首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Synthetic human PTH 1‐34 (hPTH 1‐34) replacement therapy in hypoparathyroidism maintains eucalcemia and converts quiescent bone to high‐turnover bone. However, the skeletal and metabolic effects of drug discontinuation have not been reported. Nine subjects with hypoparathyroidism received subcutaneous injections of hPTH 1‐34 two to three times daily for 19.8 to 61.3 months and then transitioned back to calcium and calcitriol. Biochemistries and bone mineral density (BMD) by dual‐energy X‐ray absorptiometry (DXA) were assessed at baseline, while on treatment, and at follow‐up 3 to 12 months after drug discontinuation. Two subjects developed hypocalcemia when hPTH 1‐34 was abruptly discontinued. Thus, to avoid hypocalcemia, subjects were slowly weaned from hPTH 1‐34 over several weeks. When hPTH 1‐34 was stopped, subjects were requiring two to three times pretreatment doses of calcitriol and calcium to maintain blood calcium levels. Doses were gradually reduced over many weeks until calcium levels were stable on doses similar to baseline. Bone‐specific alkaline phosphatase (BSAP), N‐telopeptide (NTX), and osteocalcin (OC) increased significantly with hPTH 1‐34; at follow‐up, BSAP and NTX had returned to baseline while OC was still slightly elevated. During treatment, BMD was unchanged at the hip and lateral spine but declined at the anterior‐posterior (AP) spine, radius, and total body. During weaning, BMD increased, with the hip and lateral spine exceeding pre‐hPTH 1‐34 values and the whole body returning to baseline. AP spine was increased non‐significantly compared to baseline at follow‐up. hPTH 1‐34 must be gradually weaned in hypoparathyroid patients with high doses of oral medications given to avoid hypocalcemia. The transient increased requirements accompanied by increased BMD after long‐term hPTH 1‐34 therapy suggest a reversal of the expanded remodeling space favoring bone formation as the skeleton returns to a low‐turnover state, reminiscent of the hungry bone syndrome. Further study and close monitoring is required to ensure safe transition to conventional therapy and to elucidate the physiological mechanism of this phenomenon. © 2015 American Society for Bone and Mineral Research.  相似文献   

2.
Hypoparathyroidism is associated with abnormal structural and dynamic skeletal properties. We hypothesized that parathyroid hormone(1–84) [PTH(1–84)] treatment would restore skeletal properties toward normal in hypoparathyroidism. Sixty‐four subjects with hypoparathyroidism were treated with PTH(1–84) for 2 years. All subjects underwent histomorphometric assessment with percutaneous iliac crest bone biopsies. Biopsies were performed at baseline and at 1 or 2 years. Another group of subjects had a single biopsy at 3 months, having received tetracycline before beginning PTH(1–84) and prior to the biopsy (quadruple‐label protocol). Measurement of biochemical bone turnover markers was performed. Structural changes after PTH(1–84) included reduced trabecular width (144 ± 34 µm to 128 ± 34 µm, p = 0.03) and increases in trabecular number (1.74 ± 0.34/mm to 2.07 ± 0.50/mm, p = 0.02) at 2 years. Cortical porosity increased at 2 years (7.4% ± 3.2% to 9.2% ± 2.4%, p = 0.03). Histomorphometrically measured dynamic parameters, including mineralizing surface, increased significantly at 3 months, peaking at 1 year (0.7% ± 0.6% to 7.1% ± 6.0%, p = 0.001) and persisting at 2 years. Biochemical measurements of bone turnover increased significantly, peaking at 5 to 9 months of therapy and persisting for 24 months. It is concluded that PTH(1–84) treatment of hypoparathyroidism is associated with increases in histomorphometric and biochemical indices of skeletal dynamics. Structural changes are consistent with an increased remodeling rate in both trabecular and cortical compartments with tunneling resorption in the former. These changes suggest that PTH(1–84) improves abnormal skeletal properties in hypoparathyroidism and restores bone metabolism toward normal euparathyroid levels. © 2011 American Society for Bone and Mineral Research  相似文献   

3.
Hypoparathyroidism (hypoPT) is characterized by a state of low bone turnover and high bone mineral density (BMD) despite conventional treatment with calcium supplements and active vitamin D analogues. To assess effects of PTH substitution therapy on 3‐dimensional bone structure, we randomized 62 patients with hypoPT into 24 weeks of treatment with either PTH(1‐84) 100 µg/day subcutaneously or similar placebo as an add‐on therapy. Micro‐computed tomography was performed on 44 iliac crest bone biopsies (23 on PTH treatment) obtained after 24 weeks of treatment. Compared with placebo, PTH caused a 27% lower trabecular thickness (p < 0.01) and 4% lower trabecular bone tissue density (p < 0.01), whereas connectivity density was 34% higher (p < 0.05). Trabecular tunneling was evident in 11 (48%) of the biopsies from the PTH group. Patients with tunneling had significantly higher levels of biochemical markers of bone resorption and formation. At cortical bone, number of Haversian canals per area was 139% higher (p = 0.01) in the PTH group, causing a tendency toward an increased cortical porosity (p = 0.09). At different subregions of the hip, areal BMD (aBMD) and volumetric BMD (vBMD), as assessed by dual‐energy X‐ray absorptiometry (DXA) and quantitative computed tomography (QCT), decreased significantly by 1% to 4% in the PTH group. However, at the lumbar spine, aBMD decreased by 1.8% (p < 0.05), whereas vBMD increased by 12.8% (p = 0.02) in the PTH compared with the placebo group. © 2012 American Society for Bone and Mineral Research.  相似文献   

