首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies on the urinary bladder of the seawater-acclimated winter flounder (pseudopleuronectes americanus) demonstrated that active Na and Cl transport were ouabain sensitive. This suggested a relationship between the Na pump and Na-K-ATP-ase. The specific binding of [H]ouabain to Na-K-ATPase provides a means of localizing the site of active Na transport. In isolated bladders, a positive linear correlation (r= 0.89) was found between the active Na transport rate and the Na-K-ATPase activity. Ouabain binding by the bladder surface appeared to be saturable and relatively specific, e.g., was reduced by a high K concentration. When only the mucosal side of the bladder was exposed to 5 muM ouabain, both inhibitory effects and binding were small and are explained by finite permeability of the bladder to ouabain. In contrast, binding and inhibitory effects from the serosal side were much greater. Autoradiographs demonstrated that [3H]ouabain was bound only to the serosal side of the epithelial cells. Ultrastructural examination revealed that the area of ouabain binding coincided with the basal and lateral plasma membranes.  相似文献   

2.
1. Gastric mucosae were isolated from piglets (0-5 days old) and mounted in a chamber where electrical properties and secretory function could be measured. Unlike many previously reported mammalian in vitro preparations, pig gastric mucosae were stable and physiologically responsive for many hours after isolation. 2. With similar Ringer solutions bathing both surfaces, the isolated piglet gastric mucosa maintained a p.d. with the mucosal surface 30-35 mV negative with respect to the serosal surface. Limitation of access of Na+ from the mucosal bathing solution to the tissue (e.g. replacement of Na+ on mucosal side with choline or treatment with 10- minus 5 M amiloride) produced a decrease in p.d. and increase in mucosal resistance consistent with an hypothesis of Na+ transport from mucosa to serosa. 3. Isotopic flux measurements (36Cl and 24Na) and net H+ secretory rate were performed during open and short-circuit conditions, while the tissue was at rest and after stimulation of HCl secretion by 6 times 10- minus 5 M histamine. Up to 90% of the respective short-circuit current for resting or secreting mucosae was accounted for as the algebraic sum of Cl minus, H+ or Na+ fluxes. 4. The net transport of Na+ which occurred from mucosa to serosa during rest (ca. 4-7 muequiv/cm2.hr) was somewhat reduced during HCl secretion (ca. 2-7 muequiv/cm2.hr). This active transport of Na+ was more resistant to anaerobiosis than was H+ or Cl minus transport. 5. An active transport component of Cl minus from serosa to mucosa was clearly demonstrable in the non-secreting preparations (ca. 3-9 muequiv/cm2.hr). Active Cl minus transport was stimulated three- to fourfold after H+ secretion was stimulated by histamine. Anaerobiosis promptly reduced Cl minus and H+ transport. An exchange diffusion component was demonstrated for Cl minus which appeared to be prominent during H+ secretory activity and was considerably diminished in resting mucosae. 6. Large changes in mucosal resistance were associated with conditions of rest, histamine stimulation and anaerobic conditions; mean values were 113, 74 and 197 omega.cm2, respectively. Electrical conductance of the isolated gastric mucosa was due primarily to partial ionic conductance of Cl minus (60-65%) and Na+ (10-15%). The partial conductance of H+ was extremely low. The observed increase in tissue conductance associated with H+ secretory activity and the changes in the long-time constant p.d. transient to a current pulse are discussed in terms of the relative contribution of the serosal and mucosal plasma membrane surfaces.  相似文献   

