首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polydimethacrylate resins were prepared by photopolymerization of Bis-GMA, TEGDMA, UDMA or Bis-EMA (4) monomer, initiated by camphoroquinone/N,N-dimethylaminoethyl methacrylate system. The study of physical properties of these resins showed that TEGDMA seems to create the most dense polymer network, which however is the most flexible (0.74GPa), absorbs the highest amount of water (6.33 wt%) and releases the lowest amount of unreacted monomer (2.41 microg/mm(3)). UDMA and Bis-EMA (4) create more rigid networks, which absorb lower water and release higher unreacted monomer than TEGDMA. Bis-EMA (4) absorbs the lowest water amount (1.79 wt%) and releases the highest amount of unreacted monomer (14.21 microg/mm(3)). Bis-GMA leads to the formation of the most rigid network (1.43 GPa), which absorbs lower water than the resin made by TEGDMA but higher than the resin made by UDMA and Bis-EMA (4). Copolymers of Bis-GMA with the other monomers were also prepared, using various monomer combinations and molar ratios. Copolymers Bis-GMA/TEGDMA (50/50 and 70/30 wt%) showed significantly higher values for Young's modulus (1.83 and 1.78 GPa) than those predicted by the linear dependence of the values on the copolymer composition. Gradual replacement of TEGDMA with UDMA or/and Bis-EMA (4) in copolymerization with Bis-GMA resulted in more flexible resins with lower water sorption and higher solubility values, depending on the TEGDMA content.  相似文献   

2.
In the present work the elution of residual monomers from light-cured dental resins and resin composites into a 75% ethanol:water solution was studied using High-Performance Liquid Chromatography (HPLC). The resins studied were made by light-curing of bisphenol A glycol dimethacrylate (Bis-GMA), triethylene glycol dimethacrylate (TEGDMA), urethane dimethacrylate (UDMA), ethoxylated bisphenol A glycol dimethacrylate [Bis-EMA(4)] and mixtures of these monomers. The resin composites were made from two commercial light-cured restorative materials (Z100 MP and Filtek Z250), the resin matrix of which is based on copolymers of these monomers. The effect of the curing time on the amount of monomers eluted was investigated. The concentration of the extractable monomers was determined at several immersion periods from 3 h to 30 days. For all the materials studied, it was observed that the chemical structure of the monomers used for the preparation of the resins, which defines the chemical and physical structure of the corresponding resin, directly affects the amount of eluted monomers, as well as the time needed for the elution of this amount. In the case of composites, it seems that the elution process it is not influenced by the presence of filler.  相似文献   

3.
In this work the room-temperature photopolymerization of Bis-GMA, Bis-EMA, urethane dimethacrylate (UDMA) and triethylene glycol dimethacrylate (TEGDMA) induced by camphoroquinone/N,N-dimethylaminoethyl methacrylate, as photo-initiator system, was followed by FT-IR. The results obtained were then fitted by a non-linear least square method to a rational function, which permitted the accurate calculation of the limiting degree of conversion. The latter was found to increase in the order Bis-GMA < Bis-EMA < UDMA < TEGDMA. This trend is discussed in connection with the chemical structure of dimethacrylates. The photopolymerization of mixtures of Bis-GMA/TEGDMA, Bis-GMA/UDMA and Bis-GMA/Bis-EMA showed a good linear relationship of degree of conversion with the mole fraction of Bis-GMA and in the case of the first pair also with the Tg of the initial monomer mixture.  相似文献   

