首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
CONTEXT: Receptor activator of nuclear factor-kappaB ligand (RANKL), receptor activator of nuclear factor-kappaB (RANK), and osteoprotegerin (OPG) play a central role in bone remodeling and disorders of mineral metabolism. EVIDENCE ACQUISITION: A PubMed search was conducted from January 1992 until 2007 for basic, observational, and clinical studies in subjects with disorders related to imbalances in the RANK/RANKL/OPG system. EVIDENCE SYNTHESIS: RANK, RANKL, and OPG are members of the TNF receptor superfamily. The pathways involving them in conjunction with various cytokines and calciotropic hormones play a pivotal role in bone remodeling. Several studies involving mutations in the genes encoding RANK and OPG concluded in the discovery of a number of inherited skeletal disorders. In addition, basic and clinical studies established a consistent relationship between the RANK/RANKL/OPG pathway and skeletal lesions related to disorders of mineral metabolism. These studies were a stepping stone in further defining the role of the RANK/RANKL/OPG pathway in osteoporosis, rheumatoid arthritis, bone loss associated with malignancy-related skeletal diseases, and its relationship to vascular calcifications. Subsequently, the further understanding of this pathway led to the development of new therapeutic modalities including the human monoclonal antibody to RANKL and recombinant OPG as a target for treatment of postmenopausal osteoporosis and multiple myeloma. CONCLUSIONS: The RANK/RANKL/OPG system mediates the effects of calciotropic hormones and, consequently, alterations in their ratio are key in the development of several clinical conditions. New agents with the potential to block effects of RANKL have emerged for treatment of postmenopausal osteoporosis and malignancy-related skeletal disease.  相似文献   

2.
CONTEXT: The discovery of the receptor activator for nuclear factor kappaB (RANK) ligand (RANKL)/RANK signaling pathway has marked a major advance in our understanding of the mechanisms controlling osteoclastogenesis. RANKL, expressed by preosteoblasts and stromal cells, binds to RANK, expressed by cells of the osteoclast lineage, inducing a signaling cascade leading to the differentiation and fusion of osteoclast precursor cells and stimulating the activity of the mature osteoclast. The effects of RANKL are counteracted by osteoprotegerin (OPG), a soluble neutralizing decoy receptor. EVIDENCE: This paper reviews the literature surrounding the use of circulating OPG and soluble RANKL (sRANKL) measurements and assesses their potential as markers of bone disease. Original clinical and basic research articles and reviews were identified using a Pubmed search strategy (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi) and cover the time period up until January 2005. Search terms osteoprotegerin, OPG, RANK, RANKL, and RANK ligand were used alone and in combination with bone, osteoporosis, and disease. EVIDENCE SYNTHESIS: Assays for detecting OPG and sRANKL in the circulation in humans have been developed, and differences in the circulating concentrations of OPG and sRANKL have been observed in different disease states. There are, however, some inconsistencies in study outcome. These may relate to differences in study design, methodology, and other unknown factors influencing the variability of these measurements. CONCLUSIONS: The clinical utility of serum OPG and sRANKL measurements as markers of disease activity requires additional investigation. In particular, rigorous testing of assays and identification of the sources of measurement variability are required.  相似文献   

3.
The discovery of the receptor activator of nuclear factor-kB (RANK)/RANK Ligand (RANKL)/osteoprotegerin (OPG) pathway contributed to the understanding of how bone formation and resorption were processed and regulated. RANKL and OPG are members of the tumor necrosis factor (TNF) and TNF receptor (TNFr) superfamilies, respectively, and binding to receptor activator of NF-kB (RANK) not only regulate osteoclast formation, activation and survival in normal bone modeling and remode-ling, but also in several other pathologic conditions characterized by increased bone turnover. There is accumulating evidence of the potential role of OPG and RANKL in other tissues. Looking beyond the RANK/RANKL/OPG axis, Wingless (Wnt) pathway emerged as the osteoblast differentiation way, and also as a bone mass regulator. Researchers have been discovering new molecules and cytokines interactions. Altogether, data suggest that RANK/RANKL/OPG system could be targeted as a new treatment strategy in bone conditions. FREEDOM is the more recently published clinical trial about a RANKL-specific recombinant fully human monoclonal antibody (denosumab). OPG is also a potential innovative therapeutic option to be investigated.  相似文献   