3.
Amiloride: a potent inhibitor of sodium transport across the toad bladder   总被引:29,自引:1,他引:28  
1 Amiloride inhibits Na transport and short-circuit current (SCC) across the toad bladder. It is 1000 times more active at the mucosal than serosal surface. The lowest effective concentration was 10(-7)M.2. The inhibition was non-competitive with the sodium on the mucosal side of the bladder.3. Vasopressin, cyclic adenosine monophosphate (AMP) and aldosterone increased Na transport and SCC across the bladder and these effects were inhibited by amiloride.4. The antagonism of amiloride for vasopressin was non-competitive.5. Amphotericin B also increases Na transport across the bladder but its action was not changed by amiloride.6. Amiloride was without effects on SCC and diffusion potentials in bladders metabolically inhibited with CN(-) and iodoacetic acid (IAA).7. Neither plasma albumin, Ca(2+) nor adenosine triphosphate (ATP) altered the effects of amiloride.8. The only structural analogue of amiloride found to reduce SCC similarly was guanidine which was 1000 times less active. Pyrazine and a substituted pyrazine analogue were without effect. Neither guanidine nor the substituted pyrazine compound were competitive with amiloride.9. Amiloride had no effect on the osmotic permeability of the toad bladder either in the presence or absence of vasopressin.10. Na transport across the toad colon was also reduced by 10(-5)M amiloride at the mucosal surface.11. The possible mechanism of action of amiloride is discussed.  相似文献   

4.
Interrelationships among Na, Cl, and HCO3 transport processes were examined in short-circuited rabbit ileal mucosa. As serosal (HCO3) was increased from 10 to 50 mM (pH from 7.1 to 7.8), net Na absorption decreased from 4.6 to 0.3 mueq/h-cm2, net Cl flux changed from absorption of 0.9 to secretion of 0.9 and a net HCO3 secretion of 3.0 developed. A similar change in net Cl flux was also observed when serosal Pco2 was altered at constant (HCO3). In Cl-free SO4-Ringer, serosal alkalinization produced net HCO3 secretion which was not significantly less than that observed in Cl-containing Ringer. Theophylline caused secretory changes in net Na and Cl fluxes at both 10 and 50 mM serosal (HCO3). Theophylline did not alter net HCO3 flux in Cl-Ringer but increased net HCO3 flux in SO4-Ringer. Total dc conductance was decreased by both serosal alkalinization and theophylline. Shortcircuit current was consistently increased by theophylline but not by serosal alkalinization. The results indicate that ileal ion transport is regulated in part by serosal pH and/or (HCO3) and that resulting changes in Cl and HCO3 transport are coupled one-for-one with changes in Na transport. Furthermore, HCO3 secretion does not require the presence of Cl in the bathing medium.  相似文献   

5.
The effects of chloroquine diphosphate, a drug with "'membrane-stabilizing" properties, were studied on basal ileal absorption and on ileal secretion induced by increased intracellular cAMP levels and calcium (serotonin). The studies were performed on rat (in vivo) and rabbit ileum (in vitro). Intraluminal chloroquine (10(-4) M) reversed cholera toxin- and theophylline-induced secretion in rat ileum but did not alter the cholera toxin- and theophylline-induced increases in cAMP content. Addition of chloroquine (10(-4) M) to the mucosal surface of rabbit ileum did not alter basal active electrolyte transport or the serotonin-induced decreased Na and Cl absorption but inhibited the theophylline-induced C1 secretion. Addition of chloroquine (10(-4)) M) to the serosal surface stimulated net Na and Cl absorption. This effect may involve intracellular calcium. Chloroquine increased the rabbit ileal calcium content and decreased 45Ca2+ influx from the serosal surface. Both the mucosal and serosal effects of chloroquine described led to a net increase in absorptive function of the intestine and should prove useful in developing treatment of diarrheal diseases.  相似文献   

6.
Antisecretory effects of berberine in rat ileum   总被引:6,自引:0,他引:6  
The in vitro antisecretory effects of the alkaloid berberine (1.0 mM) on intestinal ion secretion and mucosal adenylate cyclase and Na-K-ATPase activities were studied in the rat ileum. Mucosal berberine did not alter the individual basal net ion fluxes and basal adenylate cyclase activity but decreased short-circuit current (Isc) and increased the net absorption of chloride plus bicarbonate. In the cholera toxin-treated tissue, mucosal berberine stimulated absorption of Na and Cl and inhibited the increased adenylate cyclase activity but did not change the specific Na-K-ATPase activity, whereas serosal berberine stimulated Na secretion and decreased Isc. Mucosal berberine also decreased Isc, increased Cl permeability, and reversed the ion secretion induced by dibutyryl cyclic AMP, the heat-stable enterotoxin of Escherichia coli, and methylprednisolone administration. The antisecretory effects of mucosal berberine may be explained by stimulation of a Na-Cl-coupled absorptive transport process. The mechanism of action of serosal berberine remains to be elucidated. However, it is clear that mucosal berberine affects intestinal ion transport by mechanisms different from stimulation of the Na pump and probably at a step distal to the production or degradation of cyclic AMP or cyclic GMP.  相似文献   