4.
This study investigated the leaching of monomers (Bis-GMA and TEGDMA) from nano-hybrid (Filtek Supreme) and flowable (Filtek Flow) dental composite resins cured with LED or conventional halogen curing lights, and immersed in saliva or water for 24 h. Nine disc specimens were made for each experimental group. After the polymerization process, the specimens were immersed in either water or saliva and incubated at 37 degrees C for 24 h. Eluted Bis-GMA and TEGDMA monomers were detected using high performance liquid chromatography (HPLC). The data were analyzed using three-way ANOVA (p = 0.05) and the independent samples t test. TEGDMA (53.15-1 microg/L) was leached from the resins at a higher level than Bis-GMA (28-0.5 microg/L) (p < 0.01), regardless of the affecting factors: composite type, solvent (media) and type of curing light. In general, Filtek Flow resin released more TEGDMA than Filtek Supreme (p < 0.05), but the Supreme resin released more Bis-GMA than TEGDMA (p < 0.05). Halogen light induced greater monomer elution than LED light immersion in water. Saliva released more TEGDMA than water (p < 0.05). We conclude that (1) total leached TEGDMA was higher than total Bis-GMA, (2) saliva and halogen light (lower intensity than LED) leached more monomers from the resins, and (3) the flowable composite resin leached more TEGDMA than the nano-hybrid.  相似文献   

5.
In the present investigation the sorption-desorption kinetics of 75 vol % ethanol/water solution by dimethacrylate-based dental resins and resin composites was studied in detail. The resins examined were made by light-curing of bisphenol A glycol dimethacrylate (Bis-GMA), triethylene glycol dimethacrylate (TEGDMA), urethane dimethacrylate (UDMA), bisphenol A ethoxylated dimethacrylate (Bis-EMA), and mixtures of these monomers. The resin composites were prepared from two commercial light-cured restorative materials (Z100 MP and Filtek Z250), the resin matrix of which is based on copolymers of the above-mentioned monomers. Ethanol/water sorption/desorption was examined in both equilibrium and dynamic conditions in two adjacent sorption-desorption cycles. For all the materials studied, it was found that the amount of ethanol/water sorbed or desorbed was always larger than the corresponding one reported in literature in case of water immersion. It was also observed that the chemical structure of the monomers used for the preparation of the resins directly affects the amount of solvent sorbed or desorbed, as well as sorption kinetics, while desorption rate was nearly unaffected. In the case of composites studied, it seems that the sorption/desorption process is not influenced much by the presence of filler. Furthermore, diffusion coefficients calculated for the resins were larger than those of the composites and were always higher during desorption than during sorption. Finally, an interesting finding concerning the rate of ethanol/water sorption was that all resins and composites followed Fickian diffusion kinetics during almost the whole sorption curve; however, during desorption the experimental data were overestimated by the theoretical model. Instead, it was found that a dual diffusion-relaxation model was able to accurately predict experimental data during the whole desorption curve. Kinetic relaxation parameters, together with diffusion coefficients, are reported for all resins and composites.  相似文献   

6.
A new urethane dimethacrylate TMA was synthesized through a typical urethane reaction. TMA was used to replace 1,6-bis(methacryloxy-2-ethoxycarbonyl- amino)-2,4,4- trimethylhexane (UDMA) in UDMA based composite partially or totally to prepare TMA containing composites. Critical properties of TMA containing composites were investigated. 2,2-bis[4(2-hydroxy-3-methacryloy- propyloy)phenyl]propane (Bis-GMA) based and UDMA based composites were used as references. FT-IR and 1H-NMR confirmed the structure of TMA. All of experimental dental resin composites had the similar double bond conversion (p?>?0.05). With a certain amount of TMA, TMA containing composites could have lower volumetric shrinkage (p?<?0.05) and shrinkage stress (p?<?0.05) than control groups. Water sorption, solubility, flexural strength and modulus of TMA containing composites were not worse than those of control groups. All of TMA containing composites and UDMA based composite had the same fracture toughness (p?>?0.05), which was higher than that of Bis-GMA based composite (p?<?0.05). TMA has potential as Bis-GMA substitute to prepare Bis-GMA free dental resin composites with low shrinkage stress.  相似文献   