4.
Liu XH  Kirschenbaum A  Yao S  Levine AC 《Endocrinology》2005,146(4):1991-1998
The osteoprotegerin (OPG)/receptor activator of nuclear factor-kappaB ligand (RANKL)/receptor activator of nuclear factor-kappaB (RANK) system is the dominant and final mediator of osteoclastogenesis. Abnormalities of this system have been implicated in the pathogenesis of many skeletal diseases. Cyclooxygenase (COX)-2 and prostaglandin (PG)E(2), a major eicosanoid product of the COX-2-catalyzed pathway, play key roles in normal bone tissue remodeling. PGE(2) exerts its actions by binding and activating the E series of prostaglandin (EP) receptor. Activation of EP(2) and EP(4) receptors is associated with PGE(2)-induced osteoclast differentiation. IL-6, a major proinflammatory cytokine, has also been reported to induce osteoclast differentiation. Although interactions between the COX-2/PGE(2) and IL-6 systems have been described in bone cells, the mechanisms underlying these cooperative signaling pathways and the possible involvement of the OPG/RANKL/RANK system have not been fully elucidated. We demonstrate that COX-2, PGE(2), and IL-6 stimulate osteoblast growth and osteoclast differentiation. Effects on osteoclast differentiation, particularly with IL-6, were most marked when osteoclast precursor cells were grown in coculture with osteoblasts, indicating a possible role of the RANK/RANKL/OPG system. COX-2 and PGE(2) stimulated osteoclastogenesis through inhibition of OPG secretion, stimulation of RANKL production by osteoblasts, and up-regulation of RANK expression in osteoclasts. PGE(2) stimulated IL-6 secretion by bone cells, whereas COX-2 inhibitors decreased this same parameter. IL-6, in turn, increased PGE(2) secretion, COX-2, and EP receptor subtype expression in bone cells. Finally, IL-6 was the mediator of PGE(2)-induced suppression of OPG production by osteoblasts. These findings provide evidence for cross-talk between the PGE(2) and IL-6 signaling enhance osteoclast differentiation via effects on the OPG/RANKL/RANK system in bone cells.  相似文献   

5.
Minireview: the OPG/RANKL/RANK system.   总被引:63,自引:0,他引:63  
S Khosla 《Endocrinology》2001,142(12):5050-5055
The identification of the OPG/RANKL/RANK system as the dominant, final mediator of osteoclastogenesis represents a major advance in bone biology. It ended a long-standing search for the specific factor produced by preosteoblastic/stromal cells that was both necessary and sufficient for osteoclast development. The initial cloning and characterization of OPG as a soluble, decoy receptor belonging to the TNF receptor superfamily was the first step that eventually led to an unraveling of this system. Soon thereafter, the molecule blocked by OPG, initially called OPG-ligand/osteoclast differentiating factor (ODF) and subsequently RANKL, was identified as the key mediator of osteoclastogenesis in both a membrane-bound form expressed on preosteoblastic/stromal cells as well as a soluble form. RANKL, in turn, was shown to bind its receptor, RANK, on osteoclast lineage cells. The decisive role played by these factors in regulating bone metabolism was demonstrated by the findings of extremes of skeletal phenotypes (osteoporosis vs. osteopetrosis) in mice with altered expression of these molecules. Over the past several years, work has focused on identifying the factors regulating this system, the signaling mechanisms involved in the RANKL/RANK pathway, and finally, potential alterations in this system in metabolic bone disorders, from the extremely common (i.e. postmenopausal osteoporosis) to the rare (i.e. familial expansile osteolysis).  相似文献   

6.
OPG/RANK/RANKL系统与骨折和类风湿性关节炎   总被引:4,自引:0,他引:4  
骨保护素(OPG)、细胞核因子-κB受体活化因子(RANK)和RANK配体(RANKL)是偶联成骨细胞、基质细胞和破骨细胞分化、活化及生物活性的3种主要细胞因子,其形成的局部调节体系在骨代谢中起十分重要的作用。本文简要介绍了OPG/RANK/RANKL系统及该系统在骨质疏松性骨折发生中的作用,RANKL/OPG比值与骨折的关系,OPG和RANKL对骨折愈合的作用,血清OPG或RAN-KL水平与骨折的联系,OPG基因多态性与骨折关系的研究结果。另外还介绍其在类风湿性关节炎发病机制中的作用,OPG/RANK/RANKL与滑膜组织的联系,OPG治疗的相关实验进展。  相似文献   