4.
Patients with hypoparathyroidism have low circulating parathyroid (PTH) levels and higher cancellous bone volume and trabecular thickness. Treatment with PTH(1‐84) was shown to increase abnormally low bone remodeling dynamics. In this work, we studied the effect of 1‐year or 2‐year PTH(1‐84) treatment on cancellous and cortical bone mineralization density distribution (Cn.BMDD and Ct.BMDD) based on quantitative backscattered electron imaging (qBEI) in paired transiliac bone biopsy samples. The study cohort comprised 30 adult hypoparathyroid patients (14 treated for 1 year; 16 treated for 2 years). At baseline, Cn.BMDD was shifted to higher mineralization densities in both treatment groups (average degree of mineralization Cn.CaMean +3.9% and +2.7%, p < 0.001) compared to reference BMDD. After 1‐year PTH(1‐84), Cn.CaMean was significantly lower than that at baseline (–6.3%, p < 0.001), whereas in the 2‐year PTH(1‐84) group Cn.CaMean did not differ from baseline. Significant changes of Ct.BMDD were observed in the 1‐year treatment group only. The change in histomorphometric bone formation (mineralizing surface) was predictive for Cn.BMDD outcomes in the 1‐year PTH(1‐84) group, but not in the 2‐year PTH(1‐84) group. Our findings suggest higher baseline bone matrix mineralization consistent with the decreased bone turnover in hypoparathyroidism. PTH(1‐84) treatment caused differential effects dependent on treatment duration that were consistent with the histomorphometric bone formation outcomes. The greater increase in bone formation during the first year of treatment was associated with a decrease in bone matrix mineralization, suggesting that PTH(1‐84) exposure to the hypoparathyroid skeleton has the greatest effects on BMDD early in treatment. © 2015 American Society for Bone and Mineral Research.  相似文献   

5.
In hypoparathyroidism, areal bone mineral density (BMD) by dual‐energy X‐ray absorptiometry (DXA) is above average, and skeletal indices by bone biopsy are abnormal. We used high‐resolution peripheral quantitative computed tomography (HRpQCT) and finite element analyses (FEA) to further investigate skeletal microstructure and estimated bone strength. We studied 60 hypoparathyroid subjects on conventional therapy using DXA, HRpQCT, and FEA of the distal radius and tibia compared with normative controls from the Canadian Multicentre Osteoporosis Study. In hypoparathyroid women and men, areal BMD was above average at the lumbar spine and hip sites by DXA; radial BMD was also above average in hypoparathyroid women. Using HRpQCT, cortical volumetric BMD was increased in the hypoparathyroid cohort compared with controls at both the radius and tibia. Cortical porosity was reduced at both sites in pre‐ and postmenopausal women and at the tibia in young men with a downward trend at the radius in men. At the tibia, trabecular number was increased in premenopausal women and men and trabecular thickness was lower in women. Ultimate stress and failure load at both sites for the hypoparathyroid subjects were similar to controls. Using a linear regression model, at both radius and tibia, each increment in age decreased ultimate stress and failure load, whereas each increment in duration of hypoparathyroidism increased these same indices. These results provide additional evidence for the critical role of parathyroid hormone in regulating skeletal microstructure. Longer disease duration may mitigate the adverse effects of age on estimated bone strength in hypoparathyroidism. © 2015 American Society for Bone and Mineral Research.  相似文献   