7.
Shrinkage strain-rates of dental resin-monomer and composite systems   总被引:2,自引:0,他引:2  
Atai M  Watts DC  Atai Z 《Biomaterials》2005,26(24):5015-5020
The purpose of this study was to investigate the shrinkage strain rate of different monomers, which are commonly used in dental composites and the effect of monomer functionality and molecular mass on the rate. Bis-GMA, TEGDMA, UDMA, MMA, HEMA, HPMA and different ratios of Bis-GMA/TEGDMA were mixed with Camphorquinone and Dimethyl aminoethyle methacrylate as initiator system. The shrinkage strain of the samples photopolymerised at Ca. 550 mW/cm2 and 23 degrees C was measured using the bonded-disk technique of Watts and Cash (Meas. Sci. Technol. 2 (1991) 788-794), and initial shrinkage-strain rates were obtained by numerical differentiation. Shrinkage-strain rates rose rapidly to a maximum, and then fell rapidly upon vitrification. Strain and initial strain rate were dependent upon monomer functionality, molecular mass and viscosity. Strain rates were correlated with Bis-GMA in Bis-GMA/TEGDMA mixtures up to 75-80 w/w%, due to the higher molecular mass of Bis-GMA affecting termination reactions, and then decreased due to its higher viscosity affecting propagation reactions. Monofunctional monomers exhibited lower rates. UDMA, a difunctional monomer of medium viscosity, showed the highest shrinkage strain rate (P < 0.05). Shrinkage strain rate, related to polymerization rate, is an important factor affecting the biomechanics and marginal integrity of composites cured in dental cavities. This study shows how this is related to monomer molecular structure and viscosity. The results are significant for the production, optimization and clinical application of dental composite restoratives.  相似文献   

8.
The water uptake characteristics of resins and composites based on an ethoxylated bisphenol A glycol dimethacrylate (Bis-EMA) and a polycarbonate dimethacrylate (PCDMA) were studied in detail. Polydimethacrylate resins were prepared by photopolymerization of the neat monomers and mixtures of them with various weight ratios, using the camphoroquinone/N,N-dimethylaminoethyl methacrylate system as initiator, while the composites were prepared from the light-curing of commercial samples (Sculpt-It and Alert). Water sorption/desorption was examined both in equilibrium and dynamic conditions in two adjacent sorption-desorption cycles. The equilibrium water uptake from all resins was very small with a trend to increase as the amount of PCDMA was increased. The inverse effect was observed in the solubility values. The composites studied exhibited also very low water uptake values in comparison to other composite materials reported in the literature. It was also observed that the equilibrium uptake decreased with increasing filler loading. Slightly larger equilibrium water uptake and much smaller solubility values were obtained during the second sorption-desorption cycle in comparison to the first one. Concerning the sorption rate data, it was observed that the resin materials followed Fickian diffusion during almost the whole sorption or desorption curve, while the composites showed this behavior until only M(t)/M( infinity ) congruent with 0.5. The diffusion coefficients calculated for the resins were larger than those of the composites and always higher during desorption compared to sorption. The values of the diffusion coefficients for both resins and composites were in the same order of magnitude with the values of the corresponding materials reported in the literature.  相似文献   

9.
The mechanical properties of recently developed bioactive, antidemineralizing/remineralizing, amorphous calcium phosphate (ACP)-based composites need improvement. The objective of this study was to elucidate the effect of structure and composition of resins on the biaxial flexure strength (BFS) and the degree of conversion (DC) of composites attained after photo-polymerization. Two series of 2,2-bis[p-(2'-hydroxy-3'-methacryloxypropoxy)phenyl]propane (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA)/X (X being a neutral or acidic comonomer) ternary resins were prepared and mixed with a mass fraction of 40% of zirconia-hybridized ACP. Both unfilled copolymers and their composites were evaluated for BFS (dry and wet specimens after 2 weeks of immersion in buffered saline) and for DC (after 24 h at 23 degrees C). It was found that for the neutral X monomers, no correlation existed between the hydrophobic/hydrophilic character of the X monomer and the BFS values of the immersed composites. A flexible monomethacrylate yielded copolymers and composites with the highest DC. For the resins utilizing the acidic comonomers, methacrylic acid and mono-4-(methacryloyloxy) ethyltrimellitate (4MET), dry composites with improved BFS values were obtained. 4MET composites exhibited the least loss of strength of all the ternary resin ACP materials. The effect of acidic X on DC was most pronounced for maleic acid copolymers.  相似文献   