7.
Administration of the glucocorticoid methylprednisolone (MP) (30 mg/kg body wt for 3 days) to rats increased intestinal mucosal guanylate cyclase and Na-K-ATPase activities, short-circuit current (Isc), electrical potential difference (PD), net Na absorption, and net Cl secretion and reversed HCO3 transport from secretion to absorption. In the MP-treated animals, removal of HCO3 from both the mucosal and serosal bathing solutions increased Cl secretion but did not alter the Isc, PD, and net Na flux. Removal of Cl abolished the MP-induced increase in Isc but did not affect the MP-induced changes in net Na and HCO3 fluxes. At 6 h, after a single dose of MP, stimulation of guanylate cyclase activity was already maximal, whereas Na-K-ATPase activity was not detectably altered. The changes in intestinal transport properties present 6 h after MP treatment and associated with the increased guanylate cyclase activity were an increase in Isc and PD and a reversal of net Cl absorption to net secretion. These results suggest that an initial response to MP administration is a persistent increase in intestinal guanylate cyclase activity that mediates an electrogenic Cl secretory process, then is followed by a superimposed effect of increased Na-K-ATPase activity that mediates an increase in net Na absorption.  相似文献   

8.
Active ion transport by the airway epithelium plays an important role in maintaining the effective defense mechanisms of the airway by regulating the volume and composition of the airway fluid. We investigated the abilities of adrenergic agents, cholinergic agents, and chemical mediators to modulate ion transport in canine tracheal epithelium, using Ussing-type chambers. Transepithelial electric potential difference (PD), resistance (R), and short circuit current (SCC) of the tracheal epithelium were measured before and during exposure to a drug or after a change in the perfusate composition. The mean values and S.E. (N = 41) of PD, R, and SCC during the control period were -18 +/- 4 mV (luminal negative to submucosa), 240 +/- 42 omega.cm2, and 50 +/- 5 microA/cm2, respectively. Ouabain (10(-4) M), an inhibitor of Na+-K+-ATPase, in the mucosal bath abolished PD and SCC. Replacement of luminal Na by choline reversibly reduced PD and SCC. These findings suggest that PD and SCC of the tracheal epithelium are maintained by the transcellular transport of luminal Na toward the mucosa. Isoproterenol (10(-5) M), epinephrine (10(-4) M), and norepinephrine (10(-4) M) markedly increased both PD and SCC. Acetylcholine (10(-4) M) and histamine (10(-4) M) did not alter SCC significantly. Prostaglandin E1 (10(-6) M) and F2 alpha (10(-5) M) slightly increased PD and SCC. These results indicate that adrenergic and cholinergic agents induce different patterns of effect on ion transport (adrenergic-dominant) in the tracheal epithelium. Thus, the effects of autonomic agents and chemical mediators on ion transport may explain, in part, the pathogenesis of airway disorders observed in many respiratory diseases.  相似文献   

9.
Changes in ion transport and cyclic AMP (cAMP) concentration produced by addition of cholera toxin to the serosal side of isolated rabbit ileal mucosa (CTs) were compared to the changes produced by addition to the mucosal side (CTm). CTs increased short-circuit current (SCC) as did CTm but it did so more slowly. CTs, unlike CTm, did not significantly decrease electrical conductance. Inhibition of the SCC response to theophylline, a measure of preexisting secretion, was almost complete 180 min after CTm but was not yet significant 180 min after CTs. Longer (280 min) after CTs, the SCC response to theophylline was reduced by 59%, a significant reduction but less than that caused by CTm. A statistically significant change in net Cl flux could not be demonstrated after CTs, although at 280 min the measured flux was halfway between the fluxes for control and CTm tissues. Cyclic AMP concentrations were determined at 190 min, 10 min after addition of theophylline. CTs, despite little or no effect on ion transport, increased cAMP to the same level as did CTm, and the effect on cAMP of adding toxin to both sides was additive. We conclude that 1) active secretion is probably stimulated by cholera toxin added on the serosal side, although more slowly than after addition to the mucosal side and 2) much of the toxin-stimulated cAMP content of the mucosa is not coupled to secretion.  相似文献   