6.
Bone remodeling is reduced in hypoparathyroidism, resulting in increased areal bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA) and abnormal skeletal indices by transiliac bone biopsy. We have now studied skeletal microstructure by high-resolution peripheral quantitative computed tomography (HR-pQCT) through 4 years of treatment with recombinant human PTH(1–84) (rhPTH[1–84]) in 33 patients with hypoparathyroidism (19 with postsurgical disease, 14 idiopathic). We calculated Z-scores for our cohort compared with previously published normative values. We report results at baseline and 1, 2, and 4 years of continuous therapy with rhPTH(1–84). The majority of patients (62%) took rhPTH(1–84) 100 μg every other day for the majority of the 4 years. At 48 months, areal bone density increased at the lumbar spine (+4.9% ± 0.9%) and femoral neck (+2.4% ± 0.9%), with declines at the total hip (−2.3% ± 0.8%) and ultradistal radius (−2.1% ± 0.7%) (p < .05 for all). By HR-pQCT, at the radius site, very similar to the ultradistal DXA site, total volumetric BMD declined from baseline but remained above normative values at 48 months (Z-score + 0.56). Cortical volumetric BMD was lower than normative controls at baseline at the radius and tibia (Z-scores −1.28 and − 1.69, respectively) and further declined at 48 months (−2.13 and − 2.56, respectively). Cortical porosity was higher than normative controls at baseline at the tibia (Z-score + 0.72) and increased through 48 months of therapy at both sites (Z-scores +1.80 and + 1.40, respectively). Failure load declined from baseline at both the radius and tibia, although remained higher than normative controls at 48 months (Z-scores +1.71 and + 1.17, respectively). This is the first report of noninvasive high-resolution imaging in a cohort of hypoparathyroid patients treated with any PTH therapy for this length of time. The results give insights into the effects of long-term rhPTH(1–84) in hypoparathyroidism. © 2020 American Society for Bone and Mineral Research.  相似文献   

7.
Yang D  Singh R  Divieti P  Guo J  Bouxsein ML  Bringhurst FR 《BONE》2007,40(6):1453-1461
PTH regulates osteoblastic function by activating PTH/PTHrP receptors (PTH1Rs), which trigger several signaling pathways in parallel, including cAMP/protein kinase A (PKA) and, via both phospholipase-C (PLC)-dependent and PLC-independent mechanisms, protein kinase C (PKC). These signaling functions have been mapped to distinct domains within PTH(1–34), but their roles in mediating the anabolic effect of intermittent PTH in vivo are unclear. We compared the anabolic effects in mice of hPTH(1–34) with those of two analogs having restricted patterns of PTH1R signaling. [G1,R19]hPTH(1–28) lacks the 29–34 domain of hPTH(1–34) needed for PLC-independent PKC activation, incorporates a Gly1 mutation that prevents PLC activation, and stimulates only cAMP/PKA signaling. [G1,R19]hPTH(1–34) retains the 29–34 domain and activates both cAMP/PKA and PLC-independent PKC.

Human PTH(1–34) (40 μg/kg), [G1,R19]hPTH(1–34) (120 μg/kg), and [G1,R19]hPTH(1–28) (800 μg/kg), at doses equipotent in elevating blood cAMP at 10 min and cAMP-dependent gene expression in bone at 6 h after s.c. injection, were administered to 10-week-old female C57BL/6J mice 5 days/week for 4 weeks. Acute blood cAMP responses, retested after 4 weeks, were not reduced by the preceding PTH treatment. The three PTH peptides induced equivalent increases in distal femoral bone mineral density (BMD), and, by microCT analysis, distal femoral and vertebral bone volume and trabecular thickness and mid-femoral cortical endosteal apposition. [G1,R19]hPTH(1–34) and hPTH(1–34) increased distal femoral BMD more rapidly and augmented total-body BMD and bone volume of proximal tibial trabeculi to a greater extent than did [G1,R19]hPTH(1–28).

We conclude that cAMP/PKA signaling is the dominant mechanism for the anabolic actions of PTH in trabecular bone and that PLC-independent PKC signaling, attributable to the PTH(29–34) sequence, appears to accelerate the trabecular response and augment BMD at some skeletal sites. PTH1R PLC signaling pathway is not required for an anabolic effect of intermittent PTH(1–34) on bone.  相似文献   


8.
Intermittent administration of parathyroid hormone (PTH) induces bone remodeling and renewed bone modeling, resulting in net bone gain. beta-blockers improve trabecular bone architecture in young ovariectomized mice by preventing the inhibition of bone formation and stimulation of bone resorption induced by the adrenergic system. To test the hypothesis that PTH and beta-blockers may exert synergistic effects on the skeleton, 15-week-old ovariectomized mice were either given oral propranolol (PRO) or left untreated for 8 weeks, adding daily hPTH(1-34) (80 microg/kg/day) or vehicle (VEH) during the last 4 weeks. The skeletal response was evaluated using pDXA, microCT, histomorphometry and biochemical markers. PRO significantly attenuated loss of bone mineral density (BMD) at whole body (WB) (-0.1% in PRO vs. -2.4% in VEH, P < 0.05), but not at spine or femur 4 weeks after OVX. Thereafter, PTH increased BMD at all sites in both PRO- and VEH-treated mice (+6.7% to +14%, P < 0.05 to P < 0.0001 vs. VEH). Over 8 weeks, sequential-combined treatment of PRO and PTH significantly improved BMD over PTH alone at WB (+9.1% vs. +4.4% over baseline, respectively, P < 0.005) and spine (+9% vs. -1.7%, respectively, P < 0.05). These effects were paralleled by a decrease in TRACP5b with PRO (P < 0.05 vs. VEH) and an increase in osteocalcin with PTH, irrespective of PRO (P < 0.0001 vs. VEH). Trabecular bone microarchitecture, such as BV/TV, trabecular number and ConnD, was significantly improved by sequential-combined treatment of PRO and PTH compared to PTH alone. At midshaft femur, both PRO and PTH significantly increased cross-sectional area (CSA), but the effects of the two drugs on CSA and cortical thickness were not additive. Dynamic histomorphometry indicated that bone formation was increased by PTH at both cortical and trabecular surfaces, whereas PRO increased osteoblast number and surface on trabecular surfaces. The combined treatment further improved the extent of mineralization and BFR over PTH alone (P < 0.05) at endocortical surfaces and recapitulated the effects of PTH and PRO alone on trabecular surfaces. These results indicate that beta-adrenergic blockade may partially improve the bone remodeling balance induced by estrogen deficiency. In turn, PRO exerted synergistic effects with intermittent PTH on bone mass and cancellous bone architecture. As such, combined therapy of beta-blockers and PTH may be of interest in the treatment of postmenopausal osteoporosis.  相似文献   