10.
The applications of dental restorative composite resins containing 2,2 bis [4-(2-hydroxy-3-methacryloyloxy propoxy) phenyl] propane (Bis-GMA), as a base resin, and triethylene glycol dimethacrylate (TEGDMA), as a diluent, are often limited in dentistry due to the relatively large amount of volumetric shrinkage that occurs during the curing reaction. In this study, various new resin matrices were examined for use as dental composites in order to reduce the amount of volumetric shrinkage that occurs in dental composites as a result of curing. Bis-GMA derivatives were synthesized by substituting methyl groups for hydrogen on the phenyl ring. The derivatives of TEGDMA with different chain lengths or reactive groups were also examined. The molecular structural changes in the TEGDMA derivatives were not effective in reducing the level of volumetric shrinkage. The resin matrix containing a Bis-GMA derivative and TEGDMA showed a reduced amount of volumetric shrinkage in proportion to the number of methyl groups on the phenyl rings. Polymerization with a mixture of Bis-GMA, its derivatives and a diluent is a promising strategy for obtaining a polymer with a low amount of volumetric shrinkage. A comparison of the volumetric shrinkage of dental composites containing Bis-GMA, TMBis-GMA (2,2-bis[3,5-dimethyl, 4-(2-hydroxy-3-methacryloyloxy propoxy) phenyl] propane)), and TEGDMA with that prepared from a Bis-GMA and TEGDMA mixture showed that the volumetric shrinkage reduction in the new resin was approximately 50%. Furthermore, the mechanical strength of the former was higher than that of the latter.  相似文献   

11.
The aim of this study was to investigate the extent of polymerization (Ep) in terms of polymerization rate of UDMA/TEGDMA resin mixtures and its composite resin, by using a differential scanning calorimeter (DSC) technique employing a photopolymerization apparatus. The resin mixtures used in this study consisted of urethane dimethacrylate (UDMA) as a base monomer and triethyleneglycol dimethacrylate (TEGDMA) as a low viscosity monomer. The concentration of TEGDMA in the mixed monomer was varied to 0, 20, 40, 60, 80, and 100 mol %. Additionally, using a base monomer consisting of 60 mol % UDMA and 40 mol % TEGDMA, four kinds of composites with silica filler of 0, 20, 40, 60, and 70 wt %, were prepared in this study. The general reaction profile and Ep values were obtained from the DSC curves. Increasing the concentration of TEGDMA resulted in a decrease in the viscosity of the UDMA/TEGDMA mixture, a delay in the time to maximum polymerization rate, and an increase in the Ep values of the resin mixtures. Furthermore, Ep values decreased with increasing filler content between 0 and 60 wt % but did not decrease further between 60 and 70 wt %.  相似文献   

12.
Odontoblasts are highly differentiated postmitotic cells, which under pathological conditions such as carious lesions and dental injuries may degenerate and be replaced by other pulp cells. A recent work showed that this physiological event can be reproduced in an in vitro assay system. The purpose of the present study was to evaluate the effects of resinous monomers on odontoblast differentiation in vitro. Pulp cores from extracted human third molars were cultured with beta-glycerophosphate (2 mM) and used to evaluate the effects of TEGDMA, HEMA, UDMA, and Bis-GMA on the differentiation of pulp fibroblasts into odontoblasts. The effect of the monomers was studied by evaluating the expression of several odontoblast specific genes. In the absence of monomers, mineral nodule formation was observed. Pulp cells contributing to the nodule formation synthesized type I collagen, osteonectin, and dentin sialoprotein (DSP). In addition, Fourier transform infrared microspectroscopy showed that the mineral and organic composition of the nodules were characteristic of dentin. When the monomers were added at nontoxic concentrations, the effects of HEMA and Bis-GMA were more evident than that of TEGDMA and UDMA on collagen 1, osteonectin, and DSP expression. However, all monomers significantly decreased DSP expression and completely inhibited the mineral nodule formation.  相似文献   

