been described. We report on the molecular analysis of the SMARCB1 and NF2 genes in a series of 21 patients with schwannomatosis and in eight schwannomatosis-associated tumors from four different patients. A novel germline SMARCB1 mutation was found in one patient; inactivating somatic mutations of NF2, associated with loss of heterozygosity (LOH) of 22q, were found in two schwannomas of this patient. This is the second report of a germline SMARCB1 mutation in patients affected by schwannomatosis and the first report of SMARCB1 mutations associated with somatic NF2 mutations in schwannomatosis-associated tumors. The latter observation suggests that a four-hit mechanism involving the SMARCB1 and NF2 genes may be implicated in schwannomatosis-related tumorigenesis.  相似文献   

14.
A search for evidence of somatic mutations in the NF1 gene   总被引:7,自引:0,他引:7  
Neurofibromatosis type I (NF1) is an autosomal dominant disorder affecting 1 in 3000 people. The NF1 gene is located on chromosome 17q11.2, spans 350 kb of genomic DNA, and contains 60 exons. A major phenotypic feature of the disease is the widespread occurrence of benign dermal and plexiform neurofibromas. Genetic and biochemical data support the hypothesis that NF1 acts as a tumour suppressor gene. Molecular analysis of a number of NF1 specific tumours has shown the inactivation of both NF1 alleles during tumourigenesis, in accordance with Knudson's "two hit" hypothesis. We have studied 82 tumours from 45 NF1 patients. Two separate strategies were used in this study to search for the somatic changes involved in the formation of NF1 tumours. First, evidence of loss of heterozygosity (LOH) of the NF1 gene region was investigated, and, second, a screen for the presence of sequence alterations was conducted on a large panel of DNA derived from matched blood/tumour pairs. In this study, the largest of its kind to date, we found that 12% of the tumours (10/82) exhibited LOH; previous studies have detected LOH in 3-36% of the neurofibromas examined. In addition, an SSCP/HA mutation screen identified five novel NF1 germline and two somatic mutations. In a plexiform neurofibroma from an NF1 patient, mutations in both NF1 alleles have been characterised.  相似文献   

15.
Neurofibromatosis type 1 (NF1), a common autosomal dominant neurogenetic disorder affecting 1 in 4000 individuals worldwide, results from functional inactivation of the 17q11.2-located NF1 gene. Plexiform neurofibroma (PNF) is a congenital benign tumour present in 30-50% of NF1 patients, which in about 10-15% of cases, can develop into a malignant peripheral nerve sheath tumour (MPNST). This study aimed to characterise the NF1 germline and somatic mutations associated with such tumours by DNA analysis in 51 PNFs resected from 44 unrelated NF1 patients. Germline mutations were identified in 35 patients, of which 21 were novel. Somatic NF1 mutations were found in 29 PNF DNAs, which included 9 point mutations, 5 being novel, and 20 tumour DNA samples exhibiting, either loss of heterozygosity (LOH) of the NF1 gene region (16 tumours), or complete or partial NF1 gene deletions analyzed by multiplex ligation-dependent probe amplification (MPLA) analysis. The type of NF1 germline mutations detected in patients with PNF were similar to those detected in most NF1 patients. LOH of the NF1 gene region, as identified by marker analysis and/or MLPA, was detected in only 20/29 (69%) PNFs, compared to the >90% LOH previously found in MPNST. This systematic analysis of the NF1 germline and somatic mutations associated with PNF development suggest that in most such tumours neither the NF1 somatic mutation type, nor its gene location, is influenced by the underlying NF1 germline mutation. Evidence for LOH involving the TP53 gene identified in the PNFs is also reported for the first time.  相似文献   

16.
Neurofibromatosis 2 (NF2) is an uncommon, autosomal dominant disorder in which patients are predisposed to neoplastic and dysplastic lesions of Schwann cells (schwannomas and schwannosis), meningeal cells (meningiomas and meningioan-giomatosis) and glial cells (gliomas and glial hamar-tomas). Clinical and genetic criteria that distinguish NF2 from neurofibromatosis 1 have allowed more accurate assignment of specific pathological features to NF2. The NF2 tumor suppressor gene on chromosome 22q12 encodes a widely expressed protein, named merlin, which may link the cytoskeleton and cell membrane. Germline NF2 mutations in NF2 patients and somatic NF2 mutations in sporadic schwannomas and meningiomas have different mutational spectra, but most NF2 alterations result in a truncated, inactivated merlin protein. In NF2 patients, specific mutations do not necessarily correlate with phenotypic severity, although grossly truncating alterations may result in a more severe phenotype. In schwannomas, NF2 mutations are common and may be necessary for tumorigenesis. In meningiomas, NF2 mutations occur more commonly in fibroblastic than meningothelial subtypes, and may cluster in the first half of the gene. In addition, in meningiomas, a second, non- NF2 meningioma locus is probably also involved. Future efforts in NF2 research will be directed toward elucidating the role of merlin in the normal cell and the sequelae of its inactivation in human tumors.  相似文献   