7.
强直性脊柱炎继发骨质疏松及相关因素分析   总被引:2,自引:1,他引:1  
目的 测定强直性脊柱炎(AS)患者骨密度(BMD)、血清骨保护素(OPG)、可溶性核因子κB受体活化因子配体(sRANKL)等骨代谢指标及外周血T细胞表面RANKL表达情况,研究RANKI/RANK/OPG系统在AS骨代谢中的作用.方法 双能X线吸收法(DEXA)测定AS患者BMD;酶联免疫吸附试验(ELISA)法检测血清OPG、sRANKL、抗酒石酸酸性磷酸酶异构体5b(TRACP-5b)、骨特异性碱性磷酸酶(BALP)水平;分析BMD、上述骨代谢指标及临床指标间相关性;流式细胞术(FC)检测外周血CD4+/RANKL+及CD8+/RANKL+细胞表达率;分析它们与红细胞沉降率(ESR)、C反应蛋白(CRP)相关性.计量资料采用成组设计的t检验,计数资料采用x2检验,相关性采用直线相关分析.结果 ①AS患者骨量减少、骨质疏松(OP)发生率分别为47%、37%.②AS组血清sRANKL、TRACP-5b水平及sRANKL/OPG比值均高于对照组(P<0.05);2组血清OPG、BALP水平差异无统计学意义.③AS组血清sRANKL水平与OPG呈正相关,两者均与TRACP-5b呈正相关(P<0.01.④AS组外周血CD4+/RANKL+细胞表达率高于对照组(P<0.05).结论 AS存在较高的骨量丢失率,其骨代谢特点以骨吸收增强为主,RANKL/RANK/OPG系统在其中起着重要作用,该系统失衡可能是AS骨量丢失机制之一;CD4+T细胞可能通过上调RANKL表达参与AS破骨细胞分化成熟及骨吸收机制.  相似文献   

8.
Osteoclasts and osteoblasts define skeletal mass, structure and strength through their respective actions in resorbing and forming bone. This remodeling process is orchestrated by the actions of hormones and growth factors, which regulate a cytokine system comprising the receptor activator of nuclear factor κB ligand (RANKL), its receptor RANK and the soluble decoy receptor osteoprotegerin (OPG). Bone resorption depends on RANKL, which determines osteoclast formation, activity and survival. Importantly, cells of the osteoblastic lineage mainly provide RANKL and therefore, are central in the regulation of osteoclast functions. Catabolic effects of RANKL are inhibited by OPG, a TNF receptor family member that binds RANKL, thereby preventing the activation of its receptor RANK, which is expressed by osteoclast precursors. Because this cytokine network is pivotal for the regulation of bone mass in health and diseases, including osteoporosis, rheumatoid arthritis and malignant bone conditions, it has been successfully used for the generation of a targeted therapy to block osteoclast actions. The clinical approval of denosumab, a fully monoclonal antibody against RANKL, provides a novel option to treat bone diseases with a potent, targeted and reversible inhibitor of bone resorption. Although RANKL is also expressed by endothelial cells, T lymphocytes, synovial fibroblasts and various tumor cells, no meaningful clinical extraskeletal effects have been reported after administration of denosumab. This article summarizes the molecular and cellular basis of the RANKL/RANK/OPG system and presents preclinical and clinical studies on the skeletal actions of denosumab.  相似文献   

9.
《COPD》2013,10(6):650-656
Abstract

Previous studies have shown that matrix metalloproteinase-9 (MMP-9) and its cognate inhibitor TIMP-1, inflammatory cytokine TNF-α, and the OPG/RANK/RANKL system may each play individual roles in the pathogenesis of osteoporosis in patients with COPD. In the present study, we investigated the interrelationships of these factors in male COPD patients with and without osteoporosis. The serum levels of MMP-9, MMP-9/TIMP-1 ratio, TNF-α, RANKL, OPG, and the RANKL/OPG ratio were higher in COPD patients with osteoporosis than in individuals with normal or low bone mineral density (BMD) (N = 30, all P < 0.05 or < 0.01). The lung function FEV1%Pre and the BMD of the lumbar spine and femoral neck were found to be negatively correlated with MMP-9 serum level (r = ?0.36, P < 0.05, r = ?0.58, P < 0.001, and r = ?0.62, P < 0.01, respectively), RANKL serum level (r = ?0.21, P < 0.05, and r = ?0.25, P < 0.05, and r = ?0.26, P < 0.05, respectively), and RANKL/OPG ratio (r = ?0.23, P < 0.05, r = ?0.33, P < 0.05, and r = ?0.38, P < 0.05, respectively). However, they had no correlation with TIMP-1, TNF-α, OPG, or RANK. The MMP-9 serum level was found to be positively correlated with TNF-α level (r = 0.35, P < 0.05) and RANKL/OPG ratio (r = 0.27, P < 0.05) but not associated with RANKL. These results suggest that MMP-9, TNF-α, and the OPG/RANK/RANKL system may be closely interrelated and may play interactive roles in pathogenesis of osteoporosis in COPD.  相似文献   