13.
The goal of this study is to evaluate the hypothesis that the properties of the resin adhesive might affect the microtensile bond strength (MTBS) of multibottle dental adhesive system. In order to alter the properties, the experimental resin adhesives containing 2,2-bis (4-2-hydroxy-3-methacryloyloxypropoxyphenyl)propane (Bis-GMA) and triethylene glycol dimethacrylate (TEGDMA) at various ratios were prepared. Degree of conversion immediately after curing (DC-immed), degree of conversion at 48 h after curing (DC-48h) of a thin coat of the experimental adhesives, the flexural strength (FS) of the bulk specimens made of the experimental adhesives, pH, viscosity at shear rate of 1 S(-1), and the microtensile bond strength (MTBS) values of the adhesives to dentin were investigated. The maximum MTBS and FS values of the resin adhesives were observed when the ratio of Bis-GMA/TEGDMA was 60/40. However, pH and viscosity values increased with increasing Bis-GMA content in the adhesives. When Bis-GMA content was more than 60 wt %, the viscosity increased exponentially and restricted the DC and FS, and accordingly decreased the bond strength. The stronger the resin adhesives were, the higher the bond strength to dentin could be obtained.  相似文献   

14.
Musanje L  Ferracane JL 《Biomaterials》2004,25(18):4065-4071
This study evaluated the effects of nanofiller surface treatment and resin viscosity on the early and long-term properties of experimental hybrid composites. Three resin formulations (low, medium and high viscosity) were prepared by varying the ratio of TEGDMA:UDMA:bis-GMA (47:33:16 wt%; 30:33:33 wt%; 12:33:51 wt%). Composites contained 71.3 wt% silanated strontium glass (1-3 microm) and 12.6 wt% of either silanated or unsilanated silica (OX-50; 0.04 microm). Specimens (n=10) for flexural strength, flexural modulus, fracture toughness and Knoop hardness were tested after 24 h, 1 and 6 months exposure to water at 37 degrees C. Degree of conversion (DC) was determined 24 h after photoinitiation using FTIR. Resin viscosity only had a marginal influence on the mechanical response of composites but it can be adjusted to achieve a balance between DC and mechanical properties. Adding non-bonded nanofiller to hybrid composites had no systematic effect on DC. Non-bonded nanofillers had no significant effect on the long-term properties of hybrid composites.  相似文献   

15.
In order to endow dental resin with antibacterial activity, a series of antibacterial quaternary ammonium methacrylate monomers (QAM) with different substituted alkyl chain length (from 10 to 18) were incorporated into commonly used 2,2-bis[4-(2′-hydroxy-3′-methacryloyloxy-propoxy)-phenyl]propane (Bis-GMA)/triethyleneglycol dimethacrylate (TEGDMA) (50?wt/50?wt) dental resin as immobilized antibacterial agents. Double bond conversion (DC), flexural strength (FS) and modulus (FM), and young and mature biofilms inhibition effectiveness of prepared dental resins were studied and Bis-GMA/TEGDMA without QAM was used as reference. Results showed that there was no significant difference on DC, FS, and FM between copolymer with and without 5?wt% QAM. Substituted alkyl chain length of QAM had no influence on DC, FS, and FM of copolymer, but had influence on antibacterial activity of copolymer. Antibacterial activity of copolymer increased with increasing of substituted alkyl chain length of QAM, and the sequence followed as 5%C10?<?5%C11≈5%C12?<?5%C16≈5%C18. Copolymers containing C18 and C16 had the best inhibition effectiveness on both young biofilm and mature biofilm, copolymers containing C12 and C11 only had inhibition effectiveness on young biofilm and copolymer containing C10 had none inhibition effectiveness on neither young biofilm nor mature biofilm.  相似文献   