10.
The rabbit gall-bladder in vitro preparation was used for studying the effect of angiotensin-11 on isosmotic fluid transport. Angiotensin inhibited net fluid transfer at serosal concentrations between 10-9-10-8 M. Maximum inhibition (about 25 %) was obtained at a concentration of 5 times 10?* M. No significant effect was demonstrable at concentrations of 10-10 M or lower, and the effect disappeared at higher concentrations (10 and 20 × 10-9 M). The inhibitory effect was due to a depression of the unidirectional Na+-efflux (from mucosal to serosal side); Na+-influx (from serosal to mucosal side) was unaffected. Maximum effective doses of angiotensin had no effect on transepi-thelial potential difference (PD), while ohmic resistance (R) increased slightly (about 10 %). The inhibitory effect of angiotensin was significantly reduced by incubating gall-bladders with indomethacin (10 μg/ml) which effectively blocks prostaglandin biosynthesis. Addition of indo-methacin alone had no effect on either net fluid transfer rate, PD, or R. It is concluded that angiotensin inhibits isosmotic fluid transport in the gall-bladder by an effect on the active component of the transfer process; and the data suggest that the effect is indirect and mediated, in part at least, by release of endogenous prostaglandins. Alternatively indomethacin might interfere with the angiotensin receptor.  相似文献   

11.
The transmural electric PD of bladders bathed by Na2SO4 Ringer was not affected by amphotericin (5 x 10(-6) M, mucosal) but the PD followed the direction for K+ diffusion in the presence of a transmural K+ gradient. Increases in bathing solution K+ increased conductance. Ouabain pretreatment did not affect drug-induced changes in PD or conductance. Unidirectional fluxes of radiolabeled Na+ and K+ but not SO42- across the short-circuited bladder were increased by amphotericin. Ninety percent of the rise in the serosal-to-mucosal flow of Na+ disappeared when mucosal Na+ was replaced by choline. Amphotericin induced a 20-fold increase in mucosal-to-serosal K+ flux but K+ serosal-to-mucosal flow increased 200-fold. This flux asymmetry persisted for 110 min, was abolished by pre- or posttreatment with ouabain, and was immeasurable when bathing solution K+ was increased from 2.4 to 59 meq/liter. With 2.4 meq K+/liter the ratio of active Na+ reabsorption to K+ secretion was 8 to 1, but K+ secretion was not closely linked to Na+ transport. The results suggest that amphotericin induces a paracellular K+-selective path, Na+ isotope exchange, and K+ secretion.  相似文献   