9.
In hypoparathyroidism, plasma parathyroid hormone (PTH) levels are inadequate to maintain plasma calcium concentration within the reference range. On conventional treatment with calcium supplements and active vitamin D analogues, bone turnover is abnormally low, and BMD is markedly increased. We aimed to study the effects of PTH‐replacement therapy (PTH‐RT) on calcium‐phosphate homeostasis and BMD. In a double‐blind design, we randomized 62 patients with hypoparathyroidism to daily treatment with PTH(1–84) 100 µg or similar placebo for 24 weeks as add‐on therapy to conventional treatment. Compared with placebo, patients on PTH(1–84) reduced their daily dose of calcium and active vitamin D significantly by 75% and 73%, respectively, without developing hypocalcemia. However, hypercalcemia occurred frequently during the downtitration of calcium and active vitamin D. Plasma phosphate and renal calcium and phosphate excretion did not change. Compared with placebo, PTH(1–84) treatment significantly increased plasma levels of bone‐specific alkaline phosphatase (+226% ± 36%), osteocalcin (+807% ± 186%), N‐terminal propeptide of procollagen 1 (P1NP; +1315% ± 330%), cross‐linked C‐telopeptide of type 1 collagen (CTX; +1209% ± 459%), and urinary cross‐linked N‐telopeptide of type 1 collagen (NTX; (+830% ± 165%), whereas BMD decreased at the hip (?1.59% ± 0.57%), lumbar spine (?1.76% ± 1.03%), and whole body (?1.26% ± 0.49%) but not at the forearm. In conclusion, the need for calcium and active vitamin D is reduced significantly during PTH‐RT, whereas plasma calcium and phosphate levels are maintained within the physiologic range. In contrast to the effect of PTH(1–84) treatment in patients with osteoporosis, PTH‐RT in hypoparathyroidism causes a decrease in BMD. This is most likely due to the marked increased bone turnover. Accordingly, PTH‐RT counteracts the state of overmineralized bone and, during long‐term treatment, may cause a more physiologic bone metabolism. © 2011 American Society for Bone and Mineral Research  相似文献   

10.
Epidemiological and in vitro studies have suggested that hyperlipidemia/oxidized phospholipids adversely affect bone. We recently found that oxidized phospholipids attenuate PTH‐induced cAMP and immediate‐early gene (IEG) expression in MC3T3‐E1 cells, raising concerns that clinical hyperlipidemia may attenuate osteoanabolic effects of PTH in vivo. Thus, we studied whether intermittent PTH treatment has differential osteoanabolic effects in wildtype (C57BL/6) and hyperlipidemic (LDLR?/?) mice. Consistent with our previous in vitro studies, induction of IEGs in calvarial tissue, 45 min after a single dose of recombinant hPTH(1‐34), was attenuated in LDLR?/? mice compared with C57BL/6 mice. Daily hPTH(1‐34) injections for 5 wk significantly increased total and cortical BMD and BMC, assessed by pQCT, in C57BL/6 mice. However, this induction was completely abrogated in LDLR?/? mice. Similarly, PTH(1‐34) failed to increase BMD in another hyperlipidemic mouse model, ApoE?/? mice. Histomorphometric analysis showed that trabecular bone of both mice responded similarly to PTH(1‐34). Structural parameters improved significantly in response to PTH(1‐34) in both mouse strains, although to a lesser degree in LDLR?/? mice. With PTH(1‐34) treatment, osteoblast surface trended toward an increase in C57BL/6 mice and increased significantly in LDLR?/? mice. PTH(1‐34) did not alter resorption parameters significantly, except for the eroded surface (ES/BS), which was reduced in the C57BL/6 but not in the LDLR?/? mice. These results show that PTH(1‐34) has adverse effects on cortical bones of the hyperlipidemic mice, suggesting that the therapeutic effects of PTH may be compromised in the presence of hyperlipidemia.  相似文献   