16.
The objectives of this study were to prepare hybrid and surface-modified amorphous calcium phosphates (ACPs) as fillers for mineral-releasing dental composites, and determine whether the mechanical strength of the composites could be improved without decreasing their remineralization potential. ACP was hybridized with tetraethoxysilane or zirconyl chloride and surface-treated with 3-methacryloxypropoxytrimethoxy silane (MPTMS) or zirconyl dimethacrylate (ZrDMA). Composites fabricated with unmodified ACP (u-ACP), hybrid or surface-modified ACP filler and photo-activated Bis-GMA, TEGDMA and 2-hydroxyethyl methacrylate (HEMA) (BTH resin), Bis-GMA, TEGDMA, HEMA and MPTMS (BTHS resin) or Bis-GMA, TEGDMA, HEMA and ZrDMA (BTHZ resin) were tested for their remineralizing potential and biaxial flexure strength (BFS). Ion releases from all composites were significantly above the minimum necessary for reprecipitation of apatite. The BFS of unfilled polymers was not adversely affected by immersion in saline solutions. The BFS of BTH and BTHS composites deteriorated upon soaking. However, BTHZ composites were practically unaffected by exposure to saline solutions. Filler hybridization resulted in a modest, but significant, improvement in the BFS (up to 24%) of BTHZ composites. Heterogeneous distribution of the ACP on disk surfaces was detected by the FTIR microspectroscopy analyses. This might have been caused by uncontrolled aggregation of ACP particles that appeared to hinder interfacial filler/resin interactions and diminish the mechanical strength of composites.  相似文献   

17.
In this study, a dimethacrylate monomer, 1,4-Bis[2-(4-(2′-hydroxy-3′-methacryloyloxy-propoxy)phenyl)-2propyl]benzene (BMPPB) was synthesized to replace 2,2-bis[4-(2′-hydroxyl-3′-methacryloyloxy-propoxy)phenyl]propane (Bis-GMA) as one component of dental restorative materials. The structure of BMPPB and its intermediate product 1,4-bis[2-(4-(oxiranylmethoxy)phenyl)-2propyl]benzene (BOPPB) were confirmed by Fourier transform infrared (FTIR) spectroscopy, proton nuclear magnetic resonance spectroscopy (1H-NMR), and elemental analysis. In order to evaluate the possibility of replacing Bis-GMA with BMPPB in dental resin, double bond conversion (DC), polymerization shrinkage, contact angle, water sorption (WS) and solubility (SL), and flexural strength (FS) and modulus of BMPPB/tri(ethylene glycol)dimethacrylate (TEGDMA) (50/50?wt) resin system and Bis-GMA/BMPPB/TEGDMA (25/25/50?wt) resin system were studied. Commercially used Bis-GMA/TEGDMA (50/50?wt) dental resin system was used as reference. The results showed that BMPPB-contained copolymer had higher DC, higher WS and SL than the copolymer that only contained Bis-GMA (p?<?0.05). All of the copolymers had nearly the same contact angle (p?>?0.05). BMPPB/TEGDMA resin system had lower polymerization shrinkage, higher FS and modulus (p?<?0.05) than Bis-GMA/TEGDMA resin system. There was no significant difference on polymerization shrinkage, FS and modulus (p?>?0.05) between Bis-GMA/BMPPB/TEGDMA resin system and Bis-GMA/TEGDMA resin system. Before and after water immersion, both FS and modulus of every copolymer did not change significantly (p?>?0.05). Therefore, BMPPB had potential to be used to replace Bis-GMA as base resin in dental restorative materials, but many studies should be undertaken further.  相似文献   