17.
Peripheral nerve sheath tumors may occur sporadically or related to neurofibromatosis (NF). Unless the mechanisms of tumorigenesis in NF related malignant peripheral nerve sheath tumors (MPNST) are better understood, it remained unclear in sporadic cases. We aimed to investigate the genetic route for malignancy in both individuals with NF-1 and sporadic ones to open a way for targeted therapies in the future. We investigated the role of HER2 with Dual ISH DNA Probe Cocktail test, BRAF mutation (exon 15) and TERT promoter mutation frequency with Sanger sequencing method in respectively 25 sporadic neurofibromas, 25 NF-1 related neurofibromas and 25 MPNST cases from two institutes. Categorical data were analyzed and summarized as frequency and percentage. Statistical analysis was done with SPSS v.22 statistical package, and the statistical significance level was considered as 0.05. We identified TERT promoter mutation only in one sporadic MPNST (4%) and no BRAF mutation in any case. HER2 amplification is found in 10/25 (40%) MPNST cases. No mutations or gene amplification detected in neurofibromas (p < 0.001). MPNSTs are sarcomas with poor prognosis and limited treatment options. TERT promoter mutations and HER2 amplification may play a putative role in therapeutic purposes.  相似文献   

18.
Neurofibromatosis type 1 (NF1) is a common autosomal dominant condition associated with germline mutations of the NF1 gene located at chromosome band 17q11.2. Molecular analysis of a number of NF1-specific tumors has shown the inactivation of both NF1 alleles during tumorigenesis, supporting the tumor suppressor hypothesis for the NF1 gene. Using interphase dual-color fluorescence in situ hybridization (FISH) technique on paraffin-embedded tissues, we studied 11 plexiform, 4 cutaneous, and 6 subcutaneous neurofibromas. Cytogenetic analysis was conducted using two probes, one specific for the NF1 region (RP11-229K15) and one for the centromeric region of chromosome 17 as control. No large somatic deletions were found. Only in one of the plexiform neurofibromas loss of a whole chromosome 17 was observed. If we assume that dual-color FISH analysis is sensitive enough to detect the majority of large somatic deletions present, then other mutational mechanisms affecting the NF1 gene are probably involved in neurofibroma formation, and other tumor suppressor genes may play an important role in NF1 tumorigenesis.  相似文献   

19.
Neurofibromatosis type 1 (NF1) (MIM#162200) is a relatively frequent genetic condition that predisposes to tumor formation. The main types of tumors occurring in NF1 patients are cutaneous and subcutaneous neurofibromas, plexiform neurofibromas, optic pathway gliomas, and malignant peripheral nerve sheath tumors. To search for somatic mutations in cutaneous (dermal) neurofibromas, whole-exome sequencing (WES) was performed on seven spatially separated tumors and two reference tissues (blood and unaffected skin) from a single NF1 patient. Validation of WES findings was done using routine Sanger sequencing or Sequenom IPlex SNP genotyping. Exome sequencing confirmed the existence of a known familial splice-site mutation NM_000267.3:c.3113+1G>A in exon 23 of NF1 gene (HGMD ID CS951480) in blood, unaffected skin, and all tumor samples. In five out of seven analyzed tumors, we additionally detected second-hit mutations in the NF1 gene. Four of them were novel and one was previously observed. Each mutation was distinct, demonstrating the independent origin of each tumor. Only in two of seven tumors we detected an additional somatic mutation that was not associated with NF1. Our study demonstrated that somatic mutations of NF1 are likely the main drivers of cutaneous tumor formation. The study provides evidence for the rareness of single base pair level alterations in the exomes of benign NF1 cutaneous tumors.  相似文献   

20.
Microdeletions of the entire NF1 gene and surrounding genomic region occur in about 5% of patients with neurofibromatosis 1 (NF1). NF1 microdeletion patients usually have more cutaneous and plexiform neurofibromas and a higher risk of developing malignant peripheral nerve sheath tumors than other people with NF1. Somatic overgrowth has also been observed in NF1 microdeletion patients, an observation that is remarkable because most NF1 patients are smaller than average for age and sex. We studied longitudinal measurements of height, weight, and head circumference in 56 patients with NF1 microdeletions and 226 NF1 patients with other kinds of mutations. Although children with NF1 microdeletions were much taller than non‐deletion NF1 patients at all ages after 2 years, the lengths of deletion and nondeletion NF1 patients were similar in early infancy. NF1 microdeletion patients tended to be heavier than other NF1 patients, but height or weight more than 3 standard deviations above the mean for age and sex was infrequent in children with NF1 microdeletions. Head circumference and age of puberty were similar in deletion and non‐deletion NF1 patients. The pattern of growth differs substantially in deletion and non‐deletion NF1 patients, but the pathogenic basis for this difference is unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号