11.
Iida-Klein A  Lu SS  Cosman F  Lindsay R  Dempster DW 《BONE》2007,40(2):391-398
Previously, we demonstrated that the human parathyroid hormone (1-34) fragment (hPTH(1-34)) increased bone strength in proportion to its effects on BMD and cortical bone structure in the murine femur by comparing cyclic vs. daily administration of hPTH(1-34). Both cyclic and daily regimens increased vertebral BMD similarly at 7 weeks. Here, we have examined the effects of daily and cyclic PTH regimens on bone structure and cellular activity by static and dynamic histomorphometry. Twenty-week-old, intact female C57BL/J6 mice were treated with the following regimens (n=7 for each group): daily injection with vehicle for 7 weeks [control]; daily injection with hPTH(1-34) (40 microg/kg/day) for 7 weeks [daily PTH]; and daily injection with hPTH(1-34) (40 microg/kg/day) and vehicle alternating weekly for 7 weeks [cyclic PTH]. At days 9 and 10, and 2 and 3 prior to euthanasia, calcein (10 mg/kg) was injected subcutaneously. At the end of study, the lumbar vertebrae 1-3 and the left femora were excised, cleaned, and processed for histomorphometry. In the lumbar vertebrae, daily and cyclic PTH regimens significantly increased cancellous bone volume (BV/TV), trabecular number, trabecular osteoclast and osteoblast perimeters, trabecular mineral apposition rate (MAR) and bone formation rate (BFR), and periosteal MAR and BFR compared to control, with no significant difference between the two PTH-treated groups. Increased trabecular tunneling was observed in both PTH-treated groups. Both regimens tended to increase vertebral cortical bone formation parameters with the effects at the periosteum site being more marked than those at the endosteum site, resulting in a significant increase in cortical width. In the femur, the effects of cyclic PTH on BV/TV, trabecular width and number, trabecular and endocortical osteoblast and osteoclast perimeters, cortical width, and trabecular and periosteal BFR were less marked than those of daily PTH. A cyclic PTH regimen was as effective as a daily regimen in improving cancellous and cortical bone microarchitecture and cellular activity in the murine vertebra.  相似文献   

12.
Hodsman AB  Kisiel M  Adachi JD  Fraher LJ  Watson PH 《BONE》2000,27(2):311-318
Parathyroid hormone (PTH) increases trabecular but may decrease cortical bone mass during treatment of postmenopausal osteoporosis. In a 2-year trial, PTH, with or without sequential calcitonin (CT), was given to 29 osteoporotic women (mean age 67 +/- 7 years), in 3-month cycles [28 days hPTH(1-34), 50 microg/day, +/-42 days CT, 75 units/day, 20 days "free"]. Over 2 years, lumbar spine bone mineral density measurements increased an average of 10%. Paired iliac crest biopsies were obtained 28 days and 2 years after starting the trial. The addition of CT made no difference to changes seen with cyclical PTH alone. Thus, the histomorphometric analyses for all 29 treated patients were compared with a separate group of biopsies from untreated osteoporotic control patients (n = 15). No significant increments in total bone volume or trabecular architecture were seen over 2 years of cyclical PTH treatment, although the light microscopic appearance of bone was normal. At the level of the bone remodeling unit, a twofold increase in total trabecular erosion surface over the control measurements was observed within the first 28 days of PTH treatment (10 +/- 5 vs. 5 +/- 3% trabecular surface, p < 0.01), which was sustained over 2 years. Trabecular bone formation rates (surface referent) were 11 +/- 7 microm(3)/microm(2)/year in control patients and threefold higher in treated patients both acutely (31 +/- 31 microm(3)/microm(2)/year, p < 0.01) and after 2 years (33 +/- 43 microm(3)/microm(2)/year, p < 0. 05). The activation frequency of trabecular remodeling was threefold higher than controls through 2 years of treatment (p < 0.05). The mean wall thickness of completed osteons after 2 years of treatment was significantly larger than controls (28 +/- 7 vs. 22 +/- 5 microm, p < 0.01), suggesting a positive remodeling balance, as well as the histomorphometric evidence of increased bone turnover and the increased resorption surfaces. Over 2 years of cyclical PTH therapy, cortical thickness remained significantly higher than controls (680 +/- 202 vs 552 +/- 218 microm, p < 0.05), without significant changes in cortical porosity. Thus, the histomorphometric changes during cyclical PTH therapy in patients with severe osteoporosis are consistent with increased trabecular bone turnover and a positive remodeling balance, with no evidence for detrimental changes in cortical bone.  相似文献   