18.
Studies have shown that monomers from dental resins are acutely cytotoxic, but little is known of their long-term effects at sub-lethal concentrations. The current study determined the long-term effects of sub-lethal concentrations of TEGDMA (triethyleneglycol dimethacrylate) and Bis-GMA (bisphenol-glycidylinethacrylate), two common dental monomers, on the in vitro cellular proliferation, succinic dehydrogenase activity, and total cellular protein production of monocytes. Human THP-1 monocytes were exposed to concentrations of 100, 200, and 400 micromol l(-1) of TEGDMA or 1, 5, and 25 micromol l(-1) Bis-GMA for 5 weeks. Controls received only vehicle solutions of ethanol. Each week cellular proliferation (hemocytometer), succinic dehydrogenase (SDH) activity (MTT) and total cellular protein (bicinchoninic acid) were assessed. The results were compared with ANOVA and Tukey intervals (alpha = 0.05). TEDGMA had no proliferative or cellular protein effects, but increased SDH activity 20-60% in week 1 (p < 0.05). SDH activity then decreased 40% in week 2, followed by a gradual increase of 30-40% over week 3-5 (p < 0.05). Bis-GMA reduced proliferation by 40-60% from 1-5 weeks exposure (p < 0.05). However, SDH activity and total protein per cell were not affected. There was some indication of increased SDH activity after 5 weeks (20-30%, p < 0.05). Sub-lethal concentrations of TEGDMA and Bis-GMA have significant long-term effects on monocytes at low-dose 5-week exposures in vitro. Each monomer acted differently.  相似文献   

19.
In this study, 3,4-methylenedioxybenzene methoxyl methacrylate (MDBMM) was synthesized for the purpose of replacing both triethylene glycol dimethacrylate (TEGDMA) and tertiary amine, which was usually used as a comonomer and coinitiator for dental resin, respectively. Urethane dimethacrylate (UDMA) was chosen as a monomer. Real time near Fourier transform infrared (FTIR) with a horizontal sample holder and dynamic mechanical analyzer (DMA) were used to study the kinetics and mechanical properties, respectively. The results showed that the addition of MDBMM as a coinitiator in UDMA/TEGDMA/CQ (70/30/0.5 wt %) system led to the increase of the rate of polymerization. When compared with the commercial polymerizable amine, 2-(N,N-dimethyl amino)ethyl methacrylate (DMEM), MDBMM showed comparable initiating reactivity and led to higher modulus around human body temperature (37 degrees C). MDBMM as a comonomer resulted in slightly higher final double bond conversion than that of TEGDMA, which brought higher modulus around 37 degrees C. Therefore, MDBMM can be used as both potential coinitiator and comonomer for dental application.  相似文献   

20.
The aim of this in vitro study was to assess different auto-curing resins based on methylmethacrylate (MMA) and new light-curing resins based on urethane dimethacrylate (UDMA) regarding the residual monomers remaining in the resin and their elution over time. Specimens from three auto-curing and three light-curing resins were produced following the manufacturer's instructions. The concentration of residual MMA and UDMA monomers present in the resins as well as the quantity of the residual monomers released into artificial saliva solution after immersion times of 1, 3, and 7 days were analyzed by high-performance liquid chromatography (HPLC). Data were statistically analyzed using ANOVA and the post hoc Student-Newman–Keuls test. The highest and lowest amounts of residual monomers were found in the group of light-curing resins (p < 0.05). The light-curing resins Triad Trans Sheet (0.06 wt%) and Primosplint (0.06 wt%) released over the entire immersion time of 7 days the smallest (p < 0.05) quantity of UDMA. These two light-curing resins based on UDMA exhibited lower elution of residual monomers than auto-curing resins (MMA). The elution characteristics of the residual monomers do not seem to correlate with the residual monomer concentration in resins. These observations demonstrate that the quantitative determination of residual monomers alone - as required by the ISO specification 20795-1 – does not seem to be sufficient for an assessment of the biological properties of different resins. Instead, the evaluation of elution characteristics appears to be of higher clinical relevance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号