12.
This study employed isolated guinea-pig tracheal tube preparations in order to examine effects of increases in hydrostatic pressure on the movement of macromolecular solutes (fluorescein isothiocyanate-conjugated dextran; FITC-D, MW 70 kD; kept either in serosal or mucosal bathing fluids) across the mucosa. An asymmetry of the mucosal barrier was demonstrated by the finding that under baseline zero-pressure difference conditions luminal entry of serosal FITC-D was greater than serosal entry of luminal FITC-D. Furthermore, an increased serosal pressure (5 cm H2O) moved significant amounts of serosal FITC-D into the lumen, whereas a corresponding pressure applied on the luminal side only marginally increased mucosal crossing of luminal FITC-D. By raising the luminal pressure to 10 and 20 cm H2O (which may be used as positive end-expiratory pressures (PEEP) in vivo in patients) mucosal penetration of luminal FITC-D was as marked as that induced in the opposite direction by the low (5 cm H2O) serosal pressure increase. Another aspect of the asymmetry of the airway mucosal barrier was evident from experiments examining the effect of a serosal pressure increase on mucosal penetration of luminal FITC-D. Neither during nor after the period of sustained serosal pressure increase was luminal FITC-D crossing the mucosa to a greater extent than under baseline zero-pressure conditions. This finding agrees with in-vivo data demonstrating that plasma exudation into the airway lumen may not be associated with an increased absorption of luminal solutes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Lithium (Li+) absorption across the low-resistance epithelium of the rabbit gall-bladder was studied in order to elucidate possible routes and mechanisms of Li+ transfer. Li+ at a concentration of 0.4 mM in both mucosal and serosal media did not affect isosmotic mucosa-to-serosa fluid absorption. At this low concentration net mucosa-to-serosa Li+ absorption was insignificant when the ambient Na+ concentration was 115 mM, although the gall-bladder had a significant Li+ permeability (2.7 X 10(-5) cm s-1) and a significant mucosa-to-serosa Li+ gradient developed as a result of fluid absorption. Net Li+ absorption was induced at reduced mucosal Na+ concentrations (by lowering the Na+ concentration down to 50 mM with or without substitution with sucrose, or by adding sucrose to the mucosal medium). This Li+ absorption occurred even in the absence of a mucosa-to-serosa Li+ gradient. Na+ and Li+ absorptions occurring at 50 mM Na+ were inhibited to the same degree by mucosal 1 mM amiloride. Substitution of 5-50 mM (44%) Na+ by Li+ in the external medium dose-dependently depressed Na+ absorption by up to 76%, while substitution by 50 mM choline had no significant effect. Li+ inhibition of Na+ absorption was elicited from the mucosal side and was not accounted for by compensatory Li+ absorption; water and Na+ absorption rates decreased nearly in parallel. The effects of 0.4 mM amiloride and of substitution with 20 mM Li+ were only partly additive. It is concluded that Li+ absorption in the rabbit gall-bladder cannot be explained by passive (paracellular) transport, but must be the result of transcellular, active transport. Both at low and at high concentrations Li+ may enter the cell via an Na+/H+ exchanger in the apical cell membrane. At high concentrations Li+ may inhibit Na+ absorption by interference with the exchange mechanism and/or via effects at the cytoplasmic level. The Li+ transfer mechanism across the basolateral cell membrane remains unknown.  相似文献   

14.
Frog (Rana temporaria) skins were studied in an Ussing type lucite chamber adapted to diminish tissue edge damage. The transepithelial electrical potential difference, short circuit current and direct current (DC) resistance of skins mounted in this chamber were 56, 20 and 24% higher, respectively, than those of skins mounted in a conventional chamber. Amiloride, triamterene, ouabain and ortho-vanadate inhibited short circuit current and net mucosal to serosal flux of 22Na. Amiloride and triamterene had rapid onsets of action and were effective only when administered to the mucosal (pond) side of the skin. Ouabain and ortho-vanadate had slower onsets of action and were effective only when administered to the serosal side of the skin. Steady state of effects of these drugs was not reached within the three-hour period of the experiments. The inhibitory effect of ortho-vanadate was blocked by adding a disulfonic stilbene derivative (DIDS) to the serosal side of the skin. Serosal prostaglandin E2 stimulated the short-circuit current and decreased the DC resistance. Thiazides, acetazolamide and loop diuretics had no effects on Na+ transport by frog skin. Thus, frog skin seems to be a useful model only in studies of the mode of action and the structure-activity relationship of diuretic which act by inhibiting sodium entry or Na+-K+-ATPase activity.  相似文献   

15.
1. Theophylline (10 mM) and choleragen (1 x 10(-6) g ml.-1) abolish net fluid absorption by everted sacs of rabbit ileum. Triaminopyrimidine (20 mM) and ethacrynate (0.1 mM) prevent this inhibition of net fluid movement. Replacing Ringer Cl- with isethionate prevents the theophylline-dependent decrease in fluid absorption also. 2. Ouabain (0.1 mM) abolishes net fluid movements in both control and theophylline-treated tissue. 3. With ouabain present, hypertonic NaCl (200 mM) in the mucosal solution causes net fluid secretion (serosal-mucosal flux). With theophylline added to both the mucosal and serosal solution, net fluid absorption (mucosal-serosal flux) is observed (P less than 0.001). Triaminopyrimidine (20 mM), or ethacrynate (0.1 mM), or replacement of Ringer Na+ with choline, or Ringer Cl- with isethionate all prevent the theophylline-induced reversal of osmotic flow. 4. Theophylline increases passive net flux of Na+ and Cl- from mucosal solution containing hypertonic (200 mM) NaCl+ ouabain (0.1 mM) across sheets of ileum into serosal solution containing mannitol Ringer + ouabain. The increased passive Na+ flux is blocked by triaminopyrimidine and the increased Na+ and Cl- fluxes are blocked by ethacrynate (0.1 mM). 5. The suggested route of increased NaCl leakage is via the paracellular pathway as it is inhibited by triaminopyrimidine. The increase, itself, is a consequence of the increased passive permeability of the mucosal border to Cl-, induced by theophylline or choleragen. Water is apparently electro-osmotically coupled to the paracellular Na+ leakage (100 mole water mole-1 Na+), hence increased passive leakage reverses osmotic flow. In active tissue the lateral intercellular space contains hypertonic NaCl, and hence increased leakage of NaCl across the tight-junction in theophylline or choleragen-treated tissue gives rise to net fluid secretion.  相似文献   