10.
RANKL and RANK as novel therapeutic targets for arthritis   总被引:11,自引:0,他引:11  
The TNF-family molecule receptor activator of nuclear factor kappa B (NFkappaB) ligand (RANKL) (OPGL, TRANCE, ODF) and its receptor activator of NFkappaB (RANK) are key regulators of bone remodeling and regulate T cell/dendritic cell communications, and lymph node formation. Moreover, RANKL and RANK are expressed in mammary gland epithelial cells and control the development of a lactating mammary gland during pregnancy. Genetically, RANKL and RANK are essential for the development and activation of osteoclasts and bone loss in response to virtually all triggers tested. Inhibition of RANKL function via the natural decoy receptor osteoprotegerin (OPG, TNFRSF11B) prevents bone loss in postmenopausal osteoporosis and cancer metastases. Importantly, RANKL appears to be the pathogenetic principle that causes bone and cartilage destruction in arthritis, and OPG treatment prevents bone loss at inflamed joints and has partially beneficial effects on cartilage destruction in all arthritis models studied so far. Modulation of these systems provides a unique opportunity to design novel therapeutics to inhibit bone loss and crippling in arthritis.  相似文献   

11.
Osteoblasts/stromal cells are essentially involved in osteoclast differentiation and function through cell-to-cell contact (Fig. 8). Although many attempts have been made to elucidate the mechanism of the so-called "microenvironment provided by osteoblasts/stromal cells," (5-8) it has remained an open question until OPG and its binding molecule were cloned. The serial discovery of the new members of the TNF receptor-ligand family members has confirmed the idea that osteoclast differentiation and function are regulated by osteoblasts/stromal cells. RANKL, which has also been called ODF, TRANCE, or OPGL, is a member of the TNF ligand family. Expression of RANKL mRNA in osteoblasts/stromal cells is up-regulated by osteotropic factors such as 1 alpha, 25(OH)2D3, PTH, and IL-11. Osteoclast precursors express RANK, a TNF receptor family member, recognize RANKL through cell-to-cell interaction with osteoblasts/stromal cells, and differentiate into pOCs in the presence of M-CSF. RANKL is also involved in the survival and fusion of pOCs and activation of mature osteoclasts. OPG, which has also been called OCIF or TR1, is a soluble receptor for RANKL and acts as a decoy receptor in the RANK-RANKL signaling system (Fig. 8). In conclusion, osteoblasts/stromal cells are involved in all of the processes of osteoclast development, such as differentiation, survival, fusion, and activation of osteoclasts (Fig. 8). Osteoblasts/stromal cells can now be replaced with RANKL and M-CSF in dealing with the whole life of osteoclasts. RANKL, RANK, and OPG are three key molecules that regulate osteoclast recruitment and function. Further studies on these key molecules will elucidate the molecular mechanism of the regulation of osteoclastic bone resorption. This line of studies will establish new ways to treat several metabolic bone diseases caused by abnormal osteoclast recruitment and functions such as osteopetrosis, osteoporosis, metastatic bone disease, Paget's disease, rheumatoid arthritis, and periodontal bone disease.  相似文献   

12.
BACKGROUND AND AIM OF THE STUDY: Although degenerative calcific aortic valve stenosis is the most common valvular disease among the elderly, neither the etiology underlying the condition nor degeneration of the bioprostheses is yet fully understood. The study aim was to assess the expression profile of those OPG/RANKL/RANK-system determinants known to act as key regulators of bone metabolism and the immune system in calcific aortic valve stenosis and porcine aortic bioprostheses. METHODS: Valve probes from a total of 69 patients (41 with end-stage aortic stenosis, 11 with mild-to-moderate aortic sclerosis, 17 with degenerative porcine aortic bioprostheses) were explanted either during surgery or at autopsy. The presence and localization of OPG, RANKL, RANK and NF-kappaB were analyzed by immunostaining and morphometry. RESULTS: The majority of stenotic and sclerotic valves exhibited cell-bound signals of OPG, RANKL, RANK and NF-kappaB, while bioprostheses showed only sparse signaling. As key findings, the percentage of cells labeled by OPG, RANK and NF-kappaB was increased in sclerotic valves compared with stenotic valves (each p < 0.001), whereas the frequency of RANKL was higher in stenotic compared to sclerotic valves (p < 0.001). As a consequence, the OPG/RANKL ratio was decreased in stenotic (0.83) compared to sclerotic valves (20.2). CONCLUSION: The differential expression profile of specific members of the OPG/RANKL/RANK axis suggests an involvement of their determinants in native valve calcification, but not in the degeneration of porcine bioprostheses. Thus, these mediators of bone homeostasis may represent new targets for a more specified prevention and/or therapy of native aortic stenosis.  相似文献   