13.
Parathyroid hormone (PTH) has a significant role as an anabolic hormone in bone when administered by intermittent injection. Previous microarray studies in our laboratory have shown that the most highly regulated gene, monocyte chemoattractant protein‐1 (MCP‐1), is rapidly and transiently induced when hPTH(1‐34) is injected intermittently in rats. Through further in vivo studies, we found that rats treated with hPTH(1‐34) showed a significant increase in serum MCP‐1 levels 2 hours after PTH injection compared with basal levels. Using immunohistochemistry, increased MCP‐1 expression in osteoblasts and osteocytes is evident after PTH treatment. PTH also increased the number of marrow macrophages. MCP‐1 knockout mice injected daily with hPTH(1‐34) showed less trabecular bone mineral density and bone volume compared with wild‐type mice as measured by peripheral quantitative computed tomography (pQCT) and micro‐computed tomography (µCT). Histomorphometric analysis revealed that the increase in osteoclast surface and osteoclast number observed with intermittent PTH treatment in the wild‐type mice was completely eliminated in the MCP‐1 null mice, as well as much lower numbers of macrophages. Consequently, the lack of osteoclast and macrophage activity in the MCP‐1 null mice was paralleled by a reduction in bone formation. We conclude that osteoblast and osteocyte MCP‐1 expression is an important mediator for the anabolic effects of PTH on bone.  相似文献   

14.
Abaloparatide, a novel analog of parathyroid hormone-related protein (PTHrP 1–34), became in 2017 the second osteoanabolic therapy for the treatment of osteoporosis. This study aims to compare the effects of PTH (1-34), PTHrP (1-36), and abaloparatide on bone remodeling in male mice. Intermittent daily subcutaneous injections of 80 μg/kg/d were administered to 4-month-old C57Bl/6J male mice for 6 weeks. During treatment, mice were followed by DXA-Piximus to assess changes in bone mineral density (BMD) in the whole body, femur, and tibia. At either 4 or 18 hours after the final injection, femurs were harvested for μCT analyses and histomorphometry, sera were assayed for bone turnover marker levels, and tibias were separated into cortical, trabecular, and bone marrow fractions for gene expression analyses. Our results showed that, compared with PTH (1-34), abaloparatide resulted in a similar increase in BMD at all sites, whereas no changes were found with PTHrP (1-36). With both PTH (1-34) and abaloparatide, μCT and histomorphometry analyses revealed similar increases in bone volume associated with an increased trabecular thickness, in bone formation rate as shown by P1NP serum level and in vivo double labeling, and in bone resorption as shown by CTX levels and osteoclast number. Gene expression analyses of trabecular and cortical bone showed that PTH (1-34) and abaloparatide led to different actions in osteoblast differentiation and activity, with increased Runx2, Col1A1, Alpl, Bsp, Ocn, Sost, Rankl/Opg, and c-fos at different time points. Abaloparatide seems to generate a faster response on osteoblastic gene expression than PTH (1-34). Taken together, abaloparatide at the same dose is as effective as PTH (1-34) as an osteoanabolic, with an increase in bone formation but also an increase in bone resorption in male mice. © 2019 American Society for Bone and Mineral Research.  相似文献   

15.
Histomorphometric studies of treatments for osteoporosis in humans are restricted to iliac crest biopsies. We studied the effects of PTH(1-84) treatment at the lumbar spine of skeletally mature ovariectomized rhesus monkeys. PTH increased bone turnover, rapidly normalized BMD, and increased vertebral compressive strength. PTH increased trabecular bone volume primarily by increasing trabecular number by markedly increasing intratrabecular tunneling. INTRODUCTION: Histomorphometric studies of the anabolic properties of PTH(1-84) (PTH) and related peptides in human bone are restricted to iliac crest biopsies. The ovariectomized (OVX) monkey is an accepted model of human postmenopausal bone loss and was used to study the effects of PTH treatment at clinically relevant skeletal sites. MATERIALS AND METHODS: Skeletally mature rhesus monkeys were OVX or sham-operated and, after a bone depletion period of 9 months, treated daily for 16 months with PTH (5, 10, or 25 microg/kg). Markers of bone formation (serum osteocalcin) and resorption (urine N-telopeptide [NTX]) and lumbar spine BMD were measured throughout the study. Trabecular architecture and vertebral biomechanical properties were quantified at 16 months. RESULTS: PTH treatment induced dose-dependent increases in bone turnover but did not increase serum calcium. Osteocalcin was significantly increased above OVX controls by 1 month. NTX was significantly elevated at 1 month with the highest dose, but not until 12 months with the 5 and 10 microg/kg doses. Lumbar spine BMD was 5% lower in OVX than in sham animals when treatment was started. All PTH doses increased BMD rapidly, with sham levels restored by 3-7 months with 10 and 25 microg/kg and by 16 months with 5 microg/kg. PTH treatment increased trabecular bone volume (BV/TV), primarily by increasing trabecular number, and dose-dependently increased bone formation rate (BFR) solely by increasing mineralizing surface. The largest effects on BV/TV and yield load occurred with the 10 microg/kg dose. The highest dose reduced trabecular thickness by markedly increasing intratrabecular tunneling. CONCLUSIONS: PTH treatment of OVX rhesus monkeys increased bone turnover and increased BV/TV, BMD, and strength at the lumbar spine. All PTH doses were safe, but the 10 microg/kg dose was generally optimal, possibly because the highest dose resulted in too marked a stimulation of bone remodeling.  相似文献   