16.
Bicarbonate secretion occurs in almost all segments of the gastrointestinal tract. This study examined HCO(3)(-) secretion in the ileum, since it is less understood than HCO(3)(-) secretion in other intestinal segments. Mouse ileal mucosa was mounted in vitro in Ussing chambers, and the mucosal alkalinization rate (J(OH)) was determined by pH stat titration, while the mucosal side was bathed with a buffer-free solution (100% O(2)) and the serosal side with a HCO(3)(-)/CO(2)-buffered solution. The transmural potential difference (PD) was recorded. The mucosal alkalinization rate (J(OH)) was higher in the presence of mucosal Cl(-) than in its absence. Forskolin, an activator of adenylate cyclase, enhanced J(OH) and PD in both the presence and absence of mucosal Cl(-). Mucosal SO(4)(2-) also caused an increase in J(OH), although the magnitude was smaller than that induced by Cl(-). Mucosal Cl(-)-dependent J(OH) was partially inhibited by acetazolamide, 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), tenidap and probably also by niflumic acid, but not by glibenclamide, DIDS or bumetanide. The forskolin-induced J(OH) value and PD were both inhibited by NPPB and probably also by tenidap. It is concluded that HCO(3)(-)- secretion in the ileum follows a mucosal Cl(-)-dependent pathway and a cAMP-activated pathway, each being distinct from each other. The Cl(-)-dependent pathway is probably mediated by the slc26a6 anion exchanger, and possibly also by the slc26a3 anion exchanger. The cAMP-activated HCO(3)(-) secretion is probably mediated by the cystic fibrosis transmembrane conductance regulator.  相似文献   

17.
Ion transport by the resting, isolated, rhesus gastric mucosa was assessed under conditions of minimal diffusion limitation to oxygen by 1) the substitution of Na+ and Cl- of the bathing solutions with less permeant ions, 2) the drugs amiloride and ouabain, and 3) estimation of net fluxes of 22Na by methods designed to circumvent the problem of poorly matched tissues. The mucosae developed potential differences of 51.3 +/ 3.5 mV, serosal side positive and had conductances of 5.56 +/- 0.30 mS x cm-2. The permeabilities of the tissues to D-mannitol were between 7.80 x 10(-7) and 3.15 x 10(-7) cm x s-1. The relatively high conductance of this epithelium in the absence of significant edge damage and a low (32%) paracellular conductance stems mainly from a passive permeability to Cl-; active absorption of Na+ and active secretion of Cl- contribute equally to the short-circuit current. The mucosal entry step for Na+ is amiloride sensitive, whereas the serosal exit step can be inhibited by ouabain. The entry step for Cl- at the serosal membrane is possibly sodium dependent.  相似文献   