13.
Osteoporosis represents an important cause of morbidity in adult patients with thalassaemia major (TM). The pathogenesis of osteoporosis in TM is multifactorial, and includes bone marrow expansion, endocrine dysfunction and iron overload. Additional genetic factors, such as the COLIA 1 gene polymorphism, seem to play an important role in the development of low bone mass in these patients. However, the mechanisms through which these factors lead to bone loss have not been completely clarified. The diminished osteoblast function is accompanied by a comparable or even greater increase in osteoclast activity. The receptor activator of nuclear factor-kappa B (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) pathway has been recently recognized as the final, dominant mediator of osteoclast proliferation and activation. There is increased evidence that this pathway interferes in the pathogenesis of thalassaemia-induced osteoporosis. Currently, bisphosphonates that are potent inhibitors of osteoclast function have been used in TM patients with encouraging results. This review attempts to summarize all the novel data for the biology of bone damage in TM. It also describes the results of all major studies that have investigated the effects of different treatment modalities for TM-induced osteoporosis, their mode of action, and the future implications of their use.  相似文献   

14.
Osteoprotegerin (OPG) belongs to the tumor necrosis factor receptor superfamily and acts as a decoy receptor for the receptor activator of NF-kappaB ligand (RANKL), preventing its binding to RANK. Since 1997, the RANKL/RANK/OPG system has been intensively investigated in the fields of bone, immune and cardiovascular system pathophysiology. Specific anti-OPG antibodies have been developed, allowing for the measurement of OPG and, more recently, of soluble RANKL in both physiological and pathological conditions, often yielding unexpected results. When considering circulating OPG measurements, it should be borne in mind that this receptor is ubiquitously expressed, and that circulating levels do reflect the production by a number of tissues. Moreover, strikingly different values of circulating OPG have been reported. The aim of this paper is to summarize the available data on circulating OPG levels in a number of conditions; the pathophysiological significance and potential clinical utility will be emphasized.  相似文献   

15.
BACKGROUND: There is a potential interface between osteoporosis and the chronic inflammation of inflammatory bowel disease (IBD), and the osteoprotegerin (OPG)/receptor for activated nuclear factor-kappaB (RANK)/RANK ligand (RANKL) signaling pathway may be an important mediator, although data are limited. METHODS: We conducted a population-based case-control seroassay study to look for alterations in serum OPG and soluble RANKL (sRANKL). The study population included IBD patients who were 18 to 50 years old with Crohn's disease (CD; n = 287) or ulcerative colitis (UC; n = 166), age-matched healthy controls (n = 368), and nonaffected siblings of IBD patients (n = 146). Serum OPG and sRANKL were measured by enzyme-linked immunoassay. Sex-specific reference ranges were derived from the healthy controls. RESULTS: Analysis of variance (ANOVA) confirmed significant group differences in women for mean serum OPG (P = 0.018). CD women had higher values of OPG than UC women (P = 0.028) or healthy controls (P = 0.045), whereas the other groups were similar. OPG levels were above the reference range in 13/173 (8%) of CD women, exceeding the expected proportion (P = 0.032). In contrast, no differences in OPG were seen in men between controls, CD, or UC. Estrogen use in women (P = 0.000002) and corticosteroid use in men (P = 0.026) were associated with higher OPG levels. In multivariate analysis, CD diagnosis (P = 0.031) and estrogen use (P = 0.000002) were independently associated with higher OPG levels. No group differences were seen in mean serum sRANKL measurements. CONCLUSIONS: An OPG:sRANKL imbalance with OPG exceeding sRANKL should inhibit osteoclastogenesis and promote bone formation. CD is associated with increased fracture risk, and possibly, the paradoxically higher OPG is a counterregulatory response to factors such as inflammatory cytokines, promoting high bone turnover. Alternatively, elevated OPG in CD may reflect T-cell activation.  相似文献   