16.
目的 比较间歇皮下注射人甲状旁腺激素不同片段(hPTH1-34)及(hPTH1-84)对完整雌性(Non-OVX)大鼠和去卵巢(OVX)大鼠股骨及腰椎1-4骨矿物含量(BMC)和骨密度(BMD)的影响。方法 Wistar雌性大鼠176只,分为hPTH1-34和hPTH1-84两大组(各80只及96只),每大组及各自分4组(每组各20只或24只),分别为:两组安慰剂组(未切卵巢及切卵巢)用安慰剂(PBS)进行皮下注射,每周3次,共2周;两组治疗组(未切卵巢及切卵巢)用hPTH1-34或hPTH1-84,皮下注射,每周3次,共2周。结果 1.卵巢切除术后3个月大鼠股骨及腰椎1-4BMC和BMD明显下降;2.两种片段的甲状旁腺激素(hPTH1-34及pPTH1-84)间歇注射均能使Non-OVX大鼠和OVX大鼠股骨及腰椎1-4BMC和BMD较相应对照组明显升高;且腰椎1-4较股骨的BMC和BMD升高更明显;3.OVX大鼠治疗后股骨与腰椎1-4BMC和BMD的升高率较Non-OVX大鼠更明显;OVX大鼠在治疗后股骨及腰椎骨量能恢复到去卵巢前水平;4.hPTH1-34较hPTH1-84更明显的使完整大鼠和OVX大鼠股骨BMC和BMD升高。结论 间歇皮下注射人甲状旁腺激素对大鼠股骨及腰椎骨量均有增高作用,尤其对腰椎的骨量以及对去卵巢大鼠骨量升高作用更明显;hPTH1-34片段对大鼠股骨骨量的增高作用强于hPTH1-84片段。  相似文献   

17.
Current approved medical treatments for osteoporosis reduce fracture risk to a greater degree than predicted from change in BMD in women with postmenopausal osteoporosis. We hypothesize that bone active agents improve bone strength in osteoporotic bone by altering different material properties of the bone. Eighteen‐month‐old female Fischer rats were ovariectomized (OVX) or sham‐operated and left untreated for 60 days to induce osteopenia before they were treated with single doses of either risedronate (500 μg/kg, IV), zoledronic acid (100 μg/kg, IV), raloxifene (2 mg/kg, PO, three times per week), hPTH(1–34) (25 μg/kg, SC, three times per week), or vehicle (NS; 1 ml/kg, three times per week). Groups of animals were killed after days 60 and 180 of treatment, and either the proximal tibial metaphysis or lumbar vertebral body were studied. Bone volume and architecture were assessed by μCT and histomorphometry. Measurements of bone quality included the degree of bone mineralization (DBM), localized elastic modulus, bone turnover by histomorphometry, compression testing of the LVB, and three‐point bending testing of the femur. The trabecular bone volume, DBM, elastic modulus, and compressive bone strength were all significantly lower at day 60 post‐OVX (pretreatment, day 0 study) than at baseline. After 60 days of all of the bone active treatments, bone mass and material measurements agent were restored. However, after 180 days of treatment, the OVX + PTH group further increased BV/TV (+30% from day 60, p < 0.05 within group and between groups). In addition, after 180 days of treatment, there was more highly mineralized cortical and trabecular bone and increased cortical bone size and whole bone strength in OVX + PTH compared with other OVX + antiresorptives. Treatment of estrogen‐deficient aged rats with either antiresorptive agents or PTH rapidly improved many aspects of bone quality including microarchitecture, bone mineralization, turnover, and bone strength. However, prolonged treatment for 180 days with PTH resulted in additional gains in bone quality and bone strength, suggesting that the maximal gains in bone strength in cortical and trabecular bone sites may require a longer treatment period with PTH.  相似文献   

18.
Estrogen deficiency causes reduction of bone mass and abnormal bone microarchitecture, consequently reducing bone strength. Human parathyroid hormone (hPTH) (1-34) increases bone mass and strength. To clarify the factors that determine the recovery of bone strength in the lumbar vertebrae of ovariectomized rats by intermittent hPTH administration, we analyzed the relationship between skeletal measurements and bone strength. Human PTH (1-34) administration resulted in recovery of cortical bone mineral content (BMC) and cortical bone area to sham the levels, but in resulted in a less pronounced recovery of trabecular BMC and no increase in the total cross-sectional area of the vertebral body. Of the three-dimensional (3D) trabecular bone parameters, hPTH (1-34) increased trabecular thickness (Tb.Th). The cortical shell area of L4, determined by histomorphometry, was also increased. In hPTH-treated rats, the only determinant of the compressive load of L5 was the cortical shell BMC, in the early recovery period (days 42–84). Our data suggest that increased cortical bone mass contributes more than trabecular bone mass and structure to the recovery of bone strength in response to hPTH therapy in the rat lumbar vertebral body after ovariectomy.  相似文献   