18.
Human recombinant interleukin 11 (rhIL-11) is a cytokine that suppresses the clinical signs of colitis in animal models of inflammatory bowel disease (IBD) and may be an effective therapeutic agent in the treatment of IBD. The objective of the current study was to investigate whether rhIL-11 was capable of reversing abnormalities in secretomotor function associated with gut inflammation. We investigated the effects of rhIL-11 on epithelial electrogenic ion transport in the jejunum and colon. Application of rhIL-11 (10 to 10,000 ng/ml) at either the luminal or serosal side of mucosal sheets isolated from control rats induced a concentration-dependent reduction of transmural potential difference (PD) in the jejunum and decreased the short-circuit current (Isc), representative of active electrogenic transport, in the colon. To investigate the effect of rhIL-11 on an inflamed gut, we isolated jejunal and colonic tissue from HLA-B27 transgenic rats with active inflammation of the bowel that represents an animal model of IBD. In jejunum and colon isolated from HLA-B27 transgenic rats, basal electrogenic ion transport was significantly attenuated and, under these conditions, rhIL-11 caused no changes in either transmural PD or Isc. However, in HLA-B27 rats, pretreatment with subcutaneous doses of rhIL-11 suppressed the symptoms of diarrhea, normalized myeloperoxidase activity in the jejunum and colon and healed mucosal injury. In the jejunum from HLA-B27 rats, healing of the intestinal inflammatory response enhanced basal transmural PD and the rhIL-11-duced changes in mucosal ion transport resembled those seen in uninflamed controls. Conversely, in the colon, healing of the mucosa did not normalize basal active ion transport nor did it reverse the inhibition of rhIL-11-induced changes in colonic Isc. Our results suggest that endogenous IL-11 may act as a modulator of epithelial transport under physiologic conditions and may act as a potent anti-inflammatory cytokine during active intestinal inflammation.  相似文献   

19.
1. Using a preparation of rat colon mucosa mounted in vitro in small chambers, some factors which influence the electrical properties of the mucosa have been investigated.2. The mucosa behaved mainly as an ohmic resistance although a very brief transient occurred on first passing current. At 32 degrees C, the fresh preparation had a mean resistance of 108Omega/cm(2) and a mean short circuit current (s.c.c.) of 143 muA/cm(2). Tissues taken from Na-depleted and adrenalectomized rats differed little from normal tissues in electrical resistance but those from Na-depleted rats had higher potential difference (p.d.) and s.c.c.3. Increase of temperature led to a rise of conductance of similar order to that found for ions in aqueous solution. S.c.c. also rose with increase of temperature but the effect was relatively greater consistent with its being dependent on metabolic processes.4. Anoxia or the addition of cyanide, iodoacetate or 2,4-dinitrophenol to the bath fluid caused considerable fall in the p.d. and s.c.c.5. Ouabain decreased the p.d. and s.c.c. when added to the serosal side but had no effect when on the luminal side.6. Aldosterone and acetazolamide had no effect.7. Varying serosal side [K] produced only minor changes in p.d.8. Reducing [Na] of the luminal solution caused a considerable fall of p.d. but similar reduction of [Na] on the serosal side had little effect.9. The frequently employed model which represents the transepithelial p.d. as the sum of diffusion potentials originating at the luminal and serosal sides of the cell layer is not consistent with the present results. The colonic transmucosal p.d. probably originates in the electrogenic transport of Na by a mechanism located on the serosal side of the epithelium.  相似文献   

20.
Gastric mucosas from newborn pigs (0--20 days) and rabbits (0--20 days) were used for in vitro investigation of active Na+ transport during resting (no HCl secretion) conditions. As measured with 22Na+, these tissues actively absorb Na+ from the mucosal-to serosal (m-t-s) bathing solution during both open-circuit and short-circuit current (Is) conditions. In the nonsecreting state, net Na+ transport accounts for 40--60% of Isc. The remaining current is provided by net s-to-m flux of Cl-. Amiloride (2-5 X 10(-5) M) in the mucosal solution abolishes this active Na+ transport by inhibiting m-to-s fluxes of Na+ (JNams). In vivo-in vitro experiments showed that active Na+ transport is a normal function of the resting mammalian stomach. Decreasing pH of the mucosal solution below pH 5 reversibly causes decreased current-generating capability of the tissue. Pretreatment of the tissue with amiloride abolishes this pH effect. The implication is that the low pH affects the Na+-entry step into cells. "Titration curves" of current vs. pH had an apparent pK approximately 4.0. Ouabain and K+-free solutions both cause decreases in active Na+ and Cl- current. Calculations indicate that a shunt may account for only a small (less than 30%) percentage of total transepithelial conductance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号