16.
Neumann E 《Zeitschrift für Rheumatologie》2006,65(5):400, 402-400, 406
Osteoporosis is characterized by low bone mass and by changes in the microarchitecture of the bone. This leads to reduced bone stability and altered suscebtibility to fractures. Bone remodelling in healthy persons is characterized by a balance between bone resorption and bone formation. At the cellular level, bone remodelling is regulated by osteoclast and osteoblast activity. During bone loss, there is an imbalance, osteoclast activity being more pronounced. Therefore, the influende of estrogens, Wnt and the RANK/ RANKL/OPG system on osteoclastogenesis and osteoclast activity has been investigated. The RANK/RANKL/OPG-System is actively involved in the differentiation and function of osteoclasts and seems to play a central part in most pathophysiological mechanisms that are active in osteoporosis.  相似文献   

17.
Osteoporosis is characterized by low bone mass and by changes in the microarchitecture of the bone. This leads to reduced bone stability and altered suscebtibility to fractures. Bone remodelling in healthy persons is characterized by a balance between bone resorption and bone formation. At the cellular level, bone remodelling is regulated by osteoclast and osteoblast activity. During bone loss, there is an imbalance, osteoclast activity being more pronounced. Therefore, the influende of estrogens, Wnt and the RANK/RANKL/OPG system on osteoclastogenesis and osteoclast activity has been investigated. The RANK/RANKL/OPG-System is actively involved in the differentiation and function of osteoclasts and seems to play a central part in most pathophysiological mechanisms that are active in osteoporosis.  相似文献   

18.
OBJECTIVE: To evaluate whether RANKL/OPG balance is modified in PMR patients, either in the active phase of the disease or during corticosteroid treatment. METHODS: Circulating levels of RANKL and OPG were assayed by enzyme-linked immunosorbent assay in PMR patients with active untreated disease and in patients treated by corticosteroids over a 12-month follow-up period. RESULTS: We found no statistically significant differences in circulating levels of OPG between PMR patients either in the active phase of the disease or during all follow-up period compared to normal controls. On the other hand, systemic production of sRANKL is increased and is not modulated by corticosteroid treatment. CONCLUSION: In PMR increased levels of sRANKL may be related to bone osteoporosis. Further investigations are necessary to evaluate the relationship between the RANK/RANKL/OPG system and bone turnover in PMR patients.  相似文献   

19.
Bone is constantly being remodelled in a dynamic process where osteoblasts are responsible for bone formation and osteoclasts for its resorption. Osteoblasts are specialized mesenchymal cells that undergo a process of maturation where genes like core-binding factor alpha1 (Cbfa1) and osterix (Osx) play a very important role. Moreover, it was found recently that Wnt/ beta-catenin pathway plays a part on osteoblast differentiation and proliferation. In fact, mutations on some of the proteins involved in this pathway, like the low-density lipoprotein receptor related protein 5/6 (LRP5/6) lead to bone diseases. Osteoblast have also a role in regulation of bone resorption through receptor activator of nuclear factor-kappaB (RANK) ligand (RANKL), that links to its receptor, RANK, on the surface of pre-osteoblast cells, inducing their differentiation and fusion. On the other hand, osteoblasts secrete a soluble decoy receptor (osteoprotegerin, OPG) that blocks RANK/RANKL interaction by binding to RANKL and, thus, prevents osteoclast differentiation and activation. Therefore, the balance between RANKL and OPG determines the formation and activity of osteoclasts. Another factor that influences bone mass is leptin, a hormone produced by adipocytes that have a dual effect. It can act through the central nervous system and diminish osteoblasts activity, or can have an osteogenic effect by binding directly to its receptors on the surface of osteoblast cells.  相似文献   

20.
Signalling of receptor activator of nuclear factor-κB (RANK) ligand (RANKL) through RANK is a critical pathway to regulate the differentiation and activity of osteoclasts and, hence, a master regulator of bone resorption. Increased RANKL activity has been demonstrated in diseases characterised by excessive bone loss such as osteoporosis, rheumatoid arthritis and osteolytic bone metastases. The development and approval of denosumab, a fully MAB against RANKL, has heralded a new era in the treatment of bone diseases by providing a potent, targeted and reversible inhibitor of bone resorption. This article summarises the molecular and cellular biology of the RANKL/RANK system and critically reviews preclinical and clinical studies that have established denosumab as a promising novel therapy for metabolic and malignant bone diseases. We will discuss the potential indications for denosumab along with a critical review of safety and analyse its potential within the concert of established therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号