19.
Parathyroid hormone (PTH) and PTH(1‐34) have been shown to promote bone healing in several animal studies. It is known that the mechanical environment is important in fracture healing. Furthermore, PTH and mechanical loading has been suggested to have synergistic effects on intact bone. The aim of the present study was to investigate whether the effect of PTH(1‐34) on fracture healing in rats was influenced by reduced mechanical loading. For this purpose, we used female, 25‐week‐old ovariectomized rats. Animals were subjected to closed midshaft fracture of the right tibia 10 weeks after ovariectomy. Five days before fracture, half of the animals received Botulinum Toxin A injections in the muscles of the fractured leg to induce muscle paralysis (unloaded group), whereas the other half received saline injections (control group). For the following 8 weeks, half of the animals in each group received injections of hPTH(1‐34) (20 µg/kg/day) and the other half received vehicle treatment. Fracture healing was assessed by radiology, dual‐energy X‐ray absorptiometry (DXA), histology, and bone strength analysis. We found that unloading reduced callus area significantly, whereas no effects of PTH(1‐34) on callus area were seen in neither normally nor unloaded animals. PTH(1‐34) increased callus bone mineral density (BMD) and bone mineral content (BMC) significantly, whereas unloading decreased callus BMD and BMC significantly. PTH(1‐34) treatment increased bone volume of the callus in both unloaded and control animals. PTH(1‐34) treatment increased ultimate force of the fracture by 63% in both control and unloaded animals and no interaction of the two interventions could be detected. PTH(1‐34) was able to stimulate bone formation in normally loaded as well as unloaded intact bone. In conclusion, the study confirms the stimulatory effect of PTH(1‐34) on fracture healing, and our data suggest that PTH(1‐34) is able to promote fracture healing, as well as intact bone formation during conditions of reduced mechanical loading. © 2013 American Society for Bone and Mineral Research.  相似文献   

20.
We developed a cyclic PTH regimen with repeated cycles of 1-week on and off daily PTH injection and explored its effects on bone strength, BMD, bone markers, and bone structure in mice. Cyclic protocols produced 60-85% of the effects achieved by daily protocols with 57% of the total PTH given, indicating more economic use of PTH. The study supports further exploration of cyclic PTH regimens for the treatment of osteoporosis. INTRODUCTION: To minimize the cost and the catabolic action of hPTH(1-34), a cyclic PTH regimen with repeated 3-month cycles of on-and-off daily injection of hPTH(1-34) was developed in humans and shown to be as effective as a daily regimen in increasing vertebral BMD. However, changes in BMD may not adequately predict changes in bone strength. A murine model was developed to explore the efficacy of a cyclic PTH regimen on bone strength in association with other bone variables. MATERIALS AND METHODS: Twenty-week-old, intact, female C57BL/J6 mice (n = 7/group) were treated with (1) daily injection with vehicle for 7 weeks (control); (2) daily injection with hPTH(1-34) (40 microg/kg/day) for 7 weeks (daily PTH); and (3) daily injection with hPTH(1-34) and vehicle alternating weekly for 7 weeks (cyclic PTH). BMD was measured weekly by DXA, and serum bone markers, bone structure, and strength were measured at 7 weeks. RESULTS: Daily and cyclic PTH regimens increased BMD at all sites by 16-17% and 9-12%, respectively (all p < 0.01). The most dramatic effect of cyclic PTH occurred during the second week of treatment when PTH was off, with femoral and tibial BMD continuing to increase to the same extent as that produced by daily PTH. Both daily and cyclic PTH regimens significantly increased osteocalcin (daily, 330%; cyclic, 260%), mTRACP (daily, 145%; cyclic, 70%), femoral cortical width (daily, 23%; cyclic, 13%), periosteal circumference (daily, 5%; cyclic, 3.5%), and bone strength (max load: daily, 48%; cyclic, 28%; energy absorbed: daily, 103%; cyclic, 61%), respectively. Femoral bone strength was positively correlated with BMD, bone markers, and cortical structure. Neither regimen had an effect on vertebral bone strength. Although actual effects of cyclic PTH were 60-85% of those produced by daily PTH, the effects of cyclic PTH per unit amount administered were slightly greater than those of daily PTH for most measures. CONCLUSIONS: PTH-enhanced femoral bone strength is positively correlated with its effects on femoral BMD, bone markers, and bone structure. Cyclic PTH regimens represent a potential economic use of PTH and warrant